Supporting Information:

Facile Formation of Branched Titanate Nanotubes to Directly Grow 3D Nanotubular Network on Solid Substrate

Haimin Zhang,^a Porun Liu,^a Hongjuan Wang,^{a,b} Hua Yu,^a Shanqing Zhang,^a Huaiyong Zhu,^c

Feng Peng^b and Huijun Zhao^{*^a}

^a Environmental Futures Centre and Griffith School of Environment, Gold Coast Campus, Griffith University, QLD 4222, Australia, ^b School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China, ^c School of Physical and Chemical Sciences,

Queensland University of Technology, Brisbane, QLD 4001, Australia

E-mail: <u>h.zhao@griffith.edu.au</u>

Figure S1. The voltammograms of the 3D titanate nanotube network photoanode (a) and the TiO_2 porous film photoanode (b) obtained from aqueous solution containing 0.10 M NaNO₃ under different light intensities.

Figure S2. Relationships between the saturation photocurrent and light intensity. The saturation photocurrent data were derived J_{ph} -*E* curves shown in Figure S1 at + 0.80 V of applied potential.