Supplementary Information

Table S1. Twelve target proteins for the two MRM experiments

Protein name acc](i.l:ion Method Prob‘ability of lqu.mber c‘»f Total nu.!nber D Used for | Used for

pumber ProteinProphet | unique peptides | of peptides 1stMRM | 2nd MRM
Thyroxine-binding globulin precursor IP100292946 LTQ 1 21 56 A O e
Glyceraldehyde-3-phosphate dehydrogenase |IPI00219018 LTQ 1 5 12 A O O
Peroxiredoxin-2 IPI00027350 LTQ 1 6 8 A O
gamma-Glutamyl hydrolase precursor IPI00023728 LTQ 1 5 6 A O O
Myocilin precursor IPI00019190 LTQ 1 5 5 A O
Coagulation factor IX precursor IP100296176 LTQ 0.9 1 3 A e
Kallistatin precursor IP100328609 LTQ 1 3 3 A O O
Hepatocyte growth factor activator precursor | IP100029193 LTQ 1 2 2 A o) e
von Willebrand factor precursor IP100023014 LTQ 1 3 3 A O O
Haptoglobin precursor IPI00641737 LTQ 1 18 363 B O
Apolipoprotein B-100 precursor 1P100022229 LTQ 1 36 43 B O
Pigment epithelium-derived factor precursor |IPI00006114 [MALDI&LTQ 1 62 308 E O

Two independent methods, ESI-MS/MS (LTQ LC-MS/MS, Thermo Fisher

Scientific) and

MALDI-MS/MS (4700 MALDI-TOF/TOF, AppliedBiosystems), were used to profile the PDR

vitreous proteome'. The column ‘Method’ indicates the methods that were used to identify the

proteins. The proteomic data were applied to the Trans-Proteomic Pipeline (TPP) to eliminate

proteins that had low probabilities®. The probability values are listed in the column ‘Probability

of ProteinProphet.” The column ‘Group’ refers to the groups in the Venn diagram in

Supplementary Figure S1.




Table S2. Determination of rolling collision energy

Charge State  Slope Intercept
2 0.050 5
3 0.044 3
4 0.05 2

Collision Energy = Slope x [m/z] + intercept
When the charge state is confirmed in the ER (Enhanced Resolution) mode, the collision energy,
which is applied to the precursor ion to produce its fragment ions, is determined using the
equation (collision energy = (slope) x (m/z) + (intercept)). This equation for collision energy is

optimized for triple quadrupole LC-MS/MS (4000 Q-Trap MS/MS, Applied Biosystems).
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Figure S1. Groups of proteins in decreasing order of observed and unique peptide counts

(A) The candidate proteins that are specific to PDR vitreous were reported compared with MH
vitreous'. Candidate proteins that are specific to PDR vitreous correspond to the regions A, B,
and C in the Venn diagram, and region G indicates MH-specific proteins. The Venn diagram
represents the total numbers of identified proteins in each group. (B) Candidate proteins that are
specific for PDR vitreous, extracted from plasma from Groups A, B, and C, were ordered by

frequency of both unique and observed peptides. The numbers of observed peptides and unique



peptides for the listed proteins were plotted by decreasing number of total observed peptides.

Among the listed proteins in A, B, and C, 12 target proteins were selected for 2 MRM

experiments, as summarized in Table S1. The X-axis shows the numbers of peptides, and the Y-

axis indicates individual candidate proteins that are specific for PDR vitreous that belong to

Group A, B, or C.
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Figure S2. An example of the transition determination using Information-Dependent
Analysis (IDA)

The Q1/Q3 transition of 729.5/719.4 m/z for a [P-galactosidase peptide (residues 788-801,
APLDNDIGVSEATR) was determined using the IDA method. One hundred femtomoles of
peptide was analyzed by enhanced mass scan (EMS, survey scan) and 3 enhanced product ion
scans (EPI, MS/MS scan). An MS/MS spectrum is shown in the left panel, and the peaks of the
EMS scan (precursor ion at 729.5 m/z for residues APLDNDIGVSEATR) are shown in the right
panel. The MS/MS spectra were used to identify B-galactosidase using the ProteinPilot program
(version 2.0.1) and SwissProt (Release 54, July 2007). In the MS/MS spectrum, the highest and

second-highest intensities of the fragment ions near the precursor ion mass are shown as 2

arrows, one of which is the Q1/Q3 transition of 729.5/719.4 m/z in the left panel.
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Figure S3. An example of the transition determination using the PeptideAltas database

The transition of TBG was determined using the PeptideAtlas database

(http://www.PeptideAtlas.org). The MS/MS spectrum, the information on m/z, and the intensity
of the particular spectrum were obtained from the PeptideAtlas database. We selected target
transitions using commonly suggested candidate transitions from the PeptideAtlas database and
the MIDAS workflow. The MS/MS spectra for 2 precursor peptides (SFMLLILER and
GWVDLFVPK) are shown with ion types in the bottom panels, and their Q1/Q3 transitions are
listed in Table 2 of the text. The column ‘Accession’ represents the PeptideAtlas accession

number, which begins with PAp and is followed by 9 digits; the columns ‘Pre AA’ and ‘Fol AA’



indicate “the amino acid which is preceding towards the N terminus” and “the amino acid which
is following towards the C-terminus”. The column ‘Best Prob’ represents the highest
PeptideProphet probability from the Trans-Proteomic Pipeline® for this observed sequence, and
the column ‘N Obs’ is the total number of observations in all modified forms and charge states.
The column ‘EPS’ lists the empirical observability scores, and RHS indicates the SSRCalc

(Sequence Specific Retention Calculator)-related hydrophobicity score.
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Figure S4. Sequence alignment of homologous proteins to thyroxine-binding globulin

The sequence of TBG was inputted into the BLAST program using a human proteome database

(NCBI, http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi; database, SwissProt; organism, human

(taxid: 9606); algorithm, protein-protein BLAST (blastp)), resulting in 3 homologous proteins:

kallistatin (KAL, NCBI accession number: AAC41706), alpha-1-antitrypsin (A1AT, NCBI

accession number: CAJ15161), and LIM and SH3 protein 1 (LS3P, NCBI accession number:

NP_006139). The sequences of these proteins were aligned with TBG using the CLUSTALW

algorithm (http://www.ebi.ac.uk/Tools/clustalw2/index.html). Two dotted boxes indicate the 2

precursor peptides of the Q1 transitions, which were selected based on the PeptideAlas database.

The aligned sequences show that the 2 selected peptides are specific for TBG among the 3

homologous proteins. The numbers represent the amino acid residues, and “*” in the bottom line

denotes an identical, conserved residue, and “:” and ‘““:” stand for the amino acid that shows

similarity.
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http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi
http://www.ebi.ac.uk/Tools/clustalw2/index.html
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Figure S5. The second standard curve of beta-galactosidase
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The standard curve in the low-concentration range was determined for the transition for beta-

galactosidase peptide (GDFQFNISR) at 542.3/636.3 m/z using the IDA method. (A) The

concentration points were 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0 fmol including the blank. The peak

area for each MRM run was extracted and calculated. (B) The R? value of linearity is 0.993,

showing good correlation between the concentration and intensity.
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Figure S6. The measurement of the relative concentration for exogenous protein (EGFP)
in plasma using the standard curve of beta-galactosidase

The relative concentration of spiked exogenous EGFP in plasma was determined versus beta-
galactosidase using the standard curve for beta-galactosidase. Purified EGFP was spiked into
plasma at 0, 10, 50, 100, 250, 500, and 1000 pmol, followed by in-solution digestion and
desalting. After the internal standard peptide was added (100 fmol of beta-galactosidase peptide
GDFQFNISR), MRM was performed for the EGFP (525.8/774.4 m/z) and beta-galactosidase
transitions (542.3/636.3 m/z). The resulting concentration curve had an R? value of 0.987 versus

the intensities with good linearity.
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Figure S7

XIC (701.3/808.4) Apolipoprotein A1

1 19.78

oono 1/200 plasma -
~ w
2 5000 &
£ 5
2 5000 i 2
g | Area = 1.463e5 2
8 £
= 2 (=]

[=1

2000

T &

% 17 18 19 20 21 2 23 24
Time, min
2500
19.56
=X s
g 201 1/800 plasma e
< <
Z 15w &
2 Area = 3.758e4 2
o @
£ 1000 -
(=] [=1]
500
U bt

1B 19 N

2

2 B u

40001 1/400 plasma
3000 {
2000 4

1000 -

19.42

Area = 6.174e4

1B 17 18 13

20 21 2 23 A4

Time, min

1500

1000

500

1/1600 plasma|

19.46

Area = 2.415e4

Time, min
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1/200 dilution 1.46E+05 7.26 1 1 100.00
1/400 dilution 6.17E+04 2.75 0.38 0.5 75.66
1/800 dilution 3.76E+04 1.46 0.20 0.25 80.27
1/1600 dilution 2.42E+04 0.74 0.10 0.13 81.54

Figure S7. Extrapolation of serially diluted apolipoprotein A1 onto the standard curve

The plasma sample containing apolipoprotein Al was serially diluted (1/200, 1/400, 1/800, and
1/1600). MRM runs were performed to measure the Q1/Q3 transitions of apolipoprotein Al in
the 4 diluted plasma samples using the XIC (701.3/808.4 m/z). The Q1/Q3 transition of

apolipoprotein A1 was predetermined using the IDA method. One hundred femtomoles of the

11



beta-galactosidase peptide standard (residues 954-962, GDFQFNISR) was added to the 4

diluted plasma samples for normalization, as shown in Figure 4. The peak areas of the extracted

ion chromatogram (XIC:701.3/808.4) were measured and compared with that of the 1/200

dilution to examine the measurement accuracy in the 4 serially diluted apolipoprotein Al

samples. In brief, the relative amount of apolipoprotein Al in the 1/200 dilution was

extrapolated onto the standard curves of beta-galactosidase, which resulted in a concentration of

7.26 fmole. Subsequently, ‘Relative Concentration’ and ‘Normalization Factor’ were calculated

in the other 3 dilutions to represent the ratios against the concentration of apolipoprotein Al in

the 1/200 dilution. The column ‘Dilution Factor’ represents the theoretical dilution factor of

apolipoprotein Al in each dilution. The ratio of ‘Normalization Factor’ represents

experimentally measured concentrations in each MRM run versus that of the 1/200 dilution. The

accuracies of the measurements (normalization factor/dilution factor) were 75.66%, 80.27%,

and 81.54% at the 1/400, 1/800, and 1/1600 dilutions versus the 1/200 dilution, respectively.
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Figure S8
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Figure S8 (Continued)
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Figure S8. ROC curves and interactive plots of MRM in PDR versus MH plasma
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pMH and pPDR represent MH and PDR plasma, respectively. In the ROC curve, the solid line

indicates the corresponding value in sensitivity and 100-specificity. In the interactive plot, the Y-

axis represents the normalized concentration of the target protein against the standard curve of

the beta-galactosidase peptide. The sensitivity and specificity at the cutoff concentration are

indicated on the right side of the interactive plot. Group O represents MH, and Group 1 indicates
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PDR plasma. If the target protein concentration in PDR plasma decreased compared with MH

(for example, gamma glutamyl hydrolase), the ROC curve was inversely plotted (pMH versus

pPDR).
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Figure S9
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Figure S9 (Continued)
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Figure S9. ROC curves and interactive plots of MRM in NPDR versus MH plasma

pMH and pNPDR represent MH and NPDR plasma, respectively. Group O represents MH, and

Group 1 indicates NPDR plasma. If the target protein concentration in NPDR plasma decreased

compared with MH (for example, haptoglobin), the ROC curve was inversely plotted (pMH

versus pNPDR). The other details are the same as Figure S8.
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Figure S10
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Figure S10. Interactive plots and ROC curves of thyroxine-binding globulin in vitreous

and plasma

Relative concentrations of vitreous and plasma TBG in MH, PDR, and NPDR were plotted in

the interactive plots and ROC curves, based on the extrapolated concentration onto the standard

curve. MH, PDR, and NPDR are indicated as blue, red, and green circles, respectively (upper

panel). The ROC curves of TBG in both PDR and NPDR vitreous versus MH are drawn in the 2

lower-left panels, and those of TBG in both PDR and NPDR plasma versus MH are drawn in

the 2 right panels. AUC values, specificity, sensitivity, and p-values are shown for each ROC

curve. The figure legends are the same as in Figures 5-6 and Supplementary Figures S8-S9.
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Figure S11

AreaUnderCurve

04 mNPDRvs MH
03 EPDRvs MH
© A o R g & Q
A R G 6‘30
Group TBG | HGFA  gGH KAL vWF GAPDH
NPDR vs MH 091 | 0.824 |0.729| 0.776 0.738 0.762
PDR vs MH 0951 | 091 |0.838| 0925 0.917 0.97

Figure S11. Comparison of AUC values for 6 target proteins in the first MRM experiment
The AUC values of 6 target proteins in vitreous are plotted as bars. The Y-axis represents the
AUC values, and the X-axis indicates the 6 proteins. The blue bars show the differences

between NPDR and MH, and the red bars represent differences between PDR and MH.
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Figure S12

B NPDR vs MH

u PDR vs MH

AreaUnderCurve

Group TBG [HGFA|gGH | KAL | vWF |GAPDH| COA APO100MYOC| PEDF |PRX2| HAP

NPDR vs MH |1.000(0.741|0.541|0.796| 0.75 | 0.872 |0.831| 0.679 |0.531 |0.546| 0.77 |0.765
PDRvs MH [0.992|0.639|0.694|0.671|0.536| 0.786 |0.508| 0.671 |0.532 |0.603|0.631|0.647

Figure S12. Comparison of AUC values for 12 target proteins in the second MRM

experiment

The AUC values of 12 target proteins in plasma are plotted as bars. The Y-axis represents the
AUC values, and the X-axis indicates the 12 proteins. The blue bars show differences between
NPDR and MH, and the red bars represent differences between PDR and MH. COA, APO100,
MYOC, and PRX2 are coagulation factor IX, apolipoprotein B-100, myocilin, and

peroxiredoxin 2, respectively.
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Figure S13
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Figure S13. Western blot verification

Ten female and 10 male plasma samples in each group were used for Western blot of target
proteins. The results of the Western blots were statistically analyzed for 6 proteins (coagulation
factor XI, peroxiredoxin 2, kallistatin, GAPDH, haptoglobin, myocilin) using ANOVA between
the MH, PDR, and NPDR groups. The intensity of Western blot bands was measured and
normalized against the band intensity of pooled internal standard plasma. In the left panel, the
normalized intensities of individual Western blot bands are plotted for the 3 groups, and average
intensity (bar) and standard variation (line above the bar) are shown in the right panel. The red

letters “F” and “p” represent the degree of freedom and the probability from ANOVA,

respectively.

21



References

1. Kim, T.; Kim, S. J.; Kim, K.; Kang, U. B.; Lee, C.; Park, K. S.; Yu, H. G; Kim, Y.,
Profiling of vitreous proteomes from proliferative diabetic retinopathy and nondiabetic patients.

Proteomics 2007, 7, (22), 4203-15.

2. Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R., A statistical model for
identifying proteins by tandem mass spectrometry. Anal Chem 2003, 75, (17), 4646-58.

22



