Supporting Information

Synthesis and Assignment of absolute Configuration of the Iridoid 9-Deoxygelsemide

Alessandro D'Alfonso, Maurizio Pasi, Alessio Porta, Giuseppe Zanoni, and Giovanni Vidari*

Dipartimento di Chimica Organica, Università di Pavia, Via Taramelli 10, Pavia (Italy),

Fax: (+39) 0382-987323, E-mail: vidari@unipv.it

List of the Contents of Supporting Information

1. General Procedures	S2
2. Experimental Procedure for Compound 10	S2
3. Experimental Procedure for Compounds 14 and 15	S 3
4. Experimental Procedure for Compounds 16 and 17	S 3
5. Experimental Procedure for Compounds 25 and 26	S4
6. Experimental Procedure for Compound 28	S5
7. Experimental Procedure for Compound 5	S5
8. Experimental Procedure for Compound 29	S 6
9. Experimental Procedure for Compound 31	S 6
10. Experimental Procedure for Compound 32	S7
11. Experimental Procedure for Compound 33	S 8
12. Experimental Procedure for Compound 1	S 8
22. Spectra of Compounds	S9–24
24. References	S25

General Procedures

All solvents were of commercial quality and were purified by distillation over the drying agents indicated: THF (Na/benzophenone), CH₂Cl₂, hexane, Et₃N (CaH₂), toluene (Na/K). All other reagents were used as supplied All moisture-sensitive reactions were carried out under a positive static atmosphere of Ar in flame-dried glassware. Syringes and needles for the transfer of reagents were dried at 140 °C and allowed to cool in a desiccator over P₂O₅ before use. Routine monitoring of reactions was performed using silica gel 60 (0.25 mm), aluminum-supported TLC plates. Compounds were visualized by UV irradiation at a wavelength of 254 nm, or stained by exposure to a 0.5% soln. of vanillin in H₂SO₄/EtOH, followed by charring. Flash column chromatography (FCC) was performed on silica gel (40- 63μ m). Yields are reported for isolated compounds with >96% purity established by NMR unless otherwise indicated. ¹H and ¹³C NMR spectra at 300 MHz and 75 MHz, respectively, in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: δ_C 77.16; residual CHCl₃ in CDCl₃: δ_H 7.26; CD₂Cl₂: δ_C 53.8; residual ¹H: $\delta_{\rm H}$ 5.32 ppm. COSY, DEPT, HSQC, NOESY spectra were recorded using a standard pulse program library. The number of H-atoms attached to each C-atom (s = 0H, d = 1H, t = 2H, q = 3H) was determined by DEPT experiments. Optical rotations were recorded on a digital polarimeter at 589 nm, concentration (c) is in g/100 mL.

(4a*R*, 5*R*, 6*S*, 7*R*, 7a*R*)-hexahydro-5,6-epoxy-7-methylcyclopenta[*c*]pyran-3(1*H*)-one (10). DBU (866 µL, 5.79 mmol) was added dropwise to a stirred solution of iodolactone 12¹ (572 mg, 1.93 mmol) in dry toluene (13 mL) at rt, then the solution was heated at 50 °C. After stirring for 1 h, the solution was cooled to rt, then was added a saturated solution of NH₄Cl (8 mL). The aq layer was extracted with CH₂Cl₂ (3 × 5 mL). Combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum to give a residue which was purified by FCC on silica gel. Elution with hexane/AcOEt (7:3 v/v) gave 10 as a colorless solid (275 mg, 85 %), followed by olefin 13 (28 mg, about 8%). Mp 105-107 °C; $[\alpha]^{20}_{D} = -85.39$ (*c* = 2.2, CH₂Cl₂). IR (nujol mull): 2919, 1722, 1478, 1391, 1342, 1293, 1250, 1166, 1064, 1045, 1024, 1005, 940, 897, 858, 826, 725 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): δ 4.20–3.90 (m, 2H), 3.58 (br s, 1H), 3.4 (d, J = 2.2, 1H), 2.80–2.50 (m, 3H), 2.20–2.00 (m, 2H), 1.06 (d, J = 7.3, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 172.7 (s, CO), 70.3 (t), 64.7 (d), 61.7 (d), 43.9 (d), 36.1 (d), 34.2 (d), 29.5 (t), 17.0 (q). LCMS *m*/*z* 191.29 [(M+Na)⁺, 91], 169.13 [(M+H)⁺, 100]. Elemental analysis calcd (%) for C₉H₁₂O₃: C 64.27, H 7.19; found: C 64.36, H 7.13.

(4aR, 5R, 6R, 7R, 7aS)-hexahydro-5-hydroxy-6-iodo-7-methylcyclopenta[c]pyran-3(1H)-one (14) and (4aR, 5S, 6S, 7R, 7aR)-hexahydro-6-hydroxy-5-iodo-7methylcyclopenta[c]pyran-3(1H)-one (15). 57% aq HI (380 µL, 2.86 mmol), precooled at -20 °C, was added to a stirred solution of epoxide 10 (437mg, 2.60 mmol) in THF (30 mL) at -78 °C; subsequently, the solution was allowed to reach rt. After stirring for 1 h, the solution was diluted with CH₂Cl₂ (30 mL) and saturated aq Na₂S₂O₃ (15 mL). The aq layer was extracted with CH_2Cl_2 (3 × 8 mL) and combined organic layers were dried with MgSO₄. The solvent was removed under vacuum and the residue was purified by FCC on silica gel. Elution with hexane/EtOAc (4:1 v/v) yielded a mixture of iodohydrins 14 and 15, and lactone 12 in $\ge 95\%$ yield. The amount of compound 14 was $\le 5\%$ 15, and the ratio (14 + 15) : 12 was about 6 : 1 (¹H NMR spectrum of crude mixture). An analytical sample of 15, colorless solid, was obtained by further chromatographic separation of the mixture. Mp 130-131 °C; $[\alpha]_{D}^{20} = +12.9$ (c = 0.86, CH₂Cl₂). IR (nujol mull): 3467, 1715, 1392, 1172, 1065, 961, 707 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 4.29 (dd, J = 4.3, 11.8, 1H), 4.17 (dd, J = 4.1, 11.8, 1H), 3.75 (td, J = 9.9, 4.1, 1H), 3.56 (t, J = 10.0, 1H), 2.90–2.75 (m, 1H), 2.68 (dd, J = 10.0, 1H), 2.68 (dd, J =6.9, 15.4, 1H), 2.65–2.50 (m, 2H), 2.12–2.00 (m, 1H), 1.77–1.62 (m, 1H), 1.20 (d, J = 6.5, 3H). ¹³C-NMR: (75MHz, CDCl₃) δ : 171.8 (s), 84.1 (d), 67.8 (t), 41.3 (2 × d), 39.8 (d), 36.4 (d), 31.7 (t), 16.2 (q). Elemental analysis calcd (%) for C₉H₁₃IO₃: C 36.51, H 4.43; found: C 36.66, H 4.53.

(4a*R*, 5*R*, 6*R*, 7*R*, 7a*S*)-octahydro-6-iodo-7-methyl-3-oxocyclopenta[*c*]pyran-5-yl acetate (16), (4a*R*, 5*S*, 6*S*, 7*R*, 7a*R*)-octahydro-5-iodo-7-methyl-3-oxocyclopenta[*c*]pyran-6-yl acetate (17), and ((3a*R*, 4*S*, 5*R*, 6*R*, 6a*R*)-hexahydro-6-iodo-5-methyl-2-oxo-2*H*cyclopenta[*b*]furan-4-yl)methyl acetate (12b). Pyridine (206 μ L, 2.1 mmol), followed by Ac₂O (183 μ L, 1.9 mmol) and a catalytic amount of DMAP (3 mg) were added to a stirred solution of the above mixture of **12**, **14**, and **15** (305 mg, 1.03 mmol) in dry CH₂Cl₂ (10 ml) at 0 °C. After 5 h of stirring at rt, the solution was concentrated under vacuum. The residue was purified by FCC on silica gel. Elution with hexane/EtOAc (7:3 v/v) gave lactone-acetate **17** (279 mg, 78 %), followed by a mixture of **16** and **17** (18 mg, 5%), and then pure **12b** (50 mg, 14%). Compound **17**, colorless solid, mp 80 – 83 °C; $[\alpha]^{20}_{D}$ = +17.0 (*c* = 0.87, CH₂Cl₂). IR (nujol mull): 3410, 1712, 1363, 1270, 1222, 735 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 5.16 (t, *J* = 10.1, 1H), 4.29 (dd, *J* = 4.1, 11.9, 1H), 4.18 (dd, *J* = 3.2, 11.9, 1H), 3.64 (t, *J* = 10.1, 1H), 3.00–2.80 (m, 1H), 2.75–2.55 (m, 2H), 2.13 (s, 3H), 2.20–2.05 (m, 1H), 1.90–1.80 (m, 1H), 1.13 (d, *J* = 6.6, 3H). ¹³C NMR (75MHz, CDCl₃) δ : 171.3 (s), 170.2 (s), 82.5 (d), 67.3 (t), 41.7 (d), 41.1 (d), 39.1 (d), 31.5 (t), 28.7 (d), 20.8 (d), 15.8 (q). Elemental analysis calcd (%) for C₁₁H₁₅IO₄: C 39.07, H 4.47; found: C 39.21, H 4.57. Lactone **12b**: ¹H NMR (200 MHz, CDCl₃) δ : 5.30 (d, *J* = 6 Hz, 1H), 4.60 (d, *J* = 4.5 Hz, 1H), 4.35–4.05 (m, 2H), 3.40–3.20 (m, 1H), 2.70 (dd, *J* = 10, 18.6 Hz, 1H), 2.55 (dd, *J* = 1.8, 18.6 Hz, 1H), 2.40–2.20 (m, 1H), 2.08 (s, 3H), 1.50–1.20 (m, 1H), 1.08 (d, *J* = 6.2 Hz, 3H).

(3a*R*, 4R, 5R, 6S, 6aR)-hexahydro-6-hydroxy-4-(hydroxymethyl)-5methylcyclopenta[b]furan-2-one (25) and (4aR, 5R, 6S, 7R, 7aR)-hexahydro-5,6-dihydroxy-7-methylcyclopenta[c]pyran-3(1H)-one (26). 70% m-CPBA (477 mg, 1.93 mmol) was added at rt to a stirred solution of acetates 16 and 17 (about 5:95 mixture, 268 mg, 0.79 mmol), in CH₂Cl₂ (10 mL). Solution's color changed during reaction from rose to 'red wine' with formation of a white precipitate. The reaction was monitored by TLC and after 3 h the solution was diluted with EtOAc (10 mL) and poured into saturated aq NaHCO₃ (5 mL) and $Na_2S_2O_3$ (5 mL). After stirring for 1 h, the aq layer was extracted with EtOAc (5 × 5 mL) and combined organic layers were dried over MgSO4, filtered, and concentrated under vacuum. The residue was filtered on a short pad of silica gel. Elution with hexane/EtOAc (6:4, v/v) afforded an inseparable 2:1:5 mixture (NMR) of three compounds 22, 23, and 24 (130 mg, 72 %), which was directly submitted to the next step.

Resin Dowex 1 X 8 (OH⁻ form) (186 mg) was added to a stirred solution of the above mixture (125 mg, 0.55 mmol) in MeOH (8 mL) at rt. After 3 h the resin was filtered off and washed exhaustively with methanol. Solvent was removed under vacuum to give a colorless solid, composed by isomeric lactones **25** and **26** (87 mg, combined yield = 85 %; **25** : **26**, 6 : 1). IR (nujol mull): 3392, 1752, 1654, 1196, 1174, 1070 cm⁻¹. ¹H NMR (300 MHz,

MeOH- d_4) δ : 4.87 (dd, J = 4.8, 6.4, 1H), 4.30 (dd, J = 4.3, 11.4, 1H)*, 4.16 (dd, J = 5.4, 11.4, 1H)*, 3.96 (dd, J = 4.2, 4.5, 1H)*, 3.80 (dd, J = 4.0, 11.2, 1H), 3.58 (dd, J = 4.9, 10.4, 1H), 3.55 (dd, J = 8.9, 11.2, 1H), 3.12–3.02 (m, 1H), 2.76–2.74 (m, 2H), 2.65–2.55 (m, 1H)*, 2.65–2.55 (m, 1H)*, 2.51 (dd, J = 7.6, 14.8, 1H)*, 2.80–1.65 (m, 1H), 1.95–1.80 (m, 1H)*, 1.80–1.65 (m, 1H), 1.65–1.50 (m, 1H), 1.11 (d, J = 6.3, 3H)*, 1.07 (d, J = 6.3, 3H). ¹³C NMR (75 MHz, MeOH- d_4) δ : 180.9 (s), 86.5 (d), 81.3*(d), 80.6 (d), 75.3*(d), 70.1*(t), 61.4 (t), 47.1 (d), 42.5*(d), 40.1*(d), 39.4 (d), 38.3 (d), 37.0*(d), 31.0 (t), 29.8*(t), 16.8*(q), 16.0 (q).

*signal of minor product 26.

Elemental analysis calcd (%) for C₉H₁₄O₄: C 58.05, H 7.58; found: C 58.27, H 7.43.

(1*R*, 2S, 4*R*, 7S, 8S, 11S)-2,7-dihydroxy-3-methyl-6,10-dioxa-3R, tricyclo[6.2.1.0^{4,11}]undecan-9-one (28). A 6 : 1 mixture of lactones 25 and 26 (56 mg, 0.30 mmol) dissolved in THF (3 mL) was added via canula to a stirred solution of sodium bis(trimethylsilyl)amide (NaHDMS, 1M in THF, 996 µL, 0.996 mmol) in dry THF (2 mL) under Ar at -78 °C. After stirring the green solution at -78 °C for 1 h, freshly distilled HCOOEt (170 µL, 2.04 mmol) was added and stirring was continued at -78 °C for 3 h, followed by a period of 12 h at -20 °C. The reaction was quenched by adding 1.2 N HCl dropwise until the pH was about 2, then the solution was diluted with CH₂Cl₂ (5 mL) and brine (5 mL). The separated aq layer was extracted with CH_2Cl_2 (5 × 5 mL); combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was separated by FCC on silica gel. Elution with AcOEt gave compound 28 as colorless solid (40 mg, 62%). Mp 41–44 °C. $[\alpha]^{20}_{D} = -22.56$ (c = 0.86, CH₃OH). ¹H NMR* (300 MHz, MeOH- d_4) δ : 5.4 (br s, 1H), 4.78 (dd, J = 6.0, 4.3, 1H), 4.25 (dd, J = 4.1, 12.3, 1H), 3.49 (dd, J = 4.2, 11.0, 1 H), 3.45 (1H, d, J = 12.2), 3.19 (td, J = 10.2, 6.0, 1 H), 2.79 (d, J = 10.2, 6.0, 1 H), 2.79 (d, J = 10.2, 6.0, 1 H), 2.79 (d, J = 10.2, 6.0, 1 H), 3.45 (d, J10.5, 1H), 1.87–1.70 (m, 1H), 1.50–1.37 (m, 1H), 1.07 (d, J = 6.3, 3H). ¹³C NMR* (75) MHz, MeOH- d_4) δ : 178.6 (s), 91.4 (d), 85.1 (d), 80.7 (d), 55.3 (t), 43.1 (d), 38.6 (d), 38.5 (d), 33.7 (d), 14.9 (q).

*Signals of major (\geq 90%) β -hemiacetal

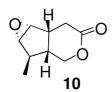
Elemental analysis calcd (%) for C₁₀H₁₄O₅: C 56.07, H 6.59; found: C 56.27, H 6.42.

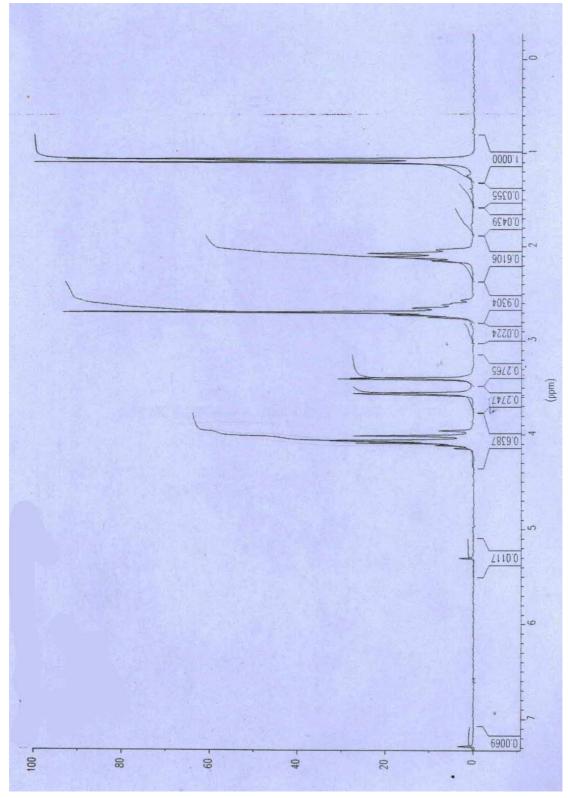
9-Deoxy-GEIR-1 (5). A solution of compound **28** (19 mg, 0.089 mmol) in acetic acid (200 μ L) was heated at 110 °C for 3 h. The solvent was removed under vacuum and the residue

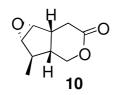
was purified by FCC on silica gel. Elution with EtOAc yielded compound **5** as a colorless solid (6.1 mg, 35%). ¹H NMR (300 MHz, CDCl₃) δ : 5.35 (s, 1H), 5.09 (dd, J = 2.7, 6.6, 1H), 3.94 (d, J = 2.2, 1H), 3.88 (dd, J = 2.4, 10.5, 1H), 3.69 (dd, J = 1.5, 10.5, 1H), 3.25 (q, J = 6.9, 1H), 2.77 (dd, J = 2.3, 6.8, 1H), 2.66 (q, J = 7.6, 1H), 2.27 (dd, J = 1.0, 8.1, 1H), 1.1 (d, J = 7.7, 3H).¹³C NMR (75 MHz, CDCl₃) δ : 174.3 (s), 92.70 (d), 83.1 (d), 80.84 (d), 64.3 (t), 43.9 (d), 42.8 (d), 40.4 (d), 38.7 (d), 18.2 (q). Elemental analysis calcd (%) for C₁₀H₁₂O₄: C 61.22, H 6.16; found: C 61.40, H 6.30.

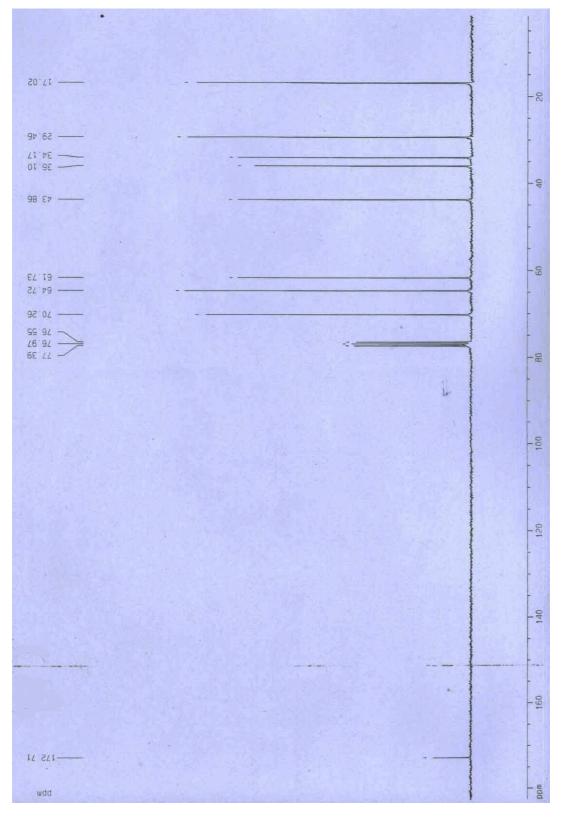
(3a*R*, 4R, 6S, 6aR)-hexahydro-6-(tert-butyldimethylsilyloxy)-4-(tert-5R, butyldimethylsilyloxy methyl)-5-methylcyclopenta[b]furan-2-one (30). Imidazole (328 mg, 4.83 mmol), followed by *tert*-butyldimethylsilyl chloride (485 mg, 3.22 mmol) and a catalytic amount of 4-(dimethylamino)pyridine (2 mg), were added to a stirred solution of compounds 25 and 26 (6 : 1 mixture, 60 mg, 0.322 mmol) in DMF (3 mL) at rt under Ar. The solution was heated at 60 °C and after 12 h was cooled to rt and diluted with Et₂O (5 mL), saturated aq NaHCO₃ (3 mL), and water (10 mL). The aq layer was extracted with Et₂O (3×5 mL) and combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by FCC on silica gel. Elution with hexane/EtOAc (9:1 v/v) afforded compound **30** as a colorless oil (115 mg, 100 % with respect to **25**). $[\alpha]_D = -$ 40.6 (c = 1.05, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ : 4.71 (dd, J = 4.9, 6.7, 1H), 3.75 (dd, J = 3.7, 10.6, 1H), 3.62-3.50 (m, 2H), 3.0-2.87 (m, 1H), 2.72 (dd, J = 4.2, 18.6, 1H),2.54 (dd, J = 10.6, 18.6, 1H), 1.77–1.65 (m, 2H), 1.00 (d, J = 6.0, 3H), 0.93 (s, 9H), 0.89 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H), 0.06 (s, 6H). ¹³C NMR (75MHz, CDCl₃) δ: 178.0 (s), 83.6 (d), 80.0 (d), 61.6 (t), 45.4 (d), 38.7 (d), 37.4 (d), 29.9 (t), 25.7 (3×q), 25.6 (3×q), 18.1 (2×s), 15.9 (d), -4.6 (q), -4.9 (q), -5.5 (q), -5.6 (q). Elemental analysis calcd (%) for C₂₁H₄₂O₄Si₂: C 60.82, H 10.21; found: C 60.65, H 10.30.

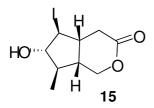
(3a*R*, 4*R*, 5*R*, 6*S*, 6a*R*)-hexahydro-6-(*tert*-butyldimethylsilyloxy)-4-(hydroxymethyl)-5methylcyclopenta[*b*]furan-2-one (31). Pyridinium *p*-toluenesulfonate (PPTS) (70 mg, 0.28 mmol) was added to a stirred solution of compound 30 (116 mg, 0.28 mmol) in DCM/i-PrOH (1:1 v/v, 4 mL) at rt. After stirring for 24 h, KHCO₃ (29 mg, 0.29 mmol) was added and the mixture was stirred for an additional 1 h. The solid was filtered off and the filtrate was evaporated under vacuum. The residue was purified by flash column chromatography on silica gel. Elution with a hexane/EtOAc gradient (from 9:1 to 100% EtOAc) yielded compound **31** as a colorless oil (42 mg, 50 %), followed by recovered **25** (18 mg, 35%). ¹H NMR (300 MHz, CDCl₃) δ : 4.75 (dd, J = 5.0, 6.4, 1H), 3.82 (dd, J = 3.5, 10.7, 1H), 3.72–3.55 (m, 2H), 3.05–2.90 (m, 1H), 2.74 (dd, J = 4.3, 18.7, 1H), 2.62 (dd, J = 10.4, 18.7, 1H), 1.90–1.63 (m, 2H), 1.03 (d, J = 5.7, 3H), 0.93 (s, 9H), 0.13 (s, 3H), 0.11 (s, 3H). ¹³C NMR (75MHz, CDCl₃) δ : 178.1 (s), 83.9 (d), 79.8 (d), 61.5 (t), 45.2 (d), 39.3 (d), 37.1 (d), 29.9 (t), 25.7 (3×q), 18.1 (s), 16.1 (q), -4.6 (q), -4.9 (q). Elemental analysis calcd (%) for C₁₅H₂₈O₄Si: C 59.96, H 9.39; found: C 59.78, H 9.50.

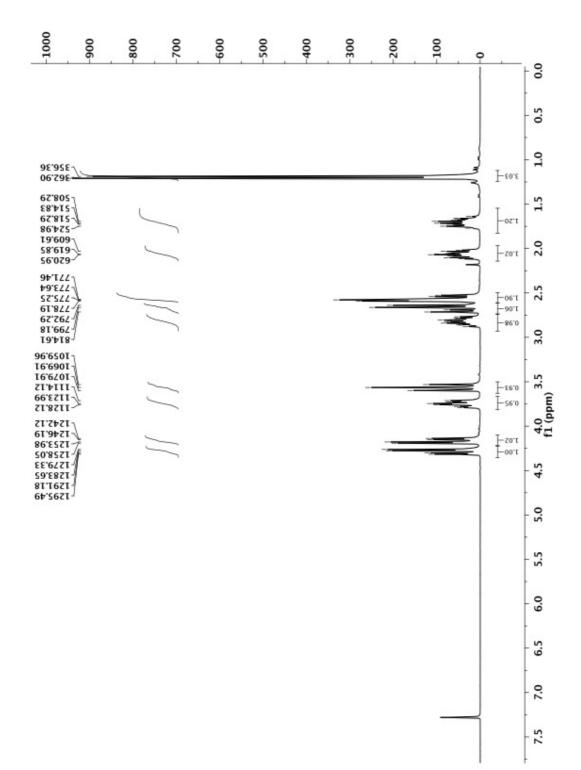

(1R, 2S, 3R, 4R, 7S, 8S, 11S)-2-(tert-butyldimethylsilyloxy)-7-hydroxy-3-methyl-6,10dioxa-tricyclo[6.2.1.0^{4,11}]undecan-9-one (32). Lactone 31 (28 mg, 0.093 mmol) dissolved in THF (1.5 mL) was added via canula to a stirred solution of sodium bis(trimethylsilyl)amide (NaHDMS, 1M in THF, 308 µL, 0.308 mmol) in dry THF (1 mL) at -78 °C under Ar. After stirring at -78 °C for 1 h, freshly distilled HCOOEt (53 µL, 0.653 mmol) was added. The solution was left at -78 °C for 3 h, then at -20 °C for 12 h. The reaction was quenched by addition of a phosphate buffered solution (pH = 6.8, 5 mL) at -20 °C, then the solution was warmed to rt, and diluted with EtOAc (3 mL) and brine (3 mL). Aq layer was extracted with EtOAc (5×5 mL); combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was separated by FCC on silica gel. Elution with hexane/EtOAc (4:1 v/v) afforded compound 32 as a colorless solid (18.9 mg, 62 %). Mp 197-198 °C. $[\alpha]_D = -46.62$ (c = 0.72, CH₂Cl₂). IR (nujol mull): 3410, 2930, 2901, 2858, 1734, 1461, 1369, 1252, 1200, 1112, 1046, 918, 837, 777, 712 cm⁻¹. ¹H NMR* (300 MHz, Me₂CO- d_6) δ : 5.43 (s, 1H), 4.77 (dd, J = 4.2, 6.1, 1H), 4.24 (dd, J =4.1, 12.2, 1H), 3.68 (dd, J = 4.2, 10.7, 1H), 3.40 (d, J = 12.2, 1H), 3.23 (td, J = 10.1, 6.2, 1H), 2.76 (d, J = 10.5, 1H), 1.92–1.75 (m, 1H), 1.44 (ddd, J = 4.1, 9.7, 12.8, 1H), 1.01 (d, J = 4.1, 9.8, 1H), 6.4, 3H), 0.95 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H). ¹³C NMR* (75 MHz, Me₂CO- d_6) δ : 176.6 (s), 91.8 (d), 83.3 (d), 80.8 (d), 54.4 (t), 42.1 (d), 38.3 (d), 36.9 (d), 33.1 (d), 26.1 (3×q), 18.7 (s), 14.8 (q), -4.4 (q), -4.7 (q).

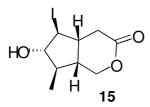

*Signals of major (\geq 90%) β –hemiacetal.

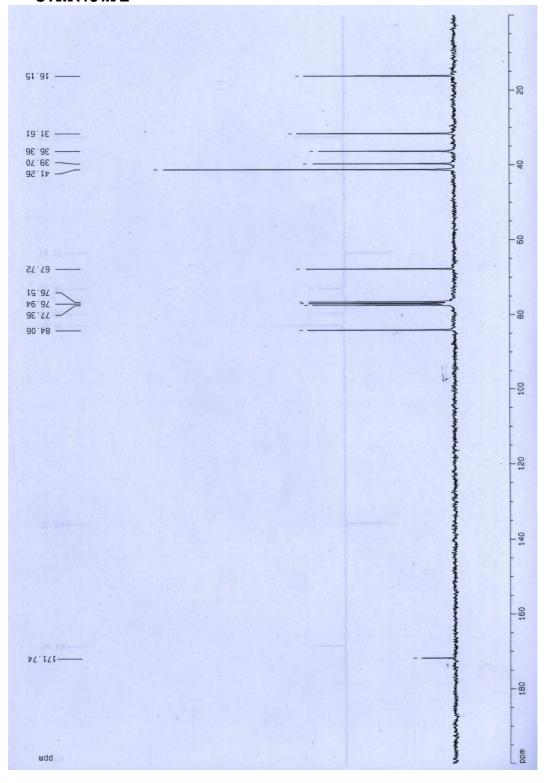

Elemental analysis calcd (%) for C₁₆H₂₈O₅Si: C 59.20, H 8.97; found: C 59.42, H 9.15.

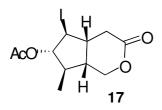

(1*R*, 2S, 4**R**, 11S)-2-(tert-butyldimethylsilyloxy)-3-methyl-6,10-dioxa-3R, tricyclo[6.2.1.0^{4,11}] undec-7-en-9-one (33). Freshly distilled anhydrous Et₃N (18 μ L, 0.130 mmol), followed by MsCl (56 µL, 0.056 mmol) were added to a stirred solution of compound **32** (14.3 mg, 0.043 mmol) in CH₂Cl₂ (1 mL) at -30 °C under Ar. After 30 min the temperature was set at -15 °C. After 90 min the solution was diluted with CH₂Cl₂ (3 mL) and aq phosphate buffer (pH = 6.8, 3 mL). The aq layer was extracted with CH_2Cl_2 (3 × 3 mL) and combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by FCC on silica gel. Elution with hexane/EtOAc (4:1 v/v)gave compound **33** (9.5 mg, 71 %) as colorless oil. ¹H NMR (300 MHz, Me₂CO- d_6) δ : 7.32 (d, J = 2.3, 1H), 4.80 (t, J = 7.2, 1H), 4.32 (dd, J = 1.0, 12.3, 1H), 4.16 (dd, J = 3.4, 12.3, 1H)1H), 3.86 (dd, J = 7.1, 9.4, 1H), 3.36 (td, J = 7.0, 2.4, 1H), 2.10–1.90 (m, 1H), 1.75–1.62 (m, 1H), 1.09 (d, J = 6.5, 3H), 0.93 (s, 9H), 0.14 (s, 3H), 0.12 (s, 3H). ¹³C NMR (75 MHz, Me₂CO-*d*₆) δ: 176.60 (s), 151.9 (d), 102.5 (s), 82.1 (d), 79.1 (d), 64.9 (t), 39.6 (d), 39.3 (d), 36.4 (d), 26.2 (3×q), 18.8 (s), 15.4 (q), -4.4 (q), -4.9 (q). HREIMS, m/z for C₁₆H₂₆O₄Si (M⁺) calcd 310.16004, found 310.16064.

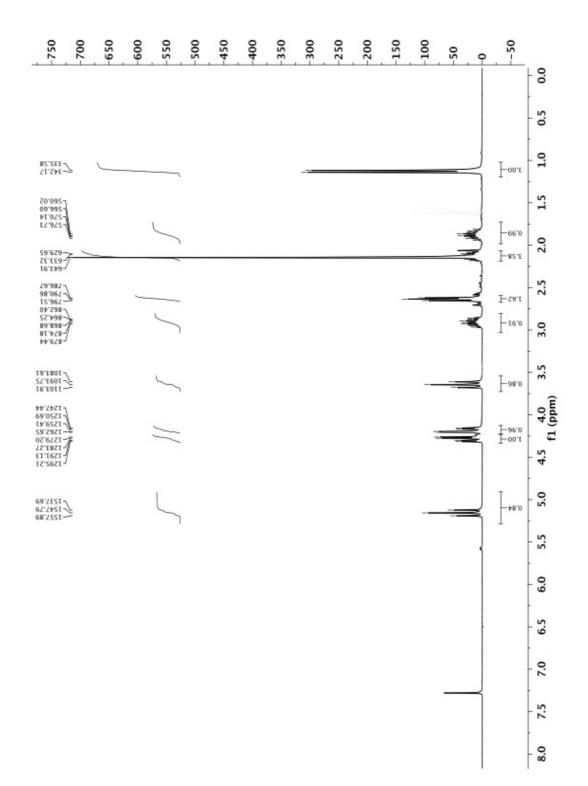

9-Deoxygelsemide (1). TBAF (1 M in THF, 39 µL, 0.039 mmol) was added to a stirred cooled (0 °C) solution of compound **33** (8.3 mg, 0.027 mmol) in THF (1 mL) containing 1% H₂O. After stirring for 1 h, the solution was diluted with EtOAc (2 mL) and aq phosphate buffer (pH = 6.8, 3 mL). The aq layer was extracted with EtOAc (3 × 2 mL) and combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by FCC on silica gel. Elution with hexane/EtOAc (1:1 v/v) gave a trace of compound **5**, followed by 9-deoxygelsemide (1)² as an amorphous powder (3.9 mg, 74%). CD [$\Delta \varepsilon$ (*c* 0.51×10⁻³ mmol/L, MeOH, 20 °C) -10.0 (247 nm)]. ¹H NMR (300 MHz, CDCl₃) δ : 7.43 (d, *J* = 2.0, 1H), 4.89 (t, *J* = 7.3, 1H), 4.30 (d, *J* = 12.4, 1H), 4.14 (dd, *J* = 3.5, 12.4, 1H), 3.70 (q, *J* = 8.3, 1H), 3.35 (td, *J* = 7.8, 2.2, 1H), 2.14 (d, *J* = 8.6, 1H, OH), 1.95–1.80 (m, 1H), 1.76–1.55 (m, 1H), 1.16 (d, *J* = 6.4, 3H). ¹³C NMR (75 MHz, CDCl₃) δ : 170.84 (s), 152.81 (d), 100.09 (s), 80.51 (d), 78.06 (d), 64.08 (t), 38.44 (d), 38.11 (d), 36.51 (d), 15.01 (q). HREIMS, *m*/*z* for C₁₀H₁₂O₄ (M⁺) calcd 196.07356, found 196.07426. No authentic sample was available. However, our NMR spectra matched up peak for peak with the NMR spectra of 9-deoxygelsemide listed in ref. 2.

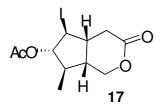


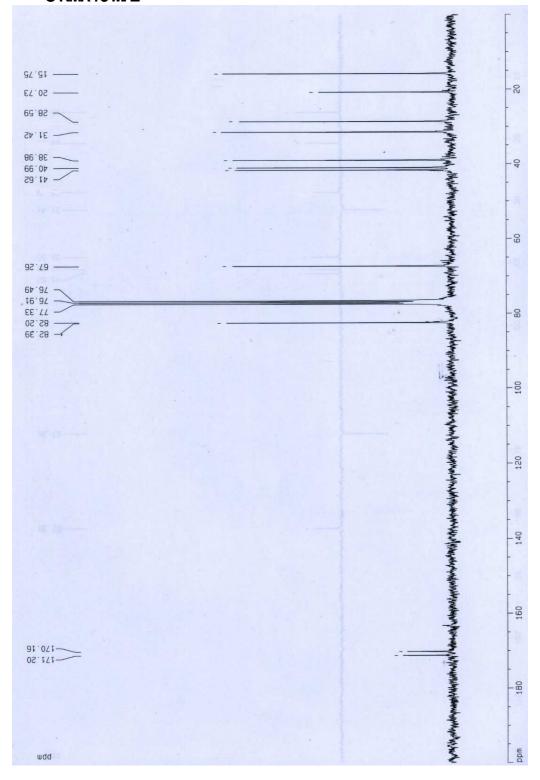


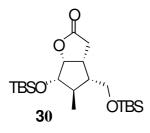


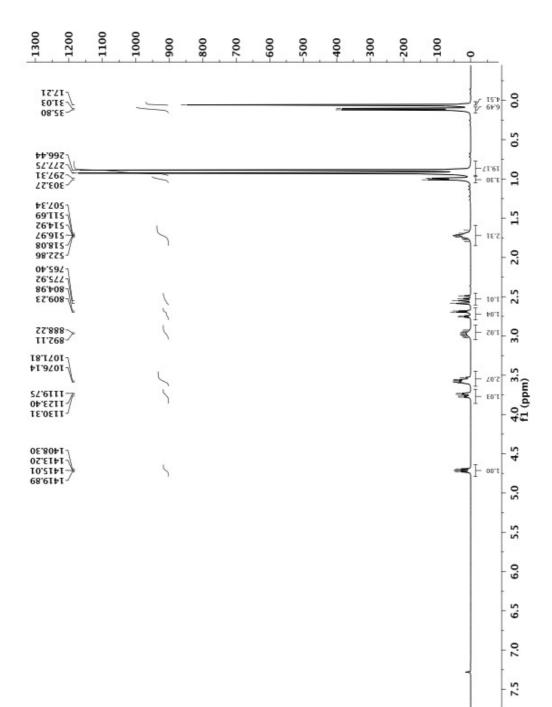


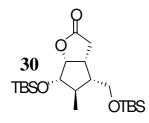


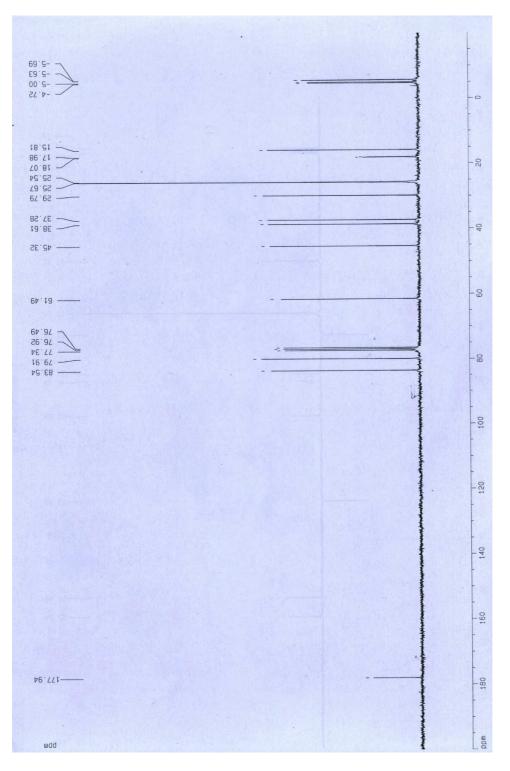


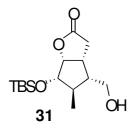


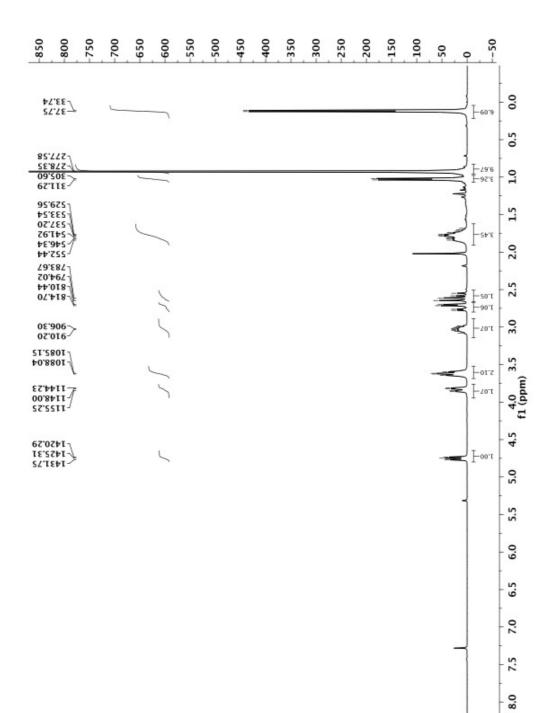


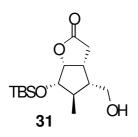


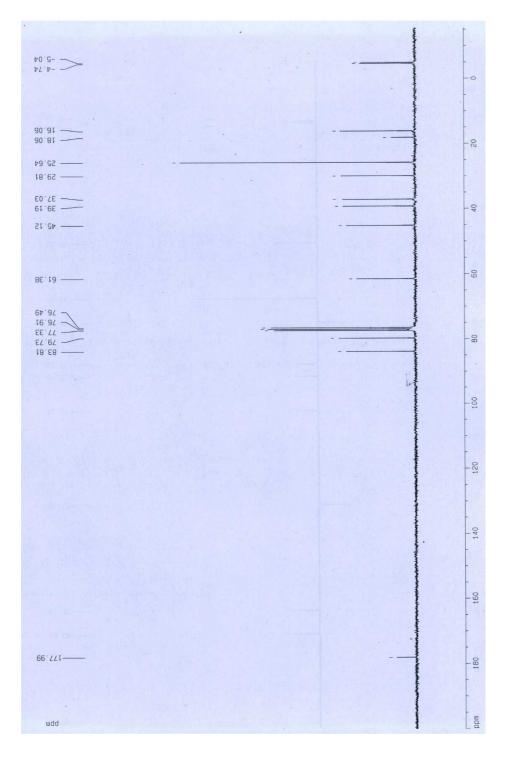


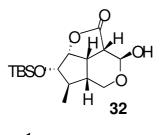


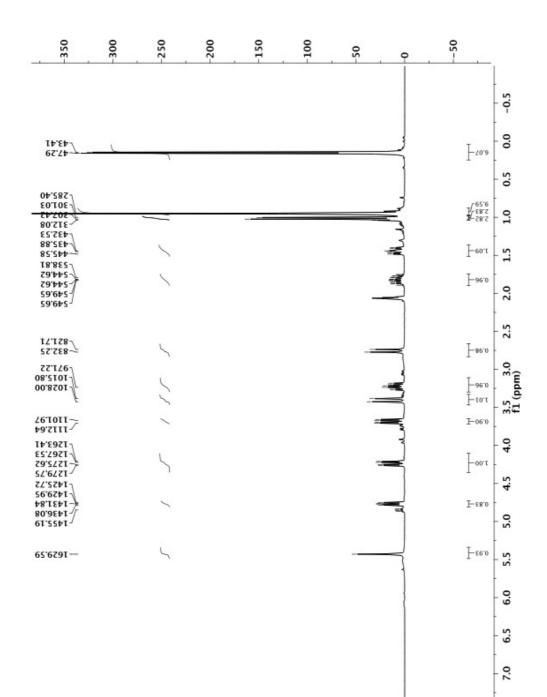


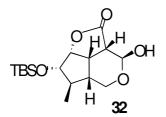


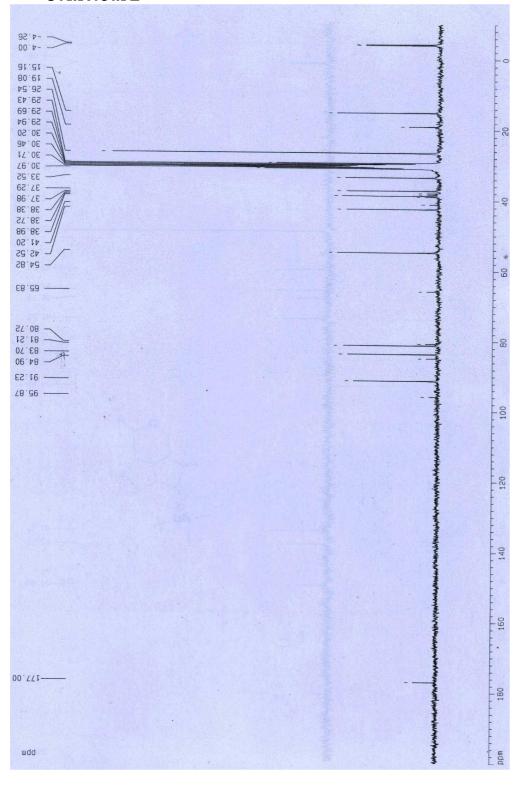

8.0

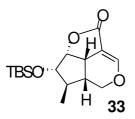


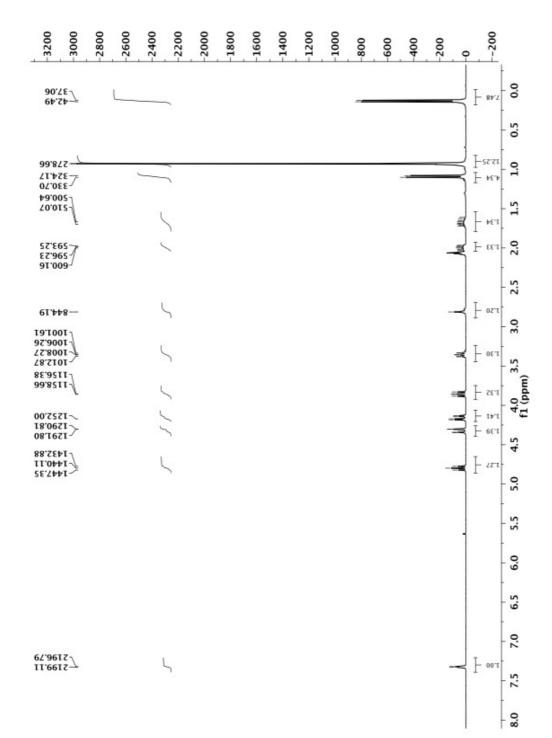


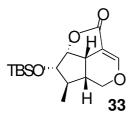


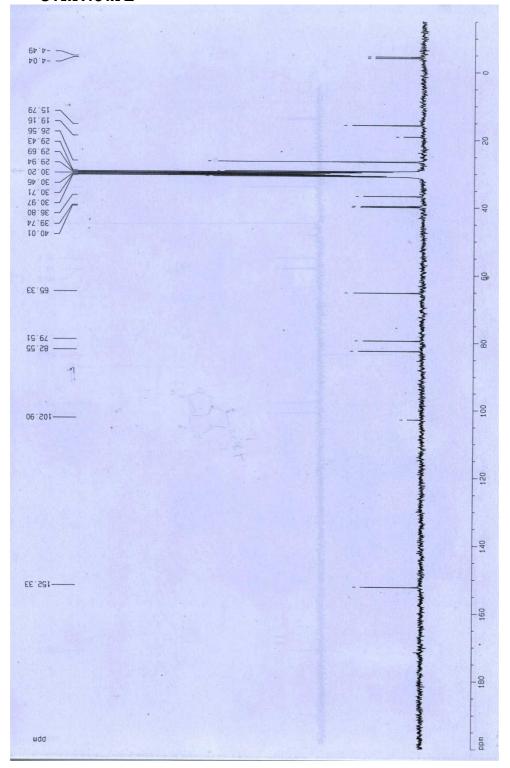


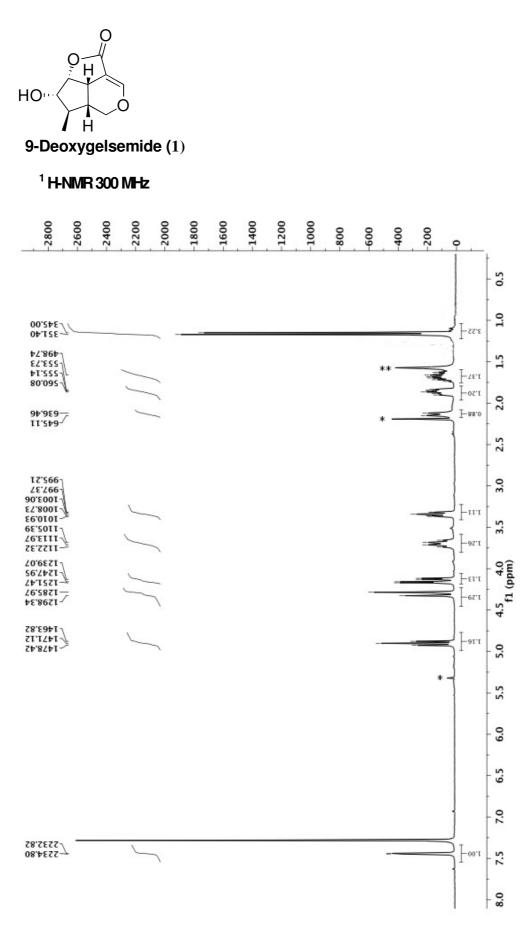


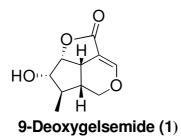


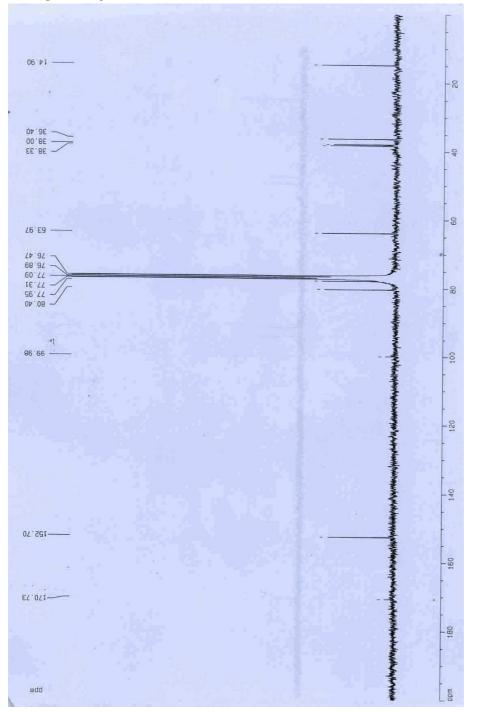

7.5




¹³ C-NMR 75 MHz







* solvents ** H₂O

References

- (1) Piccinini, P.; Vidari, G.; Zanoni, G. J. Am. Chem. Soc. 2004, 126, 5088–5089.
- (2) Takayama, H.; Morohoshi, Y.; Kitajima, M.; Aimi, N.; Wongseripipatana, S.; Ponglux, D.; Sakai, S. *Nat. Prod. Lett.* **1994**, *5*, 15–20.