Supporting Information for
 "Protonic Gating of Excited-State Twisting and Charge Localization in GFP Chromophores: A Mechanistic Hypothesis for Reversible Photoswitching"

Seth Olsen, Krissie Lamothe and Todd J. Martínez
I. Illustration of Photoswitching Scheme - p. 2
II. AIMS Simulations - p. 3
III.Synchronous Transit Plots - p. 6
IV.Propriety of the Electronic Structure Ansatz - p. 12
V. Two-Dimensional Interpolation Surfaces - p. 17
VI.References - p. 19

I. Schematic Depiction of Hypothetical Photoswitching Mechanism

Here, we show a schematic outline of a proposed mechanistic hypothesis for RSFP photoswitching based on the chemistry of the HBI chromophore. Roles for which we invoke the protein are highlighted in red. The reader may verify that the Lewis structures drawn here are consistent with the $S_{1}-S_{0}$ difference density isosurfaces shown in Fig. 2 of the main text. Energies are not drawn to scale.

II: AIMS Simulations

AIMS simulations were carried out using an implementation ${ }^{1}$ within the Molpro ${ }^{2}$ software. The electronic structure model was generated using a 2 -electron, 2 -orbital, 2 -state-averaged ${ }^{3}$ complete active space self consistent field ${ }^{4}$ ansatz with a 6-31G Gaussian basis set ${ }^{5-7}$ (SA2-CAS(2,2)/6-31G). The timestep was 20a.u. Initial conditions were sampled from a Wigner distribution generated with the S_{0} minimum and normal modes calculated using MP2 ${ }^{8} / 6-31 G^{* *}$. $5-7$ Trajectories were propagated for 20000 a.u. Tables S1.1 and S1.4 describe geometries used to generate the Wigner distribution for anionic and neutral HBI, respectively. Tables S1.2-S1.3 and S1.5-S1.6 list the SA2-CAS(2,2)/6-31G state-specific energies, harmonic frequencies, and natural orbitals and occupation numbers at these geometries.

The MR-RSPT2 ${ }^{9}$ excitation energy at the SA2-CAS(2,2)/6-31G S_{0} minimum of anionic HBI is $2.55 \mathrm{eV}(468 \mathrm{~nm})$. This is quite close to the absorption energy of wild-type GFP $(2.61 \mathrm{eV} ; 475 \mathrm{~nm})^{10}$ and the gas-phase absorption maximum of a GFP chromophore model in its anionic state (2.59 eV ; 479nm). ${ }^{11}$ The MR-RSPT2 excitation of neutral HBI is $3.38 \mathrm{eV}(367 \mathrm{~nm})$, which is in slightly worse agreement with the relevant protein absorption (3.14 eV ; 397 nm) ${ }^{10}$ and (corrected) gas phase absorption maxima (3.11 eV ; 399 nm). ${ }^{12}$

Table S1.1. Cartesian coordinates (a.u.) for anionic HBI used to generate the initial distribution for AIMS simulations. Geometry was generated via optimization with MP2/6-31G**.

		0.02264	0.00827
N	0.00023	0.027965	-2.10943
N	0.00239	0.779721	1.01390
H	-0.00099	0.02721	
H	-0.00191	2.12329	-0.46607
H	0.00849	-2.50685	-2.96481
H	0.00573	0.98916	-4.48510
H	0.00891	1.35096	-6.93670
H	0.01607	-2.91424	-7.57727
H	0.01289	-3.27044	-5.13169
C	0.00008	1.10898	-0.83967
C	0.00445	-0.62319	-2.12224
C	0.00309	-1.15891	-0.76587
C	0.00739	-1.45104	-3.23701
C	0.00914	-1.17016	-4.61287
C	0.00800	0.14941	-5.16885
C	0.00984	0.34719	-6.52491
C	0.01294	-0.74482	-7.48993
C	0.01391	-2.07163	-6.89442
C	0.01205	-2.26089	-5.53691
O	0.00411	-2.31093	-0.30035
O	0.01420	-0.55340	-8.73406

Table S1.2. SA2-CAS(2,2)/6-31G wavefunction (natural orbitals and occupation numbers) at the geometry of anionic HBI detailed in Table S1.1. State Energies: $\mathrm{E}\left(\mathrm{S}_{0}\right)=$ -641.129989161311 a.u., $E\left(S_{1}\right)=-640.979139746473$ a.u.

Table S1.3. MP2/6-31G** harmonic frequencies $\left(\mathrm{cm}^{-1}\right)$ used to generate the ground state Wigner distribution for HBI anion.

> 52.4121000000 183.2224000000 334.4425000000 463.9662000000 622.0361000000 749.5135000000 838.6382000000 914.9919000000 1102.6779000000 1296.1302000000 1417.2462000000 1563.4814000000 1727.3166000000 3235.9754000000 3746.4533000000

> 61.6593000000 213.5570000000 368.3210000000 480.9397000000 647.0939000000 775.1792000000 868.9889000000 924.6879000000 1123.6264000000 1322.9570000000 1420.1290000000 1596.3911000000 1782.0950000000 3245.1497000000
101.7936000000 240.2600000000 400.1006000000 555.1830000000 692.9289000000 802.6306000000 882.8089000000 997.1300000000 1200.6318000000 1330.1992000000 1485.3904000000 1645.7286000000 3181.3867000000 3269.4591000000
116.7688000000 284.7446000000 450.2914000000 591.6552000000 700.9552000000 810.9847000000 914.0303000000 1080.9844000000 1226.4316000000 1389.4409000000 1530.7001000000 1695.7173000000 3197.5202000000 3285.0180000000

Table S1.4. Cartesian coordinates (a.u.) for neutral HBI used to generate the initial distribution for AIMS simulations ('Geometry.dat' file). Geometry was generated via optimization with MP2/6-31G**. Structure is shown at right with bond lengths in \AA.

	r		
N	-0.01502	0.00026	-0.05085
H	-0.01976	0.00074	0.95599
C	1.08756	-0.00011	-0.87987
H	2.08898	0.00013	-0.47340
N	0.81731	-0.00077	-2.15707
C	-0.58881	-0.00091	-2.22018
C	-1.16969	-0.00017	-0.84788
O	-2.33157	-0.00009	-0.45898
C	-1.37597	-0.00157	-3.32725
H	-2.44144	-0.00152	-3.10878
C	-1.00098	-0.00231	-4.72707
C	0.33519	-0.00245	-5.17491
H	1.13600	-0.00199	-4.44924
C	0.61915	-0.00318	-6.53528
H	1.65093	-0.00328	-6.87088
C	-0.41798	-0.00378	-7.47563
C	-1.74917	-0.00365	-7.04927
H	-2.53641	-0.00411	-7.79111
C	-2.03028	-0.00292	-5.68993
H	-3.06283	-0.00282	-5.35989
O	-0.19636	-0.00450	-8.82712
H	0.75694	-0.00451	-8.98240

Table S1.5. SA2-CAS(2,2)/6-31G wavefunction (natural orbitals and occupation numbers) at the geometry of neutral HBI detailed in Table S1.4. State Energies: $E\left(S_{0}\right)=-641.684182702957$ a.u., $E\left(S_{1}\right)=-641.500871462917$ a.u.

Table S1.6. MP2/6-31G** harmonic frequencies $\left(\mathrm{cm}^{-1}\right)$ used to generate the ground state Wigner distribution for HBI neutral.

[^0]105.5490000000 278.6459000000 389.1073000000 496.4213000000 642.9239000000 801.7022000000 878.6276000000 908.7633000000 1147.6811000000 1297.5624000000 1410.8831000000 1578.8514000000 1725.1061000000 3250.0879000000
3739.6254000000
124.4259000000 285.4077000000 407.5105000000 508.9146000000 687.2128000000 807.4762000000 882.5684000000 1041.0747000000 1216.0840000000 1330.7921000000 1436.8938000000 1600.9598000000 1833.7879000000 3284.8936000000 3872.9800000000

Figure S1.7. Population dynamics for anionic HBI. Dotted lines are population traces for individual runs and solid line is average over all runs.

Anion S1 Population

Figure S1.8. Population dynamics for neutral HBI. Dotted lines are population traces for individual runs and solid line is average over all runs.

III: Synchronous Transit Plots

Figure 2 displays two synchronous transit plots each for neutral and anionic HBI. One of these is for imidazolinone torsion; one is for phenoxy (phenol) torsion. Each slice begins with the SA2-CAS(2,2)/6-31G S_{0} minimum geometry and terminates with a imidazolinone or phenoxy twisted structure. In the anionic case, the twisted structures are minima on the S_{1} surface. In the neutral case, the imidazolinone-twisted structure is a true S_{1} minimum and the phenoxy-twisted structure was produced by minimization on S_{1} under constraint of the dihedrals spanning the bridge-phenol bond. The interpolations were performed in Z-matrix internal coordinates. The symbolic Zmatrices can be found in this section in tables S2.1 (anion) and S2.5 (neutral). Data pertaining to the anchor points can be found in tables S2.2, S2.3 and S2.4 (anion) and S2.5, S2.6 and S2.7 (neutral). Z-matrix variables, SA2-CAS(2,2)/6-31G state energies, and state averaged natural orbitals and occupation numbers are displayed. Multireference $2^{\text {nd }}$ order Rayleigh-Schrödinger perturbation theory calculations were performed, which correlated only the highest-lying 32 canonical MCSCF orbitals.

Table S2.1. Symbolic Z-Matrix for anionic HBI used to construct synchronous transit plots in Figure 2. Heavy atom naming scheme is indicated at right.

N3I; H1N3I,	1,	RNH1;				
C4I,	1,	RCN2,	2,	ACNH1;		
H1C4I,	3 ,	RCH3,	1,	AHCN2,	2,	DHCNH1;
N5I,	3,	RCN4,	1,	ANCN3,	2,	DNCNH2;
C1I,	5,	RCN5,	3,	ACNC4,	1,	DCNCN3;
C2I,	6 ,	RCC6,	5,	ACCN5,	3,	DCCNC4;
O1C2I,	7,	RCO7,	1,	AOCN6,	3 ,	DOCNC5;
C1B,	6,	RCC8,	7,	ACCC7,	8,	DCCCO6;
H1C1B,	9,	RCH9,	6,	AHCC8,	7,	DHCCC7;
C1P,	9,	RCC10,	6 ,	ACCC9,	5,	DCCCN8;
C2P,	11,	RCC11,	9,	ACCC10,	6 ,	DCCCC9;
H1C2P,	12,	RCH12,	11,	AHCC11,	9,	DHCCC10;
C3P,	12,	RCC13,	11,	ACCC12,	9,	DCCCC11;
H1C3P,	14,	RCH14,	12,	AHCC13,	11,	DHCCC12;
C4P,	14,	RCC15,	12,	ACCC14,	11,	DCCCC13;
C5P,	16,	RCC16,	14,	ACCC15,	12,	DCCCC14;
H1C5P,	17,	RCH17,	16,	AHCC16,	14,	DHCCC15;
C6P,	17,	RCC18,	16,	ACCC17,	14,	DCCCC16
H1C6P,	19,	RCH19,	11,	AHCC18,	12,	DHCCC17
O1C4P,	16,	RCO20,	17,	AOCC19,	19,	DOCCC18

Table S2.2. Z-matrix variables, SA2-CAS(2,2)/6-31G energies and wavefunction (natural orbitals and occupation numbers) at the SA2-CAS(2,2)/6-31G S S_{0} minimum geometry of anionic HBI.

```
RNH1 = 0.98839073
RCN2 = 1.38724228
ACNH1 = 127.555937
RCH3 = 1.0665974
AHCN2 = 122.2450943
DHCNH1 = 0.00015943
RCN4 = 1.27986638
ANCN3 = 112.1516022
DNCNH2 = -180.0030627
RCN5 = 1.41791742
ACNC4 = 107.1417642
DCNCN3 = 0.00113285
RCC6 = 1.44070452
ACCN5 = 108.6031789
DCCNC4 = 0.00090544
RCO7 = 1.24587208
AOCN6 = 124.2634391
DOCNC5 = -179.9992191
RCC8 = 1.36967715
```

ACCC7 $=123.9423057$
$\mathrm{DCCCO6}=-0.00154168$
$\mathrm{RCH} 9=1.07781284$
AHCC8 $=112.6313413$
DHCCC7 $=0.00281289$
RCC10 $=1.40932609$
ACCC9 $=132.2572916$
DCCCN8 $=-0.00286096$
RCC11 $=1.42488788$
ACCC10 $=124.5993002$
DCCCC9 $=0.01162349$
RCH12 = 1.07139774
$\mathrm{AHCC11}=117.963473$
DHCCC10 $=-0.01241575$
RCC13 $=1.35822481$
ACCC12 $=121.7314827$
DCCCC11 $=-180.0096271$
RCH14 $=1.07338493$
$\mathrm{AHCC} 13=121.0263037$

DHCCC12 = 179.9963218
RCC15 $=1.44635972$ ACCC14 $=122.3095184$ DCCCC13 $=-0.00248383$ RCC16 = 1.44331464 ACCC15 $=115.4046064$ $\mathrm{DCCCC1} 4=0.00723557$ RCH17 $=1.07312974$ AHCC16 $=117.1167332$ DHCCC15 $=179.9924558$ RCC18 $=1.35796814$ ACCC17 $=121.4315944$ DCCCC16 $=-0.00480304$ RCH19 $=1.07686921$ AHCC18 $=117.9797837$ DHCCC17 $=-179.9958133$ $\mathrm{RCO} 20=1.25800184$ AOCC19 $=122.3834332$ DOCCC18 $=-180.0027046$

State Energies: $\mathrm{E}\left(\mathrm{S}_{0}\right)=-641.134677143971$ a.u., $\mathrm{E}\left(\mathrm{S}_{1}\right)=-640.981785421320$ a.u.

Table S2.3. SA2-CAS(2,2)/6-31G wavefunction (natural orbitals and occupation numbers) at the SA2-CAS(2,2)/6-31G imidazolinone-twisted S_{1} minimum geometry of anionic HBI.

```
RNH1 = 0.98898101
RCN2 = 1.36972246
ACNH1 = 127.527152
RCH3 = 1.06593287
AHCN2 = 122.6267664
DHCNH1 = -0.19245716
RCN4 = 1.29988569
ANCN3 = 112.6614255
DNCNH2 = -180.2508357
RCN5 = 1.38888806
ACNC4 = 107.8602641
DCNCN3 = -0.38929474
RCC6 = 1.46776178
ACCN5 = 107.7756662
DCCNC4 = 0.80716738
RCO7 = 1.22686531
AOCN6 = 124.5667835
DOCNC5 = -178.2331084
RCC8 = 1.44643914
```

ACCC7 $=127.1034211$
DCCCO6 $=-1.53702504$
RCH9 $=1.07606855$
АНСС8 $=116.4758056$
DHCCC7 $=89.23177397$
RCC10 $=1.41377277$
ACCC9 $=124.8932657$
DCCCN8 $=89.13391817$
RCC11 $=1.42034181$
ACCC10 $=123.9568131$
DCCCC9 $=0$
RCH12 $=1.07572478$
AHCC11 $=118.6981392$
DHCCC10 $=-0.35453096$
RCC13 $=1.3666297$
ACCC12 = 122.5080952
ACCC12 $=122.5080952$
DCCCC11 $=-179.9317025$
DCCCC11 $=-179.931702$
$\mathrm{RCH14}=1.07413308$
AHCC13 $=120.6359164$

DHCCC12 $=179.915215$ RCC15 $=1.43664735$ ACCC14 $=122.490857$ DCCCC13 $=0.0293163$
RCC16 $=1.43825092$
ACCC15 $=114.5621832$
DCCCC14 $=-0.07494423$
RCH17 $=1.07419354$
AHCC16 $=116.9249932$
DHCCC15 $=180.0404366$
RCC18 $=1.3643568$
ACCC17 $=122.281233$
DCCCC16 $=0.01824928$
RCH19 $=1.07752641$
AHCC18 $=117.9978866$
DHCCC17 $=-180.0990483$
$\mathrm{RCO} 20=1.27048623$
AOCC19 $=122.6399864$
DOCCC18 $=-179.87464$

State Energies: $\mathrm{E}\left(\mathrm{S}_{0}\right)=-641.057725851047 \mathrm{a} . \mathrm{u} ., \mathrm{E}\left(\mathrm{S}_{1}\right)=-641.028987216418 \mathrm{a} . \mathrm{u}$.

Table S2.4. SA2-CAS(2,2)/6-31G wavefunction (natural orbitals and occupation numbers) at the SA2-CAS(2,2)/6-31G phenoxy-twisted S_{1} minimum geometry of anionic HBI.

RNH1 $=0.98804731$
RCN2 $=1.38144953$
ACNH1 $=127.7510349$
RCH3 $=1.06619312$
AHCN2 $=123.0248017$
DHCNH1 $=-0.0018087$
RCN4 $=1.29279084$
ANCN3 $=111.0975668$
DNCNH2 $=-180.0030577$
RCN5 $=1.40381921$
ACNC4 $=107.3762956$
DCNCN3 $=0.00287636$
RCC6 $=1.42159756$
ACCN5 $=109.3176481$
DCCNC4 $=-0.0029787$
$\mathrm{RCO} 7=1.26372224$
AOCN6 $=123.822966$
DOCNC5 $=-179.9955951$
RCC8 $=1.40227331$

```
ACCC7 = 126.3143928
DCCCO6 = -0.01406547
RCH9 = 1.074493
AHCC8 = 118.4580337
DHCCC7 = -0.00217385
RCC10 = 1.46689321
ACCC9 = 123.0857428
DCCCN8 = -0.0100309
RCC11 = 1.43139666
ACCC10 = 121.6120072
DCCCC9 = 90.74036231
RCH12 = 1.07207965
AHCC11 = 117.1923516
DHCCC10 = -2.75442664
RCC13 = 1.35288801
ACCC12 = 122.2219344
DCCCC11 = -182.550239
RCH14 = 1.07242572
AHCC13 = 121.9392931
```

DHCCC12 = 180.0378176 RCC15 $=1.45292565$ ACCC14 $=121.3036302$ DCCCC13 $=0.25477269$ RCC16 $=1.45290763$ ACCC15 $=116.1733169$ DCCCC14 $=0.65176314$ RCH17 = 1.07242624 АНСС16 $=116.7601303$ DHCCC15 $=179.1490988$ RCC18 $=1.35288832$ ACCC17 $=121.3012906$ DCCCC16 $=-0.64445161$ RCH19 $=1.07208034$ AHCC18 = 117.1902519 DHCCC17 $=-178.6555591$ $\mathrm{RCO} 20=1.24633245$ AOCC19 $=121.9165653$ DOCCC18 $=-180.7506295$

State Energies: $E\left(S_{0}\right)=-641.066602608222 a . u$., $E\left(S_{1}\right)=-641.028986128020$ a.u.

Table S2.5. Symbolic Z-Matrix for neutral HBI used to generate the synchronous transit plots in Figure 2. Heavy atom naming system is indicated at right.

N3I; H1N3I,	1,	RNH1;				
C4I,	1,	RCN2,	2,	ACNH1;		
H1C4I,	3,	RCH3,	1,	AHCN2,	2,	DHCNH1;
N5I,	3,	RCN4,	1,	ANCN3,	2,	DNCNH2;
C1I,	5,	RCN5,	3 ,	ACNC4,	1,	DCNCN3;
C2I,	6,	RCC6,	5,	ACCN5,	3,	DCCNC4;
O1C2I,	7,	RCO7,	1,	AOCN6,	3,	DOCNC5;
C1B,	6,	RCC8,	7,	ACCC7,	8 ,	DCCCO6;
H1C1B,	9,	RCH9,	6,	AHCC8,	7,	DHCCC7;
C1P,	9,	RCC10,	6,	ACCC9,	5,	DCCCN8;
C2P,	11,	RCC11,	9 ,	ACCC10,	6 ,	DCCCC9;
H1C2P,	12,	RCH12,	11,	AHCC11,	9,	DHCCC10;
C3P,	12,	RCC13,	11,	ACCC12,	9,	DCCCC11;
H1C3P,	14,	RCH14,	12,	AHCC13,	11,	DHCCC12;
C4P,	14,	RCC15,	12,	ACCC14,	11,	DCCCC13;
C5P,	16,	RCC16,	14,	ACCC15,	12,	DCCCC14;
H1C5P,	17,	RCH17,	16,	AHCC16,	14,	DHCCC15;
C6P,	17,	RCC18,	16,	ACCC17,	14,	DCCCC16;
H1C6P,	19,	RCH19,	11,	AHCC18,	12,	DHCCC17
O1C4P,	16,	RCO20,	17,	AOCC19,	19,	DOCCC18;
H101C4P,	21,	ROH21,	16,	AHOC20,	17,	DHOCC19;

Table S2.6. Z-Matrix variables, SA2-CAS(2,2)/6-31G state-specific energies, stateaveraged natural orbitals and occupation numbers at the SA2-CAS(2,2)/6-31G So minimum geometry of neutral HBI.

RCN4 $=1.2837399$
ANCN3 $=112.842033$
DNCNH2 $=-179.9994849$
RCN5 $=1.40732981$
ACNC4 $=106.8400836$
DCNCN3 $=-0.00044335$
RCC6 $=1.46206112$
ACCN5 $=108.5538833$
DCCNC4 $=0.00023353$
$\mathrm{RCO} 7=1.22524578$
AOCN6 $=126.3214916$
DOCNC5 $=-179.9973339$
RCC8 = 1.36142108
ACCC7 $=123.4447473$
DCCCO6 $=-0.00760777$
RCH9 $=1.07660804$
AHCC8 $=113.6979676$
DHCCC7 $=-0.00484638$

```
RCC10 = 1.43634501
ACCC9 = 130.7417748
DCCCN8 = -0.00895221
RCC11 = 1.39766411
ACCC10 = 123.8267263
DCCCC9 = 0.00201811
RCH12 = 1.06979664
AHCC11 = 119.5094351
DHCCC10 = 0.00922103
RCC13 = 1.38432545
ACCC12 = 120.6213968
DCCCC11 = -180.0046082
RCH14 = 1.07418046
AHCC13 = 119.7879747
DHCCC12 = 180.0038069
RCC15 = 1.3859778
ACCC14 = 119.9990346
DCCCC13 = 0.00875214
```

RCC16 $=1.38575624$ ACCC15 = 120.5673127 DCCCC14 $=-0.00797625$ RCH17 $=1.07049408$ AHCC16 $=119.0710828$
DHCCC15 = 180.0051979
RCC18 $=1.37850434$
ACCC17 $=119.1814246$
DCCCC16 $=0.00590629$
RCH19 $=1.07412736$
АНСС18 $=119.3980212$
DHCCC17 $=-180.0044008$
RCO20 $=1.37392175$
AOCC19 $=116.9577667$
DOCCC18 $=-179.9918007$
ROH21 $=0.94969921$
АНОС20 $=114.8967055$
DHOCC19 $=179.982536$

State Energies: $E\left(S_{0}\right)=-641.689768624901$ a.u., $E\left(S_{1}\right)=-641.504617086528$ a.u.

Table S2.7. Z-Matrix variables, SA2-CAS(2,2)/6-31G state-specific energies, natural orbitals, and occupation numbers at the SA2-CAS(2,2)/6-31G imidazolinone-twisted S_{1} minimum geometry ($I-\mathrm{S}_{1}$) of neutral HBI.

```
RNH1 \(=0.98941966\)
RCN2 \(=1.37878661\)
ACNH1 \(=127.4511892\) RCH3 \(=1.0647052\) AHCN2 \(=123.3527032\)
DHCNH1 \(=0.80672723\)
RCN4 \(=1.29242572\)
ANCN3 = 111.1783765
DNCNH2 \(=-179.2886177\)
RCN5 \(=1.40183974\)
ACNC4 \(=105.7658972\)
DCNCN3 \(=-0.2555019\)
RCC6 \(=1.40107804\) ACCN5 \(=111.5234395\) DCCNC4 \(=0.70226806\) \(\mathrm{RCO7}=1.26157638\) AOCN6 \(=125.3598727\) DOCNC5 \(=-180.1556941\) RCC8 \(=1.43891505\) ACCC7 \(=125.9177922\)
```

```
DCCCO6 = 4.99940588
RCH9 = 1.08485622
AHCC8 = 119.339896
DHCCC7 = 86.23092499
RCC10 = 1.38554289
ACCC9 = 125.737175
DCCCN8 = 92.29029272
RCC11 = 1.42024789
ACCC10 = 120.633589
DCCCC9 = 0
RCH12 = 1.07015723
AHCC11 = 117.9025773
DHCCC10 = -0.04238455
RCC13 = 1.3698882
ACCC12 = 120.6584656
DCCCC11 = -180.2359945
RCH14 = 1.07222171
AHCC13 = 120.8028564
DHCCC12 = 180.1863061
RCC15 = 1.39902907
```

ACCC14 $=119.1036035$
DCCCC13 $=-0.1557123$
RCC16 $=1.40463975$
ACCC15 $=121.8746539$
DCCCC14 = 0.11233919
RCH17 $=1.06928865$
АНСС16 $=118.4936529$
DHCCC15 $=180.150447$
RCC18 $=1.36244462$
ACCC17 $=118.8188881$
DCCCC16 $=-0.12323916$
RCH19 $=1.07294477$
AHCC18 $=118.9496354$
DHCCC17 $=-180.3256259$
$\mathrm{RCO} 20=1.34337353$
AOCC19 $=116.0583428$
DOCCC18 $=-180.1210721$
ROH21 $=0.95151869$
АНOC20 $=116.7636177$
DHOCC19 $=180.640953$

State Energies: $E\left(S_{0}\right)=-641.591432700723$ a.u., $E\left(S_{1}\right)=-641.567861072717$ a.u.

Table S2.8. Z-Matrix variables, SA2-CAS(2,2)/6-31G wavefunction (natural orbitals and occupation numbers) at the SA2-CAS(2,2)/6-31G phenoxy-twisted constrained S_{1} minimized geometry of neutral HBI.

```
RNH1 = 0.9890551
RCN2 = 1.37672306
ACNH1 = 127.3130858
RCH3 = 1.06543325
AHCN2 = 122.971844
DHCNH1 = -0.29330991
RCN4 = 1.29451412
ANCN3 = 111.3272858
DNCNH2 = -180.3139217
RCN5 = 1.40416116
ACNC4 = 106.9817349
DCNCN3 = 0.09988309
RCC6 = 1.42591649
ACCN5 = 109.6378464
DCCNC4 = -0.09665712
RCO7 = 1.2503832
AOCN6 = 125.0408595
DOCNC5 = -180.0819668
RCC8 = 1.39570015
ACCC7 = 128.091763
```

ACCC14 $=118.9072932$ DCCCC13 $=0.57171643$ RCC16 $=1.4152541$ ACCC15 $=121.6922384$ DCCCC14 $=-0.29675164$ RCH17 $=1.06974569$ АНСС16 $=118.0111284$
DHCCC15 $=179.4547029$ RCC18 $=1.35528429$ ACCC17 $=119.1370115$ DCCCC16 $=0.28239262$ RCH19 $=1.06950943$ AHCC18 $=117.0597671$ DHCCC17 $=-178.5201507$ $\mathrm{RCO} 20=1.33175469$
AOCC19 $=116.197593$
AOCC19 $=116.197593$
DOCCC18 $=-179.7250438$
DOCCC18 $=-179.7250$
ROH21 $=0.95245584$
ROH21 $=0.95245584$
AHOC20 $=117.5897216$
DHOCC19 $=178.7$

State Energies: $E\left(S_{0}\right)=-641.639876961157$ a.u., $E\left(S_{1}\right)=-641.506033089692$ a.u.

1.50000

IV: Propriety of the Electronic Structure Ansatz

Here, we present data, which we obtained in order to verify that the SA2-CAS(2,2)/631 g electronic structure ansatz, used in the on-the-fly dynamics calculations, is reasonable. We do this by examining changes in the predicted geometries and energies of important critical points on the S_{0} and S_{1} surfaces. For the anion, three geometries are described: the Frank-Condon geometry (S_{0}-minimum), and two S_{1} minima, which are twisted about the phenoxy-methine ($\mathrm{P}-\mathrm{S}_{1}$) or imidazolinonemethine ($I-S_{1}$) bond. An analogous set was examined for the neutral form, but in this case there is no stable phenoxy-twisted form on the S_{1} state. Instead of $\mathrm{P}-\mathrm{S}_{1}$ as for the anion, we use a structure obtained by S_{1}-optimization under dihedral constraint on the phenoxy-methine bond. Each geometry was optimized using three model spaces: SA2-CAS(2,2)/6-31g, SA2-CAS(2,2)/6-31G* and SA2-CAS(4,3)/6-31g*. These data examine, therefore, the consequences both of enlarging the one-body basis or the many-body basis. Table S3.1 lists bond lengths (\AA) for the optimized structures of the anion. Table S3.2 displays heavy-atom bond lengths (\AA) for the neutral form, and Tables S3.1 and S3.2 list energetic and dipole data for the anion and neutral, respectively, evaluated with SA2-CAS(2,2)/6-31g, SA2-CAS(2,2)/6-31g* and SA2$\operatorname{CAS}(4,3) / 6-31 \mathrm{~g}^{*}$ with and without correction with MR-RSPT2. Only the highest 32 orbitals were correlated in the MR-RSPT2.

Comparisons can also be made with CASSCF and MRPT2 calculations in the existing literature. For example, Vendrell et al. report a vertical excitation energy of 3.69 eV for neutral HBI using single-state CAS $(6,6)^{*}$ MR-RSPT2 calculations and a $6-31 \mathrm{~g}$ basis set. ${ }^{13}$ Martin et al. ${ }^{14}$ and Sinicropi et al. ${ }^{15}$ report a vertical excitation energy of 2.67 eV for anionic HBI using a SA2-CAS $(12,11)^{*}$ MR-RSPT2 ansatz and a $6-31 \mathrm{~g}^{*}$ basis set. The same authors report a difference dipole norm of 1.0 D for the $\mathrm{S}_{0}-\mathrm{S}_{1}$ transition in anionic HBI. All of these results are in close agreement with our own, confirming that our electronic structure methodology is appropriate for the problem.

Table S3.1. Heavy-atom bond lengths $(\AA \AA)$ for S_{0} and S_{1} critical points for anionic HBI, optimized using three model spaces: SA2-CAS(2,2)/6-31g, SA2-CAS(2,2)/6-31G* and SA2-CAS $(4,3) / 6-31 \mathrm{G}^{*}$. As shown, the effect of enlarging the one-electron or manyelectron bases is small. The bond alternation is maintained, indicating that each ansatz targets the same states.

Figure S3.2. Heavy-atom bond lengths $(\AA \AA)$ for S_{0} and S_{1} critical points for anionic HBI, optimized using three model spaces: SA2-CAS(2,2)/6-31g, SA2-CAS(2,2)/6-31G* and SA2-CAS(4,3)/6-31G*. Geometries are the Frank Condon geometry (FC, top), imidazolinone-twisted S_{1} minimum ($\mathrm{I}-\mathrm{S}_{1}$, bottom right), and a structure minimized on S_{1} under constraint of a twisted phenoxy-methine bond ($\mathrm{P}-\mathrm{S}_{1 \mathrm{C}}$, bottom left). This titration state has no stable S_{1} structure with a twisted phenoxy-methine bond. As shown, the effect of enlarging the one-electron or many-electron bases is small. The bond alternation is maintained, indicating that each ansatz targets the same states.

SA2-CAS $(2,2) / 6-31 \mathrm{~g} \quad$ SA2-CAS $(2,2) / 6-31 \mathrm{~g}^{*} \quad$ SA2-CAS $(4,3) / 6-31 \mathrm{~g} *$

Table S3.1. State-specific energies ($\mathrm{kcal} / \mathrm{mol}$, relative to S_{0} energy at FC), $\mathrm{S}_{0}-\mathrm{S}_{1}$ excitation energies (eV), state-specific dipole norms, $\mathrm{S}_{1}-\mathrm{S}_{0}$ difference dipole norms and transition dipole norms (D) for the FC, I-S ${ }_{1}$ and P-S S_{1} geometries of anionic HBI. Data were taken at geometries optimized with the CASSCF and basis specified. Italic quantities are calculated from the SA-CASSCF, while bold quantities include the correction applied by second order multi-reference Rayleigh-Schrödinger perturbation theory (MR-RSPT2). MR-RSPT2 calculations correlated the highest 32 occupied orbitals of the reference space.

Geo.	CAS	Bas.	$\mathrm{E}\left(\mathrm{S}_{0}\right)$	$\mathrm{E}\left(\mathrm{S}_{1}\right)$	$\Delta \mathrm{E}\left(\mathrm{S}_{1}-\mathrm{S}_{0}\right)$	$\left\|\mu\left(S_{0}\right)\right\|$	$\left\|\mu\left(S_{1}\right)\right\|$	$\|\Delta \mu\|$	$\left.\left\|\left\langle S_{0}\right\| \mu\right\| S_{1}\right\rangle \mid$
FC	$(2,2)$	6-31g	$\begin{aligned} & \hline 0.0 \\ & \mathbf{0 . 0} \end{aligned}$	$\begin{aligned} & 95.9 \\ & \mathbf{5 8 . 9} \end{aligned}$	$\begin{aligned} & 4.16 \\ & 2.56 \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 7.9 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 9.6 \\ & 9.5 \end{aligned}$
FC	$(2,2)$	6-31g*	$\begin{aligned} & 0.0 \\ & \mathbf{0 . 0} \end{aligned}$	$\begin{aligned} & 98.1 \\ & 60.3 \end{aligned}$	$\begin{aligned} & 4.25 \\ & \mathbf{2 . 6 1} \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 9.3 \\ & 9.2 \end{aligned}$
FC	$(4,3)$	6-31g*	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 94.7 \\ & 62.5 \end{aligned}$	$\begin{aligned} & 4.11 \\ & 2.71 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 7.9 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 9.6 \end{aligned}$
$\mathrm{I}-\mathrm{S}_{1}$	$(2,2)$	6-31g	$\begin{aligned} & 48.3 \\ & \mathbf{3 1 . 8} \end{aligned}$	$\begin{aligned} & \hline 66.3 \\ & \mathbf{4 9 . 4} \end{aligned}$	$\begin{aligned} & \hline 0.78 \\ & \mathbf{0 . 7 7} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & \mathbf{3 . 0} \end{aligned}$	$\begin{aligned} & 15.0 \\ & \mathbf{1 4 . 5} \end{aligned}$	$\begin{aligned} & 13.7 \\ & \mathbf{1 3 . 1} \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & \mathbf{0 . 1} \end{aligned}$
I-S ${ }_{1}$	$(2,2)$	6-31g*	$\begin{aligned} & 49.7 \\ & \mathbf{3 4 . 7} \end{aligned}$	$\begin{aligned} & 64.0 \\ & 49.2 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.7 \end{aligned}$	$\begin{aligned} & 13.4 \\ & 12.8 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$
I-S ${ }_{1}$	$(4,3)$	6-31g*	$\begin{aligned} & 44.5 \\ & 34.8 \end{aligned}$	$\begin{aligned} & 69.5 \\ & \mathbf{5 0 . 3} \end{aligned}$	$\begin{aligned} & 1.08 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 15.2 \\ & \mathbf{1 4 . 4} \end{aligned}$	$\begin{aligned} & 0.2 \\ & \mathbf{0 . 2} \end{aligned}$
$\mathrm{P}-\mathrm{S}_{1}$	$(2,2)$	6-31g	$\begin{aligned} & 42.7 \\ & \mathbf{2 8 . 0} \end{aligned}$	$\begin{aligned} & 66.3 \\ & \mathbf{4 8 . 4} \end{aligned}$	$\begin{aligned} & 1.02 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 14.3 \\ & 13.6 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 16.2 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & \mathbf{0 . 0} \end{aligned}$
$\mathrm{P}-\mathrm{S}_{1}$	$(2,2)$	6-31g*	$\begin{aligned} & 40.6 \\ & 27.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68.1 \\ & 52.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.19 \\ & \mathbf{1 . 0 8} \\ & \hline \end{aligned}$	$\begin{aligned} & 13.7 \\ & 13.2 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 15.4 \\ & 14.4 \end{aligned}$	$\begin{aligned} & 0.1 \\ & \mathbf{0 . 1} \end{aligned}$
$\mathrm{P}-\mathrm{S}_{1}$	$(4,3)$	6-31g*	$\begin{aligned} & 35.0 \\ & 27.6 \end{aligned}$	$\begin{aligned} & \hline 73.7 \\ & \mathbf{5 3 . 1} \end{aligned}$	$\begin{aligned} & \hline 1.68 \\ & \mathbf{1 . 1 1} \end{aligned}$	$\begin{aligned} & 14.5 \\ & 13.8 \end{aligned}$	$\begin{aligned} & \hline 3.2 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 16.6 \\ & \mathbf{1 5 . 5} \end{aligned}$	$\begin{aligned} & 0.1 \\ & \mathbf{0 . 1} \end{aligned}$

Table S3.2. State-specific energies (kcal/mol, relative to S_{0} energy at FC), $\mathrm{S}_{0}-\mathrm{S}_{1}$ excitation energies (eV), state-specific dipole norms, $\mathrm{S}_{1}-\mathrm{S}_{0}$ difference dipole norms and transition dipole norms (D) for the FC, I-S S_{1} and P-S ${ }_{1}$ geometries of neutral HBI. Data were taken at geometries optimized with the CASSCF and basis specified. Italic quantities are calculated from the SA-CASSCF, while bold quantities include the correction applied by second order multi-reference Rayleigh-Schrödinger perturbation theory (MR-RSPT2). MR-RSPT2 calculations correlated the highest 32 occupied orbitals of the reference space.

Geo.	CAS	Bas.	$\mathrm{E}\left(\mathrm{S}_{0}\right)$	$\mathrm{E}\left(\mathrm{S}_{1}\right)$	$\Delta \mathrm{E}\left(\mathrm{S}_{1}-\mathrm{S}_{0}\right)$	$\mid \mu\left(S_{0}\right)$	$\mid \mu\left(S_{1}\right)$	$\left\|\Delta \mu\left(S_{1}-\mathrm{S}_{0}\right)\right\|$	$\left.\left\|\left\langle S_{0}\right\| \mu\right\| S_{1}\right\rangle \mid$
FC	$(2,2)$	6-31g	$\begin{aligned} & \hline 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 116.2 \\ & \mathbf{8 6 . 2} \end{aligned}$	$\begin{aligned} & 5.03 \\ & 3.74 \end{aligned}$	$\begin{aligned} & 3.9 \\ & \hline 4.0 \end{aligned}$	$\begin{aligned} & \hline 5.2 \\ & \mathbf{5 . 1} \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 7.2 \end{aligned}$
FC	$(2,2)$	6-31g*	$\begin{aligned} & 0.0 \\ & \mathbf{0 . 0} \end{aligned}$	$\begin{aligned} & \hline 119.2 \\ & \mathbf{8 7 . 8} \end{aligned}$	$\begin{aligned} & 5.17 \\ & 3.79 \end{aligned}$	$\begin{aligned} & \hline 3.8 \\ & 3.8 \end{aligned}$	$\begin{aligned} & \hline 5.1 \\ & 5.1 \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 7.3 \\ & 7.3 \end{aligned}$
FC	$(4,3)$	6-31g*	$\begin{aligned} & 0.0 \\ & \mathbf{0 . 0} \end{aligned}$	$\begin{aligned} & \hline 121.7 \\ & 89.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.27 \\ & 3.90 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 7.3 \\ & 6.7 \end{aligned}$	$\begin{aligned} & \hline 6.8 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.3 \end{aligned}$
$\mathrm{I}-\mathrm{S}_{1}$	$(2,2)$	6-31g	$\begin{aligned} & \hline 61.7 \\ & 39.7 \end{aligned}$	$\begin{aligned} & 76.5 \\ & 67.2 \end{aligned}$	$\begin{aligned} & \hline 0.64 \\ & \mathbf{1 . 1 9} \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.2 \\ & \mathbf{9 . 2} \end{aligned}$	$\begin{aligned} & 11.8 \\ & \mathbf{1 1 . 4} \end{aligned}$	$\begin{aligned} & 0.1 \\ & \mathbf{0 . 0} \end{aligned}$
$\mathrm{I}-\mathrm{S}_{1}$	$(2,2)$	6-31g*	$\begin{aligned} & \hline 62.0 \\ & \mathbf{4 1 . 2} \end{aligned}$	$\begin{aligned} & 78.9 \\ & \mathbf{6 7 . 6} \end{aligned}$	$\begin{aligned} & \hline 0.73 \\ & \mathbf{1 . 1 4} \end{aligned}$	$\begin{aligned} & 4.5 \\ & \mathbf{4 . 1} \end{aligned}$	$\begin{aligned} & 9.5 \\ & \mathbf{9 . 5} \end{aligned}$	$\begin{aligned} & \hline 11.7 \\ & \mathbf{1 1 . 3} \end{aligned}$	$\begin{aligned} & 0.1 \\ & \mathbf{0 . 0} \end{aligned}$
$\mathrm{I}-\mathrm{S}_{1}$	$(4,3)$	6-31g*	$\begin{aligned} & \hline 66.1 \\ & \mathbf{4 7 . 4} \end{aligned}$	$\begin{aligned} & 77.8 \\ & \mathbf{7 0 . 7} \end{aligned}$	$\begin{aligned} & \hline 0.51 \\ & \mathbf{1 . 0 1} \end{aligned}$	$\begin{aligned} & 4.7 \\ & \mathbf{4 . 2} \end{aligned}$	$\begin{aligned} & 10.7 \\ & \mathbf{1 0 . 4} \end{aligned}$	$\begin{aligned} & 13.4 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 0.1 \\ & \mathbf{0 . 1} \end{aligned}$
$\mathrm{P}-\mathrm{S}_{1 \mathrm{C}}$	$(2,2)$	6-31g	$\begin{aligned} & 31.2 \\ & \mathbf{8 . 3} \end{aligned}$	$\begin{aligned} & 115.3 \\ & \mathbf{9 9 . 7} \end{aligned}$	$\begin{aligned} & 3.65 \\ & 3.97 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 14.7 \\ & \mathbf{1 4 . 1} \end{aligned}$	$\begin{aligned} & 14.7 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 0.2 \\ & \mathbf{0 . 2} \end{aligned}$
$\mathrm{P}-\mathrm{S}_{1 \mathrm{C}}$	$(2,2)$	6-31g*	$\begin{aligned} & \hline 30.1 \\ & \mathbf{8 . 8} \end{aligned}$	$\begin{aligned} & \hline 116.2 \\ & \mathbf{9 9 . 7} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.74 \\ & 3.94 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 13.8 \end{aligned}$	$\begin{aligned} & 14.7 \\ & \mathbf{1 3 . 4} \end{aligned}$	$\begin{aligned} & 0.2 \\ & \mathbf{0 . 2} \end{aligned}$
$\mathrm{P}-\mathrm{S}_{1 \mathrm{C}}$	$(4,3)$	6-31g*	$\begin{aligned} & \hline 22.4 \\ & 11.2 \end{aligned}$	$\begin{aligned} & \hline 122.3 \\ & \mathbf{1 0 3 . 3} \\ & \hline \end{aligned}$	$\begin{array}{r} 4.33 \\ 3.99 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.1 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \hline 14.2 \\ & 13.7 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 13.4 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & \mathbf{0 . 1} \end{aligned}$

V: Two-Dimensional Interpolation Surfaces for Neutral and Anionic HBI with different active spaces

This section contains 2-dimensional linear interpolation (synchronous transit) surfaces for neutral and anionic HBI calculated using SA-CASSCF and MR-RSPT2 theoretical models with 2 -electron, 2 -orbital and 4 -electron, 3 -orbital active spaces. They show that the features of the potential surface are well-converged at the level of the SA2-CAS $(2,2)$ ansatz which was used for the AIMS dynamical simulations.

The two-dimensional interpolations were generated from three anchor geometries for each ionic form. For the anion, the anchors were the Frank-Condon (FC) geometry (S_{0} minimum), and excited state minima twisted about the imidazolinone ($\mathrm{I}-\mathrm{S}_{1}$) and phenoxy ($\mathrm{P}-\mathrm{S}_{1}$) bonds of the chromophore. For the neutral form, the Frank-Condon geometry and an imidazolinone twisted minimum were also used. There is no phenoxy-twisted stable minimum for neutral HBI , so the third anchor was a S_{1} relaxed geometry that was constrained to be twisted about the phenoxy bond and planar about the imidazolinone bond ($\mathrm{P}-\mathrm{S}_{1 \mathrm{c}}$). The geometries were optimized on the SA2CAS $(2,2)$ surfaces.

The similarity between the results obtained for 2-electron, 2-orbital and 4-electron, 3orbital active spaces shows that the dynamics should be robust. If the two-electron, two-orbital active space was not sufficient, then we would expect to see an initial large change in the behavior upon enlargement of the active space, followed by decreasing effects with further increases in the active space rank. The lack of change seen here shows that the rank is sufficient.

The linear interpolation slices in Fig. 2 of the main text are diagonal slices through the 2-D interpolations in Fig. S4.1 (anion) and Fig. S4.2 (neutral) at the same level of theory.

Anchor Geometries

Semilinear Interpolations (Bridge Dihedrals and Bond Lengths shown)

SA-CASSCF S Surfaces

MR-RSPT2 S, Surfaces

Figure S4.1. Top: SA2-CAS(2,2)/6-31g optimized imidazolinone-twisted S_{1} minimum ($\mathrm{I}-\mathrm{S}_{1}$, left), S_{0} minimum (S_{0} Min, center) and phenoxy-twisted S_{1} minimum ($\mathrm{P}-\mathrm{S}_{1}$, right). Middle: Bilinear interpolation pathways in symbolic Z-matrix variables connecting I-S $\mathrm{S}_{1}, \mathrm{~S}_{0} \mathrm{Min}$ and $\mathrm{P}-\mathrm{S}_{1}$ min (bridge dihedrals and bond lengths shown). Bottom: 2-dimensional synchronous semilinear transit surfaces calculated with different methodologies. Z-matrix variables were partitioned into two sets, one containing bridge dihedrals and one containing everything else. The horizontal coordinate parametrizes synchronous parabolic transit along the paths of the bridge dihedrals; the vertical coordinate parametrizes synchronous semilinear transit along the paths of the remaining Z-matrix variables (the latter set includes the bridge bonds shown above).

Anchor Geometries

Semilinear Interpolations (Bridge Dihedrals and Bond Lengths shown)

SA-CASSCF S $_{1}$ Surfaces

CASPT2 S, Surfaces

Figure S4.2. Top: SA2-CAS(2,2)/6-31g optimized imidazolinone-twisted S_{1} minimum ($\mathrm{I}-\mathrm{S}_{1}$, left), S_{0} minimum (S_{0} Min, center) and phenoxy-constrained S_{1} relaxed geometry ($\mathrm{P}-\mathrm{S}_{1 \mathrm{c}}$, right) of neutral HBI. Middle: Bilinear interpolation pathways in symbolic Z-matrix variables connecting I-S $\mathrm{S}_{1}, \mathrm{~S}_{0}$ Min and $\mathrm{P}-\mathrm{S}_{1}$ min (bridge dihedrals and bond lengths shown). Bottom: 2-dimensional synchronous semilinear transit surfaces calculated with different methodologies. Z-matrix variables were partitioned into two sets, one containing bridge dihedrals and one containing everything else. The horizontal coordinate parametrizes synchronous parabolic transit along the paths of the bridge dihedrals; the vertical coordinate parametrizes synchronous semilinear transit along the paths of the remaining Z-matrix variables (the latter set includes the bridge bonds shown above).

IV: References

(1)Levine, B. G.; Coe, J. D.; Virshup, A. M.; Martínez, T. J., Chem. Phys. 2008, 347, 3-16.
(2) MOLPRO, version 2008.1, a package of ab initio programs, H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and A. Wolf, , see http://www.molpro.net.
(3)Stalring, J.; Bernhardsson, A.; Lindh, R., Mol. Phys. 2001, 99, 103-114.
(4)Roos, B. O. In Ab Initio Methods in Quantum Chemistry II; Lawley, K. P., Ed.; John Wiley and Sons: New York, 1987, p 399.
(5)Frisch, M. J.; Pople, J. A.; Binkley, J. S., J. Chem. Phys. 1984, 80, 3265-3269.
(6)Hehre, W. J.; Ditchfield, R.; Pople, J. A., J. Chem. Phys. 1972, 56, 2257-2261.
(7)Krishnan, R.; Binkley, J. S.; Pople, J. A., J. Chem. Phys. 1980, 72, 650-654.
(8)Møller, C.; Plesset, M. S., Phys. Rev. 1934, 46, 618.
(9)Celani, P.; Werner, H.-J., J. Chem. Phys. 2000, 112, 5546-5557.
(10)Tsien, R. Y., Ann. Rev. Biochem. 1998, 67, 509-544.
(11)Nielsen, S. B.; Lapierre, A.; Andersen, J. U.; Pedersen, U. V.; Tomita, S.; Anderson, L. H., Phys. Rev. Lett. 2001, 87, 228102/1-4.
(12)Lammich, L.; Petersen, M. A.; Nielsen, M. B.; Andersen, L. H., Biophys. J. 2007, 92, 201-207.
(13)Vendrell, O.; Gelabert, R.; Moreno, M.; Lluch, J. M., Chem. Phys. Lett. 2004, 396, 202207.
(14)Martin, M. E.; Negri, F.; Olivucci, M., J. Am. Chem. Soc. 2004, 126, 5452-5464.
(15)Sinicropi, A.; Andruniow, T.; Ferré, N.; Basosi, R.; Olivucci, M., J. Am. Chem. Soc. 2005, 127, 11534-11535.

[^0]: 37.9758000000 196.8427000000 345.8032000000 416.8618000000 596.5547000000 730.3536000000 857.1062000000 894.0829000000 1071.4765000000 1222.8420000000 1345.7579000000 1466.9376000000 1656.2681000000 3216.3306000000 3295.7018000000

