Significance of Biological H₂ Oxidation in a Continuous Single-Chamber Microbial Electrolysis Cell

Hyung-Sool Lee^{*}, and Bruce E. Rittmann

Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, 1001 S. McAllister Ave. Tempe, AZ 85287-5701, USA

*Corresponding author: Tel.: +1-480-727-0849; Fax: +1-480-727-0889

E-mail addresses: <u>hyungsool@asu.edu</u> (H.S. Lee), <u>Rittmann@asu.edu</u> (B.E. Rittmann)

7 figures, 1 table, and 11 pages

1. A Schematic Diagram of the Upflow Single-Chamber MEC

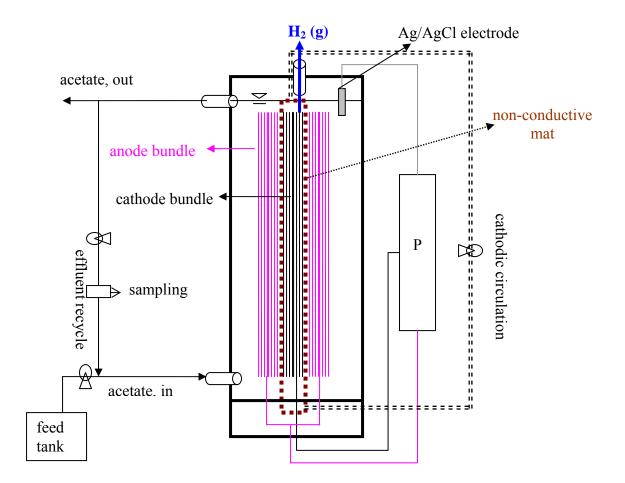


Figure S1. Schematic diagram of the upflow single-chamber MEC using graphite-fiber bundles as electrodes. P - a potentiostat for power supply. We separated the cathode bundle from the anodes using a non-conductive mat.

2. An Equivalent Circuit

To measure ohmic resistance in the single-chamber microbial electrolysis cell (MEC), we performed electrochemical impedance spectroscopy (EIS) using a potentiostat. We analyzed impedance spectra at a fixed anode potential = +0.07V (vs. SHE) for a closed-circuit system. We varied the frequency from 100 kHz to 10 mHz with an alternating-current signal of 10 mV amplitude. We recorded the impedance spectra when the anode was the working electrode, the cathode was the counter electrode, and Ag/AgCl was the reference electrode. We analyzed EIS data with an electrical circuit (Figure S2) that is comprised of an ohmic-resistance component and a constant-phase element in parallel with a resistance combining charge-transfer with diffusion. To accurately estimate ohmic resistance, we fit the EIS data with a Levenberg-Marquardt non-linear least square algorithm in EC lab software (Version 9.5).

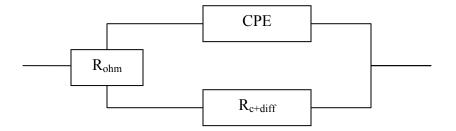


Figure S2. An equivalent circuit used for impedance analyses. R_{ohm} : ohmic resistance, CPE is a double layer constant phase element, and R_{c+diff} is sum of charge transfer resistance and diffusion resistance.

3. Measurement of Dissolved H₂ Concentration

We measured dissolved H₂ concentration in the steady-state continuous MEC in order to quantify H₂ loss from effluent discharge. We directly sampled 1 mL of liquid from the MEC with a sterile syringe and moved the sample into a 5-mL glass tube capped with butyl rubber stopper that had been sparged with ultrapure N₂ gas (99.999%) for 30 min. Then, we placed the glass tube in a 30°C incubation shaker for 3 days to establish equilibrium between liquid and gas phases; we carried out control test with the glass tube in the same condition without injecting liquid sample and used its measured H₂ gas concentration as the blank. We quantified H₂ gas concentration in headspace with a trace analytical gas chromatograph (ta 3000, Ametek) using a reduction gas detector and ultra purity N₂ (99.999%) as a carrier gas at a pressure of 90 psig. Standard H₂ gas (100 ppm, Matheson Trigas) was used for establishing calibration curves by blending with N₂. We measured dissolved H₂ concentration of the MEC in duplicate for each HRT.

4. Gas Composition in the Single-chamber MEC.

We monitored gas composition in the continuous single-chamber MEC. Figure S3 shows that H_2 gas composition was very stable at 49-53%, and CH_4 fraction of gas was small at 1.8-6.9% with HRT varied. The small, but consistent CH_4 production, despite the short HRT, suggests accumulation of methanogens on the electrodes, which means that we cannot suppress methanogenesis in a continuous single-chamber MEC by controlling hydraulic retention time.

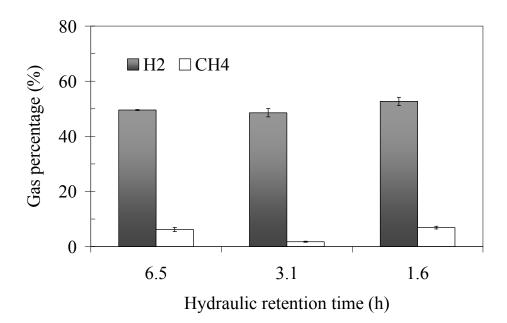


Figure S3. Percentages of H_2 and CH_4 gases in the single-chamber MEC for different HRTs.

5. Characterization of Current Density from Acetate and H₂.

We estimated distributions of current density produced from acetate and H_2 given that the true coulombic efficiency (CE) for acetate is 90%, which is close to the maximum CE reported from MFC/MEC studies (*1*). To characterize current density, we subtracted 0.9 times the current density associated with acetate utilization from the observed current density for quantifying the current density from H_2 oxidation. As seen in Figure S4, the current density from acetate oxidation was 47%, 40%, and 29% of observed current density, respectively, for HRT 1.6, 3.1, and 6.5 h. This characterization supports that anode-respiring bacteria in our single-chamber MEC preferred H_2 to acetate as electron donor and that the H_2 recycle effect was very significant for current generation.

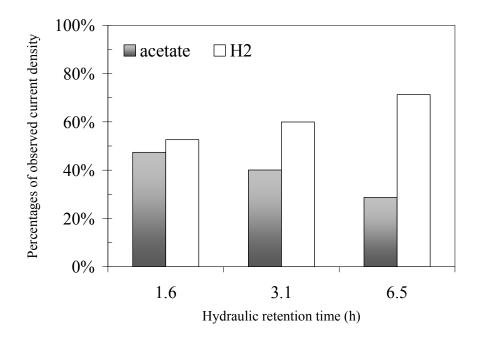


Figure S4. Distributions of coulombs generated from acetate and H_2 in the single MEC given that CE is 90% for acetate.

6. Quantification of Ohmic Resistance

Figure S5 presents Nyquist plots in duplicate experiments at HRT 1.6 h and anode potential -0.03V (vs standard hydrogen electrode). Read values of ohmic resistance were $\sim 0.38 \Omega$, but average of ohmic resistances estimated by the Levenberg-Marquardt nonlinear least square algorithm using EC lab software were 0.49 Ω . Either result supports that eliminating membrane from MEC systems can almost totally eliminate ohmic resistance.

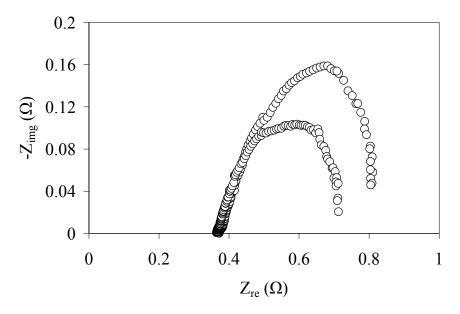


Figure S5. Nyquist plots for the single MEC operated at 1.6 h of HRT and E_{anode} fixed at -0.03 V. Current was 0.195-0.208 A (1,560-1,662 A/m³).

7. Characterization of Anode and Cathode Over-potentials.

We computed anode and cathode over-potentials, based on standard potential for reducing half-reactions for acetate and water at pH 7.

The anode reaction for acetate oxidation is:

$$1/8 \text{ CO}_2 + 1/8 \text{ HCO}_3^- + \text{H}^+ + \text{e}^- = 1/8 \text{ CH}_3 \text{COO}^- + 3/8 \text{ H}_2\text{O}, \qquad \text{E}^{\circ'}_{\text{acetate}} = -0.28 \text{ V}$$

The cathode reaction for water molecule reduction is:

 $H_2O + e^- = OH^- + 1/2 H_2$ $E^{\circ'}_{H2O} = -0.41V$

Anode over-potential (η_{anode}) can be computed by the relation of η_{anode} = anode potential - $E^{\circ'}_{acetate}$. Due to a fixed anode potential at -0.126 V vs. SHE, anode over-potential was calculated by

Anode over-potential = (-0.126) - (-0.28) = 0.154 V

Cathode over-potential ($\eta_{cathode}$) was calculated by the relation of $\eta_{cathode} = E^{\circ'}_{H2O}$ – cathode potential. Since cathode potentials varied with current density in our experiments, cathode over-potential changed slightly with HRT. We summarize all over-potentials and applied voltage for each HRT in Table S1.

HRT (h)	$\eta_{anode}\left(V\right)$	$\eta_{cathode}~(V)$	η_{ohmic} (V)	Applied voltage
				(V)
6.5	0.154	1.15 ± 0.07	0.090 ± 0.003	1.43 ± 0.04
3.1	0.154	1.19 ± 0.05	0.097 ± 0.002	1.47 ± 0.05
1.6	0.154	1.21 ± 0.03	0.1 ± 0.003	1.49 ± 0.03

Table S1. Characterization of electrode over-potentials, ohmic energy losses, and measured applied voltage for each HRT

 η_{anode} : anode over-potential (V), $\eta_{cathode}$: cathode over-potential (V), and η_{ohmic} : ohmic energy loss (V).

Total energy losses were computed to be 1.39 V - 1.46 V, while total energy losses range from 1.3 V - 1.4 V, based on theoretical standard potential of 0.13 V for CH₃COO⁻ + 3 H₂O = CO₂ + HCO₃⁻ + 4 H₂ at pH 7. A small error (~0.1 V) can occur because we did not account for temperature and constituents' concentration in these computations. Characterization of over-potentials and ohmic energy losses clearly shows that cathode over-potential was the main energy loss in our single-chamber MEC lacking metal catalyst on the cathode.

8. Estimation of H₂ Production Rate to Applied Voltage at CCE = 100%

We calculated H₂ production rate from the single-chamber MEC given that no H₂ recycle and methanogenesis occur in the MEC (CCE=100%). To provide current density data for different applied voltages, we decreased anode potential from -0.126 to -0.326 V (vs. standard hydrogen electrode) in a potentiostat mode. For steady-state acetate concentration, we converted average of current density into H₂ production rate at each applied voltage. Using linear regression, we obtained the equation y = 15.632x - 5.0988where y is H₂ production rate (m³ H₂/m³-d) and x is applied voltage (V).

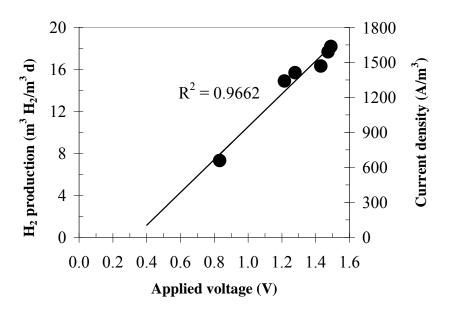


Figure S6. Linear regression for H_2 production rate (volumetric current density) and applied voltage at CCE (cathodic conversion efficiency) of 100%.

Figure S7 compares the estimated and observed H_2 -production rates against the applied voltage. Applied voltage required for generating 4.32 m³ H₂/m³-d is only 0.6 V, while observed applied voltage for this H₂ production was 1.49 V. This comparison indicates that H₂ recycle can increase applied voltage up to 0.9 V more than its minimum requirement.

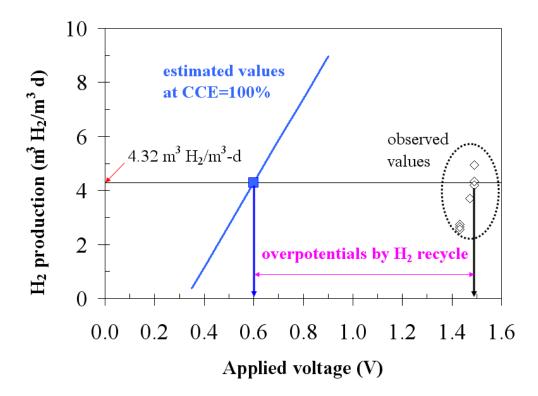


Figure S7. Correlations between H_2 production rate and applied voltage with and without H_2 recycle and CH_4 formation.

Literature Cited

1. Bond, D. R.; Lovley, D. R. Electricity Production by *Geobacter sulfurreducens* Attached to Electrodes. *Appl. Environ. Microbiol.* **2003**, *69* (3), 1548-1555.