Supporting information

Predicting Sediment Sorption Coefficients for Linear Alkylbenzene Sulfonate Congeners from Polyacrylate-Water Partition Coefficients at Different Salinities

5 Ángeles Rico-Rico, 1,* Steven T.J. Droge, 1,2 Joop L.M. Hermens

¹Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3508 TD, Utrecht, The Netherlands

²Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany

*Corresponding author, Phone: +31 30 253 5018; Fax: +31 30 253 5077; E-mail: a.ricorico@gmail.com

Number of pages: 5

15

10

Contents:

- Section 1: Discussion on sorption of LAS congeners to polyacrylate SPME fiber.
- Table S1: Ion Composition of the Artificial GP2 Seawater (SW) and Dutch Standard
 Water (DSW).
- Figure S1: Fiber-water isotherms for C₁₂-2-LAS at different seawater and freshwater dilutions.
 - Figure S2: Fiber-water isotherms for C_{12} -2-LAS at different Na $^+$ and Ca $^{2+}$ concentrations.
 - Figure S3: Bioconcentration factors vs fiber-water partition coefficients.

25

Table S1. Ion Composition of the Artificial GP2 Seawater (SW) and Dutch Standard Water (DSW).

	SW	DSW
	mmol L ⁻¹	mmol L ⁻¹
Na ⁺ *	418	11
Mg ²⁺ Ca ²⁺	46.73	0.30
Ca ²⁺	8.98	1.36
K ⁺	8.92	0.20
Sr ²⁺	0.08	
Cl ⁻	480	2.70
SO ₄ ²⁻	24.80	0.30
HCO ₃	2.02	1.40
Br ⁻	0.74	
B ₄ O ₇ ²⁻	0.09	

 $^{^{\}star}\overline{10~\text{mM NaN}_3}$ is considered for the calculation of $\overline{\text{Na}^+}$ content in SW and DSW solutions.

40

Figure S1. Fiber-water isotherms for C_{12} -2-LAS at different seawater and freshwater dilutions.

Figure S2. Fiber-water isotherms for C_{12} -2-LAS at different Na^+ and Ca^{2+} concentrations.

55

60

65

Figure S3. Relative Steady-state bioconcentration values (Reference compound: C_{12} -2-LAS) according to ref. (1) vs estimates of log K_{fw} from ref.(2).

Section 1. Discussion on sorption of LAS congeners to polyacrylate SPME fibers.

According to Jafvert *et al.* (*3*) the partitioning of an anionic organic compound to the octanol phase in a single electrolyte solution that contains divalent cations can be mainly described by the following reaction:

$$M^{2+} + 2A^{-} = MA^{+} + A^{-}$$

Where M^{2+} represents the divalent cation and A^- is the organic anion. In this reaction, the anionic organic compound is acting as a counterion to maintain electroneutrality. When fitting the K_{fw} values and the log [Ca²⁺] concentration from the simple electrolyte solution experiment to a sigmoidal curve with a fixed slope of 1, an apparent formation constant log ($K_{Ca(LAS)}^+$) of 2.5 is obtained. This value might be considered as an indication of the affinity of the partitioning of LAS at different Ca²⁺ concentration, but we cannot state if this is reflecting the real ion pair formation, since, to our knowledge, no formation constant of this complex is yet reported.

80

70

75

References

- (1) Tolls, J.; Haller, M.; de Graaf, I.; Thijssen, M. A. T. C.; Sijm, D. T. H. M. Bioconcentration of LAS: Experimental determination and extrapolation to environmental mixtures. *Environ. Sci. Technol.* 1997, 31, 3426-3431.
- 85 (2) Rico-Rico, A.; Droge, S. T. J.; Widmer, D.; Hermens, J. L. M. Freely dissolved concentrations of anionic surfactants in seawater solutions: Optimization of the non-depletive solid-phase microextraction method and application to linear alkylbenzene sulfonates. *J. Chromatogr., A* 2009, *1216*, 2996-3002.
- Jafvert, C. T.; Westall, J. C.; Grieder, E.; Schwarzenbach, R. P. Distribution of hydrophobic
 ionogenic organic compounds between octanol and water: Organic acids. *Environ. Sci. Technol.* 1990, *24*, 1795-1803.