SUPPORTING INFORMATION FOR

Enantioselective Total Synthesis of the Natural γ-Tocopherol Metabolite (S)- γ-CEHC [(S)-LLU- α]

Mercedes Lecea, Gloria Hernández-Torres, Antonio Urbano, M. Carmen Carreño, Françoise Colobert

Experimental Procedures

Abstract

General: Melting points were obtained in open capillary tubes and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} at 300 and 75 MHz , respectively. All reactions were monitored by thin layer chromatography that was performed on pre-coated sheets of silica gel 60 , and flash column chromatography was done with silica gel 60 (230-400 mesh) of Merck. Eluting solvents are indicated in the text. The apparatus for inert atmosphere experiments was dried by flaming in a stream of dry argon. Diisopropylamine was used freshly distilled over KOH. NaH was washed before use with several portions of hexane. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was pre-dried over CaCl_{2}, distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ and carefully kept under an argon atmosphere. Dry THF was distilled from sodium/benzophenone ketyl. All other reagent quality solvents were pre-dried over activated molecular sieves and kept under an argon atmosphere. For routine workup, hydrolysis was carried out with water, extractions with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and solvent drying with MgSO_{4}.

6-Hydroxy-7,8-dimethylchroman-2-one (9).

To a solution of 2,3-dimethylhydroquinone (6) ($1 \mathrm{~g}, 7.24 \mathrm{mmol}$) and acidic resin "Amberlyst 15 " $(2.9 \mathrm{~g})$ in toluene $(21.7 \mathrm{~mL})$, acrylic acid (7) ($521 \mu \mathrm{~L}, 7.60 \mathrm{mmol})$ was added dropwise, under argon. The reaction mixture was refluxed for two days, filtered, the solvent evaporated and the resulting residue diluted with EtOAc (100 mL). After filtration of the white precipitate, the filtrate was evaporated and the residue purified by flash chromatography (eluent hexane/EtOAc 4:1) to give compound 9 in 65% yield (906 mg), as a yellow solid: $\mathrm{mp} 123-125^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.25$ (hexane/EtOAc 2:1); ${ }^{1} \mathrm{H}$ NMR $\delta 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.8,12.1,23.9,29.4,111.2,120.3,122.7,126.3,144.2,149.8,169.5$; MS (FAB $\left.{ }^{+}\right) 154$ (65), $192\left(\mathrm{M}^{+}, 52\right), 193(100)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$192.0786, found 192.0779.

5,6-Dimethyl-1,2,9,10-tetrahydropyrano[3,2-f]chromene-3,8-dione (8).

Compound $\mathbf{8}$ was obtained as the white precipitate from above, in 10% yield: $\mathrm{mp} 244-246{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.27$ $(\mathrm{s}, 6 \mathrm{H}), 2.77-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.93-2.97(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 12.0,20.8,28.7,117.28,125.3,146.5$, 168.1; MS (EI) m/z (\%): 148 (11), 161 (24), 175 (19), 176 (100), 204 (33), 218 (18), 246 ($\mathrm{M}^{+}, 91$). HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$246.0892, found 246.0902.

6-(tert-Butyldimethylsilyloxy)-7,8-dimethylchroman-2-one (5).

To a solution of phenol $9(2.0 \mathrm{~g}, 10.42 \mathrm{mmol})$ and 2,6-lutidine ($2.2 \mathrm{~mL}, 20.84 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(180$ mL), tert-butyldimethylsilyl trifluoromethanesulfonate ($3.6 \mathrm{~mL}, 15.63 \mathrm{mmol}$) was added. The reaction mixture was stirred for 8 hours, hydrolyzed with a saturated aqueous ammonium chloride solution (70 mL) and extracted with EtOAc. After workup and flash chromatography (eluent hexane/EtOAc 2:1), compound 5 was obtained in 100% yield (3.5 g), as a white solid: mp $95-97{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} 0.69$ (hexane/EtOAc 2:1); ${ }^{1} \mathrm{H}$ NMR $\delta 0.19(\mathrm{~s}, 6 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.72$ $(\mathrm{m}, 2 \mathrm{H}), 2.88(\mathrm{~m}, 3 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-4.2,12.3,12.8,14.2,18.3,24.1,25.8,29.5,114.8$,
119.8, 126.2, 127.6, 144.5, 149.6, 169.3; MS (FAB^{+}) $306\left(\mathrm{M}^{+}, 100\right), 307$ (61); HRMS (FAB ${ }^{+}$) calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}\right) 306.1651$, found 306.1662 .
(SS)-6-(tert-Butyldimethylsilyloxy)-7,8-dimethyl-2-(p-tolylsulfinylmethyl)chroman-2-ol (10).

To a solution of dry diisopropylamine ($302 \mu \mathrm{~L}, 2.15 \mathrm{mmol}$) in THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, a solution of n BuLi 2.5 M in hexanes ($0.9 \mathrm{~mL}, 2.15 \mathrm{mmol}$) was added, under N_{2}. The mixture was stirred for 30 min , cooled to $-78^{\circ} \mathrm{C}$ and a solution of (SS)-methyl-p-tolylsulfoxide ($197 \mathrm{mg}, 1.3 \mathrm{mmol}$) in THF (2 mL) was added dropwise. The reaction was allowed to reach $-40^{\circ} \mathrm{C}$, stirred for 1 hour and added, via cannula, to a solution of chromanone $\mathbf{5}(300 \mathrm{mg}, 1.0 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$, at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 hour, hydrolyzed with a saturated aqueous ammonium chloride solution (5 mL) and extracted with EtOAc. After workup, a pale orange syrup was obtained, and diethyl ether was added until a precipitate appeared. The solid was filtered, washed with several portions of diethyl ether/hexane and dried, to obtain compound (SS)-10 as a white solid, in 74% yield (333 mg). When the reaction was performed in a smaller scale, the precipitation of the product was not observed and the final mixture was purified by flash chromatography (eluent hexane/EtOAc 2:1): mp 133-136 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} 0.26$ (hexane/EtOAc 2:1); ${ }^{1} \mathrm{H}$ NMR $\delta 0.17$ (s, 3 H), 0.19 ($\mathrm{s}, 3 \mathrm{H}$), 1.76 (ddt, $J=2.0,5.8$ and 13.1 $\mathrm{Hz}, 1 \mathrm{H}), 2.02-2.13(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{ddd}, J=2.5,5.5$ and $15.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.97-3.19 (m, 4H), $6.10(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 7.49$ (AA'BB' system, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta-4.3,-4.1,12.2,12.8,18.2,21.0,21.4,25.9,32.2,63.9,96.4,115.7,118.2,124.0,126.0$, 126.6, 130.2, 140.5, 142.1, 143.9, 147.3; MS (FAB $\left.{ }^{+}\right) 385(41), 460\left(\mathrm{M}^{+}, 100\right), 461$ (34); HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{SSi}\left(\mathrm{M}^{+}\right) 460.2104$, found 460.2098.
(SS)-6-(tert-Butyldimethylsilyloxy)-2-methoxy-7,8-dimethyl-2-(p-tolylsulfinylmethyl)chroman (3).

To a mixture of sulfinyl lactol (SS)-10 ($500 \mathrm{mg}, 1.08 \mathrm{mmol}$), dry methanol ($218 \mu \mathrm{~L}$) and anhydrous $\mathrm{MgSO}_{4}\left(540 \mathrm{mg}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5.4 \mathrm{~mL}\right.$), TMSOTf ($39 \mu \mathrm{~L}, 0.2$ equiv) was added at $0^{\circ} \mathrm{C}$, under N_{2}. The solution was allowed to reach room temperature, stirred for 2 h and quenched with $\mathrm{Et}_{3} \mathrm{~N}(30 \mu \mathrm{~L})$. After evaporation of the solvent and flash chromatography (eluent hexane/EtOAc 2:1), compound (SS)-3 was obtained as a yellow oil, in 85% yield (437 mg): $\mathrm{R}_{\mathrm{f}} 0.46$ (hexane/EtOAc 2:1); $[\alpha]_{\mathrm{D}}{ }^{20}=-$ $71.6\left(c 2.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.19(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~m}, 5 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 7.34$ and 7.59 (AA'BB' system, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta-4.2,-4.1,11.9,12.7,12.8,14.2,18.2,21.3,21.4$, $25.7,25.8,25.9,30.1,30.4,49.2,49.3,65.1,65.6,97.4,97.8,115.7,115.8,118.9,119.0,123.9$, $124.0,125.3,126.3,126.4,130.0,141.5,141.6,141.7,141.9,143.4,143.5,147.4 ;$ MS (FAB $\left.{ }^{+}\right) 415$ (65), 459 (58), $474\left(\mathrm{M}^{+}, 100\right)$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{SSi}\left(\mathrm{M}^{+}\right) 474.2260$, found 474.2263 .
(SS,S)-2-Allyl-6-(tert-butyldimethylsilyloxy)-7,8-dimethyl-2-(p-tolylsulfinylmethyl)chroman (2).

To a solution of sulfinyl ketal (SS)-3 (1.49 g, 3.14 mmol$)$ and allyltrimethylsilane ($1.49 \mathrm{~mL}, 9.42$ $\mathrm{mmol}, 3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(46 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}, \mathrm{TiCl}_{4}(500 \mu \mathrm{~L}, 4.39 \mathrm{mmol}, 1.4$ equiv) was added. After stirring for 1 hour, the reaction mixture was hydrolyzed with a saturated aqueous NaHCO_{3} solution $(20 \mathrm{~mL})$ and extracted with EtOAc. After workup and flash chromatography (eluent hexane/EtOAc 4:1), compound (SSSS)-2 was obtained in 67% yield (1.2 g), as a yellow oil: $\mathrm{R}_{\mathrm{f}} 0.58$ (hexane/EtOAc 2:1); $[\alpha]_{\mathrm{D}}{ }^{20}=-57.4\left(c 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.17(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~m}, 4 \mathrm{H}), 2.86$ and $3.12(\mathrm{AB}$ system, $J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.25-5.32(\mathrm{~m}, 2 \mathrm{H}), 6.00$ (dddd, $J=6.4,8.1,10.1$ and $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 7.27$ and 7.44 (AA'BB' system, $J=8.4 \mathrm{~Hz}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-4.2(2 \mathrm{C}), 12.1,12.8,18.3,21.3,21.8,25.8,29.9,41.9,65.3,115.9,117.5,119.5$, 123.7 (2C), 125.9, 126.7, 129.9 (2C), 132.9, 141.2, 142.0, 144.5, 146.9; MS (FAB $) 484\left(\mathrm{M}^{+}, 75\right)$, $485\left(\mathrm{M}^{+}+1,100\right)$; $\mathrm{HRMS}\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{SSi}\left(\mathrm{M}^{+}+1\right) 485.2546$, found 485.2540 .
(SS,R)-2-Allyl-6-(tert-butyldimethylsilyloxy)-7,8-dimethyl-2-(p-tolylsulfinylmethyl)chroman (11).

Compound (SS,R)-11 was obtained following the previously described protocol, in 12\% yield (180 $\mathrm{mg}):[\alpha]_{\mathrm{D}}{ }^{20}=-36.0\left(c 1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.19(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 2.04-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~s}$, $3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.99$ and $3.12(\mathrm{AB}$ system, $J=13.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.11-5.17(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.87(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 7.31$ and 7.54 (AA'BB' system, $J=7.9$ $\mathrm{Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-4.2$ (2C), 12.1, 12.9, 18.3, 21.4, 21.9, 25.9, 28.4, 42.0, 66.7, 76.0, 115.8, $117.0,119.6,124.0,126.0$ (2C), 126.8, 129.9, 132.4 (2C), 141.3, 142.1, 144.7, 146.9; MS (FAB+) $\mathrm{m} / \mathrm{z}(\%): 345(50), 467(9), 484\left(\mathrm{M}^{+}, 100\right), 485\left(\mathrm{M}^{+}+\mathrm{H}, 90\right)$. HRMS (FAB+) calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{SSi}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) 485.2546$, found 485.2534 .

(SS,S)-2-Allyl-6-hydroxy-7,8-dimethyl-2-(p-tolylsulfinylmethyl)chroman (12).

To a solution of OTBS-protected chroman (SS,S)-2 ($106.5 \mathrm{mg}, 0.22 \mathrm{mmol}$) in THF (4 mL), a solution of TBAF 1.0 M in THF ($265 \mu \mathrm{~L}, 0.26 \mathrm{mmol}, 1.2$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 5 min, hydrolyzed with $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. After workup and flash chromatography (eluent hexane/EtOAc $2: 1$), phenol (SS, S)-12 was obtained in quantitative yield, as a crystalline white solid: mp $172-173{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-84.7\left(c 0.36, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR δ 2.02-2.22 (m, 2 H), $2.13(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.88$ and $3.16(\mathrm{AB}$ system, $J=13.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.50-4.65 (m, 1H), 5.25-5.32 (m, 2H), 6.03 (dddd, $J=18.3,10.2,8.2$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ $(\mathrm{s}, 1 \mathrm{H}), 7.30$ and 7.48 (AA'BB' system, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 11.8,12.1,20.2,21.3,30.0$, $41.8,65.0,75.2,117.1,118.8,119.4,121.6,122.8,123.8$ (2C), 129.9 (2C), 132.9, 141.2, 142.0, 144.2, 145.4; MS (FAB+) m/z (\%): 55 (48), 231 (36), $371\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$. HRMS (FAB+) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 371.1681, found 371.1676.

(S)-3-[6-(tert-Butyldimethylsilyloxy)-2,7,8-trimethylchroman-2-yl]propan-1-ol (14).

(S)-14

To allyl sulfoxide (SS,S)-2 (400 mg, 0.83 mmol) without solvent at $0^{\circ} \mathrm{C}$, a solution of $9-\mathrm{BBN} 0.5 \mathrm{M}$ in THF ($6.7 \mathrm{~mL}, 3.32 \mathrm{mmol}, 4$ equiv) was added, under nitrogen. After stirring at room temperature for 48 h , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and a $50: 50$ solution of aqueous NaOH 3 N and $30 \%-\mathrm{H}_{2} \mathrm{O}_{2}(12 \mathrm{~mL})$ was added. The mixture was stirred at room temperature for 3 h , diluted with EtOAc and washed with brine. After workup, compound (SS,S)-13 was obtained and used in the next step without further purification.
To a solution of the above obtained sulfinyl alcohol (SS,S)-13 in EtOH (4 mL), Ni Raney was added and the mixture was stirred at room temperature overnight. After filtration, evaporation of the solvent and flash chromatography in alumina (eluent hexane/EtOAc 4:1), compound (S) - $\mathbf{1 4}$ was obtained in 87% yield for the two last steps, as a colorless oil: $\mathrm{R}_{\mathrm{f}} 0.42$ (hexane/EtOAc 2:1); $[\alpha]_{\mathrm{D}}{ }^{20}=+3.1(c$ $1.4, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.17(\mathrm{~s}, 6 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.8(\mathrm{~m}, 6 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H}), 2.66-$ $2.68(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.67(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-4.2,12.1,12.8,18.2,22.4,22.7,23.9$, $25.2,25.9,27.0,27.4,31.6,34.7,36.2,63.2,72.2,115.8,117.6,125.6,126.2,145.6,146.2$; MS $\left(\mathrm{FAB}^{+}\right) 346$ (48), $364\left(\mathrm{M}^{+}, 100\right)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}\right)$364.2434, found 364.2431 .
(S)-3-[6-(tert-Butyldimethylsilyloxy)-2,7,8-trimethylchroman-2-yl]propanoic acid (16).

(S)-16

To a solution of alcohol $(S) \mathbf{- 1 4}(100 \mathrm{mg}, 0.274 \mathrm{mmol})$ in a $50: 50$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMSO (2.7 $\mathrm{mL})$ at $0{ }^{\circ} \mathrm{C}$, triethylamine $(193 \mu \mathrm{~L}, 1.37 \mathrm{mmol})$ and the complex SO_{3}. pyridine $(174 \mathrm{mg}, 1.1 \mathrm{mmol})$ were added. The reaction mixture was stirred at room temperature for 2 h , quenched with water,
extracted with EtOAc and washed with brine. After workup, the resulting residue was filtered over alumina (eluent EtOAc), to obtain compound (S) $\mathbf{- 1 5}$ which was used directly in the next step without further purification: ${ }^{1} \mathrm{H}$ RMN: $\delta 0.17(\mathrm{~s}, 6 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.70-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{~s}$, $3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{dt}, J=1.6$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.67-2.73(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 9.80(\mathrm{t}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ RMN: $\delta-4.2(2 \mathrm{C}), 12.1,12.8,18.2,22.2,23.7,25.8,31.7,32.2,38.6,74.2,115.8$, 117.3, 125.7, 126.4, 145.3, 146.4, 202.5.

To a solution of the above obtained aldehyde (S) - $\mathbf{1 5}$ in a 80:20 mixture of t - BuOH and water (2.25 mL) at $0{ }^{\circ} \mathrm{C}$, 2-methyl-2-butene ($0.5 \mathrm{~mL}, 1 \mathrm{mmol}$), $\mathrm{NaH}_{2} \mathrm{PO}_{4}(31 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{NaClO}_{2}(71$ $\mathrm{mg}, 0.78 \mathrm{mmol}$) were successively added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After workup and flash chromatography, (eluent hexane/EtOAc 2:1,5\% MeOH), compound (S) - $\mathbf{- 1 6}$ was obtained in 76% yield $(78 \mathrm{mg}$) for the two las steps, as a yellow oil: $\mathrm{R}_{\mathrm{f}} 0.27$ (hexane/EtOAc 2:1); $[\alpha]_{\mathrm{D}}{ }^{20}=+5.3\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.17$ (s, $6 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.73-2.05(\mathrm{~m}, 6 \mathrm{H}), 2.07$, (s, 3H), $2.08(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.67-2.73(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-4.2,12.0,12.8,18.2,22.2,23.5,25.8,27.0,28.4$, 31.6, 34.7, 74.1, 115.8, 117.4, 125.7, 126.4, 145.4, 146.4, 178.7; MS (FAB $\left.{ }^{+}\right) 378\left(\mathrm{M}^{+}, 100\right)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}\right) 378.2226$, found 378.2233.

(S)-3-(6-Hydroxy-2,7,8-trimethylchroman-2-yl)propanoic acid (1) [(S)- γ-CEHC].

(S) $-\gamma$-CEHC (1)

To a solution of carboxylic acid $(S) \mathbf{- 1 6}(60 \mathrm{mg}, 0.158 \mathrm{mmol})$ in THF $(1.6 \mathrm{~mL})$, tetrabutylamonium fluoride ($0.2 \mathrm{~mL}, 0.205 \mathrm{mmol}$) was added, at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 minutes, hydrolyzed with a saturated aqueous ammonium chloride solution and extracted with EtOAc. After workup and flash chromatography (eluent hexane/EtOAc 2:1, 5\% MeOH, 0.01% AcOH), compound (S)-1 [(S)- γ-CEHC] was obtained in 100% yield (42 mg), as a white solid: R_{f} 0.19 (hexane/EtOAc 2:1); $[\alpha]_{\mathrm{D}}{ }^{20}=+5.5(c 1.43, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.82(\mathrm{~m}, 2 \mathrm{H})$, 1.89 (ddd,, $J=7.2,8.8$ and $14.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.99-2.05 (m, 1H), 2.09 (s, 3H), 2.12 (s, 3H), 2.55 (ddd, J $=1.9,6.8$ and $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.75(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.8,11.9,20.7,22.1,23.5$, $28.4,31.5,34.6,74.3,112.1,117.9,121.8,125.9,145.2,146.5,176.8,179.5 ; \mathrm{MS}\left(\mathrm{FAB}^{+}\right) 264\left(\mathrm{M}^{+}\right.$, 100); HRMS (FAB^{+}) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$264.1362, found 264.1364.

9	8	7	6	5	4	3	2	1	0	ppm

CDCl_{3} (75 MHz)


```
    210
```


(S)-14

CDCl_{3} (75 MHz)

CDCl_{3} (300 MHz)

CDCl_{3} (75 MHz)
(S)- γ-CEHC (1)

