Cytotoxicity, hydrophobicity, uptake and distribution of osmium(II) anticancer complexes in ovarian cancer cells

Sabine H. van Rijt, Arindam Mukherjee, Ana M. Pizarro and Peter J. Sadler*

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4
7AL, UK.

Supporting Information

Spectroscopic data, ESI-MS and CHN analysis of complexes 1, 2 and 4.

Table S1

Figures S1-S6

Spectroscopic data for the complexes

[(η^6 -benzene)Os(4-methyl-picolinate)Cl] (1). Anal. Calcd. for C₁₃H₁₂ClNO₂Os (439.92): C, 35.49; H, 2.75; N, 3.18%. Found: C, 35.08; H, 2.55; N, 3.27%. ESI-MS (+ve): 406.1 m/z, [(bz)Os(4-Me-picolinate)]⁺. ¹H NMR (DMSO- d_6): δ = 9.15 (1H, d, J = 5.52 Hz), 7.76 (1H, s), 7.5972 (d, 1H, J = 5.77 Hz), 6.20 (6H, s).

[(*p*-cymene)Os(4-methyl-picolinate)Cl] (2). Anal. Calcd. for C₁₇H₂₀ClNO₂Os'H₂O (514.04): C, 39.72; H, 4.31; N, 2.72%. Found: C, 38.97; H, 3.98; N, 2.90%. ESI-MS (+ve): 462.1 m/z, [(*p*-cym)Os(4-Me-picolinate)]⁺. ¹H NMR (MeOD- d_4): δ = 8.96 (1H, d, J = 5.77 Hz), 7.87 (1H, s), 7.5728 (1H, dd, J = 5.52 and 1.51 Hz), 6.17 (2H, d, J = 5.52 Hz), 5.90 (2H, t, J = 6.02 Hz), 2.69 (1H, sept, J = 6.78 Hz), 2.61 (3H, s), 2.32 (3H, s), 1.23 (6H, dd, J = 7.03 and 11.04 Hz).

[(η^6 -tetrahydroanthracene)Os(4-methyl-picolinate)Cl] (4). Anal. Calcd. for C₂₁H₁₈ClNO₂Os (542.06): C, 46.53; H, 3.35; N, 2.58%. Found: C, 45.92; H, 3.18; N, 2.64%. ESI-MS (+ve): 510.1 m/z, [(THA)Os(4-Me-picolinate)]⁺. ¹H NMR (DMSO- d_6): $\delta = 9.03$ (1H, d, J = 5.52 Hz), 7.71 (1H, s), 7.58 (1H, d, J = 4.77 Hz), 6.19 (1H, d, J = 5.27 Hz), 6.15 (1H, t, J = 5.02 Hz), 6.10 (1H, d, J = 5.52 Hz), 6.01 (1H, t, J = 5.02 Hz), 5.68 (2H, m), 5.64 (2H, m), 3.21 (1H, s), 3.05 (1H, m), 2.80 (2H, m), 2.71 (1H, s), 2.37 (1H, s), 2.12 (2H, m).

 $\textbf{Table S1}. \ Instrumental \ Settings \ for \ ICP-MS$

Plasma condition	
Plasma gas / Lmin ⁻¹	15
Auxiliary gas/ Lmin ⁻¹	0.2
Forward Power / W	1550
Reflected Power / W	1
RF Matching / V	1.8
Smpl Depth / mm	9
Carrier Gas / Lmin ⁻¹	0.9
Makeup Gas / Lmin ⁻¹	0.2
Nebulizer Pump / rps	0.08
S/C Temp/ degC	15
Analyser Pressure / Pa	10^{-3}
FF/BK Pressure / Pa	343
Peristaltic pump/ rpm	0.08
Ion Lenses	0
Extract 1 / V	0 -130
Extract 2 / V	
Omega Bias-ce / V	-16
Omega Lens-ce / V	1.8
Cell entrance / V	-20
QP focus / V	5
Cell Exit / V	-20
Q-pole Parameters	
AMU gain	127
AMU Offset	128
Axis gain	0.9998
Axis Offset	0
QP Bias/V	-5
Ostonolo Bonometeno	
Octopole Parameters	100
OctP RF/ V	180
OctoP Bias/ V	-50
Detector Parameters	
Discriminator / mV	8
Analog HV / V	1730
Pulse HV / V	1070

Figure S1. Time dependence for formation of the aqua complexes of , 2 and 4 (based on ^{1}H NMR peak integrals) during hydrolysis of 1, 2 and 4 in acidic $D_{2}O$ (pH * 2) at 288 K.

Figure S2. TEM images of A2780 cells exposed to complex **3**, showing the different stages of cell apoptosis; (A, B) cell contraction, (C, D) membrane blebbing, (E, F) DNA fragmentation.

Figure S3. (A-F) TEM images of A2780 cells exposed to complex **3**, showing the formation of apoptotic bodies, marking the final stage of cell apoptosis.

Figure S4. (A-F) TEM images of untreated A2780 cells (controls).

Figure S5. (A-D) TEM images of A2780 cells exposed to 5 μ M complex **3**.

Figure S6. (A-F) TEM images of A2780 cells exposed to 20 μM complex **3**.