Synthesis of (-)-Uniflorine A, (+)-Casuarine, (+)-Australine,(-)-3-Epi-australine and (-)-3,7-Diepi-australine
Thunwadee Ritthiwigrom, Anthony C. Willis and Stephen G. Pyne
SUPPORTING INFORMATION
General Methods and Experimental Procedures SI-1 - SI-39
TABLES
Table 1 Physical and spectral Data for (-)-Uniflorine A and 1 SI-9
Table 2 Physical and spectral Data For (+)-CASUARINE AND 2 SI-19
Table 3 Physical and spectral Data for (+)-Australine and 3. SI-26 -SI-27
Table 4 Physical and spectral Data for (-)-3-Epl-australine and 4 SI-36
Table 5 Physical and spectral Data for (+)-1,2-Diepi-alexine- HCl salt [ent-36] and $\mathbf{3 6} \cdot \mathrm{HCl}$ salt [3,7-diepi-australine $\cdot \mathrm{HCl}$ salt] SI-39
COPIES OF ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR SPECTRA SI-40-SI-89
NOTE: COPIES OF THE ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR SPECTRA FOR THE ENANTIOMERS OF COMPOUNDS 5 AND 6 CAN BE FOUND IN THE SUPPORTING INFORMATION OF OUR EARLIER PUBLICATION.
NMR SPECTRA OF (-)-UnIFLORINE A 1 SI-48 - SI-50
NMR SPECTRA OF (+)-CASUARINE 2 SI-59 - SI-61
NMR SPECTRA (INCLUDING COSY, HSQC AND HMBC) OF (+)-AUSTRALINE 3 SI-67-SI-72
NMR SPECTRA OF (-)-3-Epi-AUSTRALINE 4 SI-82 - SI-84
NMR SPECTRA OF (+)-3,7-Diepl-AuStRaline 36 SI-86 - SI-88
ORTEP PLOT for compound 21 SI-90

[^0]General methods: All IR spectra were run as neat samples. NMR assignments were made on the basis of COSY, DEPT, HSQC and sometimes HMBC experiments. In the case of epoxide compounds NMR assignments are given based on the numbering system of the parent pyrrolidine, pyrrolizine or indolizine and not the systematic numbering. Petrol refers to the hydrocarbon fraction of bp $40-60^{\circ} \mathrm{C}$
(6E)-5-(Allylamino)-5,6,7-trideoxy-7-phenyl-D-gluco-hept-6-enitol (5).

5
To a mixture of L-xylose ($11.00 \mathrm{~g}, 73.3 \mathrm{mmol}$) and trans-2-phenylvinyl boronic acid $(11.93 \mathrm{~g}, 80.6 \mathrm{mmol})$ was added absolute ethanol $(110 \mathrm{~mL})$ and allylamine $(6.05 \mathrm{~mL}$, 80.6 mmol). The reaction mixture was stirred at rt for 3 days, followed by the evaporation of all volatiles in vacuo. The residue was dissolved in 1 M HCl (ca 20 mL), applied to a column of DOWEX resin (H^{+}form, 150 mL) and washed with distilled $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~L})$. The product was eluted with $7 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}(2 \mathrm{~L})$ and $14 \mathrm{M} \mathrm{NH} 4 \mathrm{NH}^{\mathrm{OH}}$ (2 L). The fractions containing the product were combined and concentrated to a brown foamy solid ($19.78 \mathrm{~g}, 92 \%$).
$[\alpha]_{D}^{25}+27(c 0.06, \mathrm{MeOH})$.
This compound had the same R_{f}, MS, IR and NMR spectroscopic data as reported earlier. ${ }^{1}$

1. Davis, A. S.; Pyne, S. G.; Skelton, B. W.; White, A. H., J. Org. Chem. 2004, 69, 3139-3143.
tert-Butyl allyl((2S,3S,4R,5R,E)-1,2,3,4-tetrahydroxy-7-phenylpent-6-en-5yl)carbamate (6).

To a solution of $5(21.49 \mathrm{~g}, 73.34 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(300 \mathrm{~mL})$ was added anhydrous $\mathrm{Et}_{3} \mathrm{~N}$ ($20.45 \mathrm{~mL}, 14.67 \mathrm{mmol}$) and di-tert-butyl-dicarbonate (47.44 g , $16.87 \mathrm{mmol})$. The reaction mixture was stirred at rt under an atmosphere of N_{2} for 3
days, followed by the evaporation of all volatiles in vacuo. The residue was purified by flash column chromatography (FCC) (80:20 to 100:0 EtOAc/petrol and then 20:80 $\mathrm{MeOH} / \mathrm{EtOAc}$) to give a brown oil ($23.1 \mathrm{~g}, 80 \%$).
$[\alpha]_{D}^{25}-50\left(c 3.0, \mathrm{CHCl}_{3}\right)$.
This compound had the same $\mathrm{R}_{f}, \mathrm{MS}, \mathrm{IR}$ and NMR spectroscopic data as reported earlier. ${ }^{1}$

1. Davis, A. S.; Pyne, S. G.; Skelton, B. W.; White, A. H., J. Org. Chem. 2004, 69, 3139-3143.
tert-Butyl allyl((2S,3S,4R,5R,E)-1,2-O-(1-methylethylidene)-3,4-dihydroxy-7-phenylpent-6-en-5-yl)carbamate (7).

To a solution of $\mathbf{6}(4.957 \mathrm{~g}, 12.61 \mathrm{mmol})$ in anhydrous acetone (70 mL) was added 2,2-dimethoxypropane ($1.86 \mathrm{~mL}, 15.13 \mathrm{mmol}$) and pyridinium p-toluenesulfonate $(0.317 \mathrm{~g}, 1.261 \mathrm{mmol})$. The reaction mixture was stirred under an atmosphere of N_{2} for 22 h , followed by the evaporation of all volatiles in vacuo to give a brown oil. The residue was purified by FCC ($30: 70$ to 50:50 EtOAc/petrol) to give 7 ($3.485 \mathrm{~g}, 64 \%$) as a white solid, foamy solid. A small amount of another regioisomeric compound was also isolated $(1.759 \mathrm{~g}, 19 \%)$. This compound was not further characterized.
$[\alpha]_{D}^{22}-36\left(c 6.5, \mathrm{CHCl}_{3}\right)$. [Lit. ${ }^{2}$ for $\left.(+)-7 ;[\alpha]_{D}^{23}+41\left(c 10.1, \mathrm{CHCl}_{3}\right)\right]$.
This compound had the same $\mathrm{R}_{f}, \mathrm{MS}, \mathrm{IR}$ and NMR spectroscopic data as reported for (+)-7. ${ }^{2}$
2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.
(2R)-tert-Butyl 2-((1R,2S,3S)-1,2,3,4-tetrahydroxybutyl-3,4-O-(1-methylethylidene))-2,5-dihydro-1 H -pyrrole-1-carboxylate (8).

8
To a solution of $7(5.553 \mathrm{~g}, 12.82 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(260 \mathrm{~mL})$ was added Grubbs' I catalyst ($1.055 \mathrm{~g}, 1.282 \mathrm{mmol}$). The reaction mixture was stirred and heated at reflux for 18 h under an atmosphere of N_{2} followed by the removal of all volatiles in vacuo. The residue was purified by FCC (50:50 to 70:30 EtOAc/petrol) to give $\mathbf{8}$ as a dark brown viscous oil ($4.09 \mathrm{~g}, 97 \%$).
$[\alpha]_{D}^{21}+125\left(c 4.5, \mathrm{CHCl}_{3}\right) .\left[\right.$ Lit. 2 for $\left.(-)-\mathbf{8} ;[\alpha]_{D}^{22}-37\left(c 5.75, \mathrm{CHCl}_{3}\right)\right]$.
This compound had the same $\mathrm{R}_{f}, \mathrm{MS}, \mathrm{IR}$ and NMR spectroscopic data as reported for (-)-8. ${ }^{2}$
2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.
(2R,3S,4R)-tert-Butyl 2-((1R,2S,3S)-1,2,3,4-tetrahydroxybutyl-3,4-O-(1-methylethylidene))-3,4-dihydroxypyrrolidine-1-carboxylate (9).

To a solution of $\mathbf{8}(4.00 \mathrm{~g}, 12.16 \mathrm{mmol})$ in acetone $(60 \mathrm{~mL})$ and water $(60 \mathrm{~mL})$ was added potassium osmate.dihydrate $(223.7 \mathrm{mg}, 0.608 \mathrm{mmol})$ and 4 -morpholine- N oxide ($2.987 \mathrm{~g}, 25.53 \mathrm{mmol}$). The reaction mixture was stirred for 18 h at rt and evaporated to give a dark brown oil which was purified by FCC (100\% EtOAc to 4:96 $\mathrm{MeOH} / \mathrm{EtOAc}$) to give 9 as a brown foamy solid ($3.174 \mathrm{~g}, 72 \%$).
$[\alpha]_{D}^{22}+32\left(c 4.9, \mathrm{CHCl}_{3}\right) .\left[\right.$ Lit. 2 for (-)-9; $[\alpha]_{D}^{22}-32\left(c 4.8, \mathrm{CHCl}_{3}\right)$.
This compound had the same R_{f}, MS, IR and NMR spectroscopic data as reported for (-)-9. ${ }^{2}$
(2R,3S,4R)-tert-Butyl 3,4-bis(benzyloxy)-2-((1R,2S,3S)- 1,2-bis(benzyloxy)-3,4-O-(1-methylethylidene))- 3,4-dihydroxybutylpyrrolidine-1-carboxylate (10).

10

To a solution of $9(3.077 \mathrm{~g}, 8.477 \mathrm{mmol})$ in dry THF (85 mL) was added n-Bu ${ }_{4} \mathrm{NI}$ ($313.1 \mathrm{mg}, 0.848 \mathrm{mmol}$) and $\mathrm{BnBr}(8.07 \mathrm{~mL}, 67.81 \mathrm{mmol})$ follow by $\mathrm{NaH}(2.441 \mathrm{~g}$, $50.86 \mathrm{mmol}, 50 \%$ in mineral oil) at $0{ }^{\circ} \mathrm{C}$. After H_{2} evolution had ceased (15 min) the reaction mixture was stirred at rt for $24 \mathrm{~h} . \mathrm{MeOH}(50 \mathrm{~mL})$ was then added followed by evaporation of all volatiles in vacuo. The residue was dissolved in EtOAc and filtered through celite, followed by further washings of the solids with EtOAc. The solvent was evaporated and the residue was purified by FCC (10:90 to 15:85
$\mathrm{EtOAc} /$ petrol $)$ to give $\mathbf{1 0}$ as a pale yellow syrup ($5.89 \mathrm{~g}, 96 \%$).
$[\alpha]_{D}^{23}-50\left(c 5.4, \mathrm{CHCl}_{3}\right) .\left[\mathrm{Lit}^{2}\right.$ for $(+)-10 ;[\alpha]_{D}^{23}+45\left(c 4.26, \mathrm{CHCl}_{3}\right)$.
This compound had the same R_{f}, MS, IR and NMR spectroscopic data as reported for (+)-10. ${ }^{2}$
2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.

1-[(2S,3R,4R)-3,4-Bisbenzyloxy-2-pyrrolidinyl]-(1R,2S,3R)-1,2-dibenzyloxy-butane-3,4-diol (11).

11
To a solution of $\mathbf{1 0}(5.78 \mathrm{~g}, 7.994 \mathrm{mmol})$ in $\mathrm{MeOH}(200 \mathrm{~mL})$ was added dropwise conc. HCl solution $(40 \mathrm{~mL})$ and the mixture was stirred at rt for 18 h . The reaction mixture was basified at $0{ }^{0} \mathrm{C}$ with aqueous NH_{3} solution (28%). The mixture was extracted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, evaporated and purified by FCC $(100 \%$ EtOAc to $93: 5: 2 \mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{NH}_{3}$) to give $\mathbf{1 1}(3.788 \mathrm{~g}, 81 \%)$ as a yellow viscous oil.
$[\alpha]_{D}^{22}-27\left(c 3.7, \mathrm{CHCl}_{3}\right) .\left[\mathrm{Lit}^{2}\right.$ for $(+)-\mathbf{1 1} ;[\alpha]_{D}^{21}+35\left(c 1.45, \mathrm{CHCl}_{3}\right)$.

This compound had the same R_{f}, MS, IR and NMR spectroscopic data as reported for (+)-11. ${ }^{2}$ It should be noted that the reported assignments for $\mathrm{H}-3$ and $\mathrm{H}-4$ and $\mathrm{C}-3$ and C-4 should be interchanged.
2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.

1-[(2S,3R,4R)-3,4-Bisibenzyloxy-2-pyrrolidinyl]-(1R,2S,3R)-1,2-dibenzyloxy-4-(tert-butyldimethylsilyloxy)-butan-3-ol (12).

12

To a solution of the diol $\mathbf{1 1}(0.312 \mathrm{~g}, 0.535 \mathrm{mmol})$, imidazole ($0.77 \mathrm{mg}, 1.123 \mathrm{mmol}$) and 4-dimethylaminopyridine ($6.5 \mathrm{mg}, 0.053 \mathrm{mmol}$) in THF (6 mL) under N_{2} at rt was added TBSCl ($0.97 \mathrm{~g}, 0.642 \mathrm{mmol}$). The reaction mixture was stirred for 2 days and the reaction was quenched by the addition of water. The solvent was removed under reduced pressure and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were combined and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and then evaporated to leave a residue which was chromatographed on silica gel by FCC (30:70 EtOAc/petrol to $2: 98 \mathrm{MeOH} / \mathrm{EtOAc})$. This gave $\mathbf{1 2}$ ($0.316 \mathrm{~g}, 85 \%$) as a yellow viscous oil.
$[\alpha]_{D}^{22}-17\left(c 4.6, \mathrm{CHCl}_{3}\right) .\left[\right.$ Lit. 2 for (+)-12; $[\alpha]_{D}^{22}+21\left(c 0.7, \mathrm{CHCl}_{3}\right)$.
This compound had the same R_{f}, MS, IR and NMR spectroscopic data as reported for (+)-12. ${ }^{2}$ It should be noted that the reported assignments for $\mathrm{H}-3$ and $\mathrm{H}-4$ and $\mathrm{C}-3$ and C-4 should be interchanged.
2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.
(1R,2R,3R,6R,7S,7aR)-1,2,6,7-Tetrabenzyloxy-3-((tert-
butyldimethylsilyloxy)methyl)-hexahydro- $1 H$-pyrrolizine (13).

13
To a solution of $\mathbf{1 2}(0.792 \mathrm{~g}, 1.136 \mathrm{mmol})$ in pyridine (11 mL) was added triphenylphosphine $(0.301 \mathrm{~g}, 1.148 \mathrm{mmol})$, triethylamine•hydrochloride (0.156 g , 1.136 mmol) and diisopropyl azodicarboxylate ($0.56 \mathrm{~mL}, 2.841 \mathrm{mmol}$). The mixture was stirred at rt for 3 days. The volatiles were removed in vacuo then satd. CuSO_{4} solution (20 mL) was added. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25$ mL). The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with satd. CuSO_{4} solution (20 mL) and water $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, filtered and then evaporated. FCC $(100 \%$ petrol to 20:80 EtOAc/petrol) gave 13 as a yellow viscous oil ($0.587 \mathrm{~g}, 76 \%$).
$[\alpha]_{D}^{20}-34\left(c 0.4, \mathrm{CHCl}_{3}\right)$.
IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3070,3040,2924,2852,1454,1120,1097$.
This compound had the same R_{f}, MS and NMR spectroscopic data as reported for (+)$13 .{ }^{2}$
2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.
((1R,2R,3R,6R,7S,7aR)-1,2,6,7-Tetrabenzyloxy-hexahydro-1H-pyrrolizin-3yl)methanol (14).

14
To a solution of $\mathbf{1 3}(1.417 \mathrm{~g}, 2.087 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added dropwise conc. HCl solution $(12.5 \mathrm{~mL})$ and the mixture was stirred at rt for 18 h . The mixture was basified at $0{ }^{0} \mathrm{C}$ with aqueous NH_{3} solution (28\%). The mixture was extracted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, evaporated and purified by FCC (50:50 EtOAc/petrol) to give 14 ($1.058 \mathrm{~g}, 90 \%$) as a pale yellow viscous oil. $R_{f} 0.11$ (50:50 EtOAc/petrol).
$[\alpha]_{D}^{20}-35\left(c 1.3, \mathrm{CHCl}_{3}\right) .\left[\mathrm{Lit}^{2}{ }^{2}\right.$ for $(+)-\mathbf{1 4} ;[\alpha]_{D}^{23}+34\left(c 1.3, \mathrm{CHCl}_{3}\right)$.
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3446,3050,2893,2858,1449,1107,1097$.

This compound had the same R_{f}, MS and NMR spectroscopic data as reported for (+)$14 .{ }^{2}$
2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.
(1R,2R,3R,6R,7S,7aR)-Hexahydro-3-(hydroxymethyl)-1H-pyrrolizine-1,2,6,7tetraol (uniflorine A) (1).

To a solution of $\mathbf{1 4}(0.636 \mathrm{~g}, 1.126 \mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$ was added $\mathrm{PdCl}_{2}(0.300$ $\mathrm{g}, 1.690 \mathrm{mmol}$). The mixture was stirred at rt under an atmosphere of H_{2} (balloon) for 1 day. The mixture was filtered through a celite pad and the solids were washed with MeOH . The combined filtrates were evaporated in vacuo and the residue was dissolved in water (3 mL) and applied to a column of Amberlyst (OH^{-}) A-26 resin (7 $\mathrm{cm})$. Elution with water followed by evaporation in vacuo gave uniflorine A 1 (0.201 $\mathrm{g}, 87 \%)$ as a white solid. mp. $163.2-164.8^{\circ} \mathrm{C}$, (Lit. ${ }^{3} \mathrm{mp} .174-178{ }^{\circ} \mathrm{C}$).
$[\alpha]_{D}^{23}-3.7\left(c 1.2, \mathrm{H}_{2} \mathrm{O}\right) .\left[\right.$ Lit. ${ }^{3}$ for (-)-uniflorine $\mathrm{A} ;[\alpha]_{\mathrm{D}}-4.4^{\circ}\left(c 1.2, \mathrm{H}_{2} \mathrm{O}\right)$.
This compound had the same R_{f}, MS, IR and NMR spectroscopic data as reported for (+)-1. ${ }^{2}$
2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.
3. Matsumura, T.; Kasai, M.; Hayashi, T.; Arisawa, M.; Momose, Y.; Arai, I.; Amagaya, S.; Komatsu, Y., Pharmaceutical Biol. 2000, 38, 302-307.

Table 1 Physical and spectral Data for (-)-Uniflorine A^{3} and 1.

	Uniflorine A ${ }^{3}$	Synthetic 1
Physical Appearance	Colourless Microcrystals	White solid
Optical Rotation	$[\alpha]_{\mathrm{D}}-4.4^{\circ}\left(c 1.2, \mathrm{H}_{2} \mathrm{O}\right)$	$[\alpha]_{D}^{23}-3.7\left(c 1.2, \mathrm{H}_{2} \mathrm{O}\right)$
Melting Point	$174-178{ }^{\circ} \mathrm{C}$	$163.2-164.8^{\circ} \mathrm{C}$
Mass Spectrometry	ISMS m/z 206 (M $\left.{ }^{+}+\mathrm{H}\right)$	ESI +ve m/z 206 (M + H

3. Matsumura, T.; Kasai, M.; Hayashi, T.; Arisawa, M.; Momose, Y.; Arai, I.; Amagaya, S.; Komatsu, Y., Pharmaceutical Biol. 2000, 38, 302-307.

(R)-tert-Butyl 2-((1R,2S)-1,2-bis(benzyloxy)-2-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl)-2,5-dihydro-1H-pyrrole-1-carboxylate (15).

15
To a solution of the diol $\mathbf{8}(8.55 \mathrm{~g}, 25.84 \mathrm{mmol})$ in dry THF (260 mL) was added $n-$ $\mathrm{Bu}_{4} \mathrm{NI}(954.3 \mathrm{mg}, 2.58 \mathrm{mmol})$ and $\mathrm{BnBr}(9.27 \mathrm{~mL}, 78.0 \mathrm{mmol})$ follow by $\mathrm{NaH}(3.74$ $\mathrm{g}, 78.0 \mathrm{mmol}, 50 \%$ in mineral oil) at $0^{\circ} \mathrm{C}$. After H_{2} evolution had ceased (15 min) the reaction mixture was stirred at rt for $18 \mathrm{~h} . \mathrm{MeOH}(50 \mathrm{~mL})$ was then added followed by evaporation of all volatiles in vacuo. The residue was dissolved in EtOAc and filtered through celite, followed by further washings of the solids with EtOAc. The solvent was evaporated and the residue was purified by FCC (10:90 to 40:60 EtOAc/petrol) to give $\mathbf{1 5}$ as a yellow syrup ($12.21 \mathrm{~g}, 92 \%$). $\mathrm{R}_{f} 0.21$ (15:85 EtOAc/petrol).
$[\alpha]_{D}^{22}+56\left(c 1.4, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 510\left(\mathrm{M}+\mathrm{H}^{+}, 30 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{NO}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right)$510.2856, found 510.2854.
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 2980,2929,1696,1393,1107,1060$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major rotamer) 7.36-7.22 (m, 10H, Ar), 5.88 (app. t, $2 \mathrm{H}, J 8.5 \mathrm{~Hz}, \mathrm{H}-3$ and H-4), 4.81 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.74 (d, 1H, J 11.5 Hz , CHHPh), 4.55 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.50 (d, 1H, J $5.0 \mathrm{~Hz}, \mathrm{H}-2$), 4.35-4.25 (m, $2 \mathrm{H}, \mathrm{H}-1$ ' or H-2' and CHHPh), 4.16-3.98 (m, 2H, 2xH-5), 3.91 (d, 1H, J $4.5 \mathrm{~Hz}, \mathrm{H}-1$ ' or H-2'), 3.60-3.42 (m, 3H, 2xH-4' and H-3'), 1.45 (s, 9H, t-Bu), $1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) δ (major rotamer) 153.9 (CO), 138.1 (C), 137.6(C), $128.48(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 127.9(\mathrm{CH}), 127.7(\mathrm{CH}), 127.6$ (C-3 or C-4), 126.3 (C-3 or C-4), 109.1 (C), 80.8 (C-3'), 79.9 (C), 79.3 (C-1' or C-2'), $77.1\left(\mathrm{C}-1\right.$ ' or C-2'), $74.1\left(\mathrm{CH}_{2}\right), 73.7\left(\mathrm{CH}_{2}\right), 67.5(\mathrm{C}-2), 65.5\left(\mathrm{C}-4{ }^{\prime}\right), 53.2(\mathrm{C}-5), 28.5$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.6\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (minor rotamer) 154.2, 138.4, 137.9, 128.42, 128.39 $128.3,128.1,127.8,127.5,126.9,125.7,109.0,81.4,79.7,79.5,77.5,73.9,73.5$, 67.9, 65.8, 53.3, 28.4, 26.6, 25.6.
(2S,3R,4R)-3,4-Bis(benzyloxy)-4-((R)-2,5-dihydro-1H-pyrrol-2-yl)butane-1,2-diol (16).

16
To a solution of $\mathbf{1 5}(10.93 \mathrm{~g}, 21.47 \mathrm{mmol})$ in $\mathrm{MeOH}(500 \mathrm{~mL})$ was added dropwise conc. HCl solution $(95 \mathrm{~mL})$ and the mixture was stirred at rt for 30 h . The reaction mixture was basified at $0{ }^{0} \mathrm{C}$ with aqueous NH_{3} solution (28%). The mixture was extracted with EtOAc and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, evaporated and purified by FCC $\left(100 \% \mathrm{EtOAc}\right.$ to $\left.8: 2: 1 \mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{NH}_{3}\right)$ to give $16(6.0 \mathrm{~g}$, $76 \%)$ as a brown foamy solid. $\mathrm{R}_{f} 0.34$ (9:0.8:0.2 $\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{NH}_{3}$).
$[\alpha]_{D}^{21}+122\left(c 3.2, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 370\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 370.2018$, found 370.2009.
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3390,3288,3062,3027,2955,2909,1078,1059$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.3.4-7.27 (m, 10H, Ar), 5.97 (dd, 1H, J 6.0, 1.5 Hz , H-4), 5.89 (dd, 1H, J 6.0, 1.5 Hz, H-3), 4.73 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.67 (d, 1H, $J 11.5 \mathrm{~Hz}, \mathrm{CHHPh}), 4.60(\mathrm{~d}, 1 \mathrm{H}, J 11.0 \mathrm{~Hz}, \mathrm{CHHPh}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J 11.0 \mathrm{~Hz}$, CHHPh), 4.27 (brs, $1 \mathrm{H}, \mathrm{H}-2$), 3.90-3.88 (m, 1H, H-3'), 3.76-3.70 (m, 3H, $2 \times \mathrm{H}-5$ and H-4'), 3.65-3.63 (m, 1H, H-2'), 3.61-3.56 (m, 2H, H-1' and H-4').
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.0$ (C), 137.9 (C), 129.9 (C-4), 128.8 (C-3), $128.42(\mathrm{CH}), 128.4(\mathrm{CH}), 128.2(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 81.6(\mathrm{C}-$ 1'), 80.9 (C-2'), $74.4\left(\mathrm{CH}_{2}\right), 74.2\left(\mathrm{CH}_{2}\right), 70.6(\mathrm{C}-3$ '), $66.4(\mathrm{C}-2), 63.7(\mathrm{C}-4$ '), $52.7(\mathrm{C}-$ 5).
(2S,3R,4R)-3,4-Bis(benzyloxy)-1-(tert-butyldimethylsilyloxy)-4-((R)-2,5-dihydro-1H-pyrrol-2-yl)butan-2-ol (17).

17
To a solution of the diol $16(0.302 \mathrm{~g}, 0.816 \mathrm{mmol})$ and a crystal of 4dimethylaminopyridine in THF (8 mL) under N_{2} at rt was added imidazole $(0.121 \mathrm{~g}$, $1.776 \mathrm{mmol})$ and $\mathrm{TBSCl}(0.153 \mathrm{~g}, 1.02 \mathrm{mmol})$. The reaction mixture was stirred for

24 h and the reaction was quenched by the addition of water. The solvent was removed under reduced pressure and the residue was extracted with EtOAc. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and then evaporated to leave a residue which was chromatographed on silica gel by FCC (100% EtOAc to 10:2:1 EtOAc/MeOH/ NH_{3}) to give $17(0.320 \mathrm{~g}, 81 \%)$ as a brown viscous oil. $\mathrm{R}_{f} 0.65$ (9:0.8:0.2 EtOAc/MeOH/ NH_{3}).
$[\alpha]_{D}^{21}+93\left(c 2.3, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) m/z 484 ($\mathrm{M}+\mathrm{H}^{+}, 100 \%$).
HRMS (ESI +ve) calculated for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 484.2883$, found 484.2906 .
IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3390,3288,3062,3021,2955,2929,1077,1062$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.3 .6-7.27(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 5.98(\mathrm{dd}, 1 \mathrm{H}, J 5.5,1.5 \mathrm{~Hz}$, H-4), 5.92 (dd, 1H, J 6.0, 2.0 Hz, H-3), 4.75 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.73 (d, 1H, $J 10.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J 11.0 \mathrm{~Hz}, \mathrm{CHHPh}), 4.52(\mathrm{~d}, 1 \mathrm{H}, J 11.0 \mathrm{~Hz}$, CHHPh), 4.21-4.18 (m, 1H, H-2), 3.88-3.85 (m, 2H, H-2' and H-3'), 3.74-3.70 (m, $4 \mathrm{H}, 2 \mathrm{xH}-5$ and $2 \mathrm{xH}-4$ '), 3.57 (app. t, 1H, J $7.0 \mathrm{~Hz}, \mathrm{H}-1$ '), 0.91 (s, 9H, t-Bu), 0.08 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.6$ (C), 138.2 (C), 130.2 (C-4), 129.4 (C-3), 128.3 $(\mathrm{CH}), 128.2(\mathrm{CH}), 128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 82.6(\mathrm{C}-1$ '), 79.8 (C-2'), $74.6\left(\mathrm{CH}_{2}\right), 74.0\left(\mathrm{CH}_{2}\right), 70.3(\mathrm{C}-3$ '), $66.2(\mathrm{C}-2), 63.2(\mathrm{C}-4$ '), $53.1(\mathrm{C}-5), 25.9$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.1(\mathrm{C}),-5.4\left(\mathrm{CH}_{3}\right),-5.5\left(\mathrm{CH}_{3}\right)$.

(R)-(9H-Fluoren-9-yl)methyl 2-((1R,2R,3S)-1,2-bis(benzyloxy)-4-(tert-butyldimethylsilyloxy)-3-hydroxybutyl)-2,5-dihydro-1H-pyrrole-1-carboxylate (18).

Fmoc
18
To a solution of $\mathbf{1 7}(6.05 \mathrm{~g}, 0.013 \mathrm{~mol})$ in THF $(125 \mathrm{~mL})$ and satd. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solutiuon $(60 \mathrm{~mL})$ was added 9-fluorenylmethylchloroformate $(3.89 \mathrm{~g}, 15.03 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . Water (20 mL) was added and the solvent was removed under reduced pressure and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 70 \mathrm{~mL})$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and then evaporated to leave a residue which was chromatographed on silica gel by

FCC (10:90 to $30: 70 \mathrm{EtOAc} /$ petrol $)$ to give $\mathbf{1 8}(8.31 \mathrm{~g}, 94 \%)$ as a colourless viscous oil. $\mathrm{R}_{f} 0.47$ (20:80 EtOAc/petrol).
$[\alpha]_{D}^{24}+125\left(c 2.0, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 706\left(\mathrm{M}+\mathrm{H}^{+}, 20 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{NO}_{6} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 706.3564$, found 706.3537.
IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3061,3028,2945,2924,1700,1413,1107$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major rotamer) 7.78-7.59 (m, 4H, Ar), 7.42-7.16 (m, 14H, Ar), 5.97-5.95 (m, 1H, H-3), 5.92-5.89 (m, 1H, H-4), 4.90 (d, 2H, J 11.0 Hz , $2 x C H H P h), 4.91-4.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.67-4.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHHPh}), 4.47$ (d, 1H, J 12.0 $\mathrm{Hz}, \mathrm{C} H \mathrm{HPh}$), 4.45 (d, 1H, J $8.0 \mathrm{~Hz}, \mathrm{H}-1$ ' or H-2'), 4.39 (dd, 2H, J 7.0, $2.3 \mathrm{~Hz}, \mathrm{CH}_{2}$ (Fmoc)), 4.26-4.20 (m, 1H, CH (Fmoc)), 4.26-4.07 (m, 2H, 2xH-5), 3.88 (dd, 1H, J $\left.13.5,7.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 3.77\left(\mathrm{~d}, 1 \mathrm{H}, J 7.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right.$ or $\left.\mathrm{H}-2^{\prime}\right), 0.90(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.07$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 0.06 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major rotamer) 154.3 (CO), 144.0 (C), 143.9 (C), 141.3 (C), 141.2 (C), 138.4 (C), 138.2 (C), 128.3 (CH), 128.2 (CH), 128.1 (CH), $127.9(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 126.9(\mathrm{CH}), 125.0(\mathrm{CH}), 119.9(\mathrm{CH}), 78.3(\mathrm{C}-$ $\left.1^{\prime}\right), 77.8\left(\mathrm{C}-2\right.$ '), $74.7\left(\mathrm{CH}_{2}\right), 74.3\left(\mathrm{CH}_{2}\right), 70.8\left(\mathrm{C}-3^{\prime}\right), 66.9\left(\mathrm{CH}_{2}(\mathrm{Fmoc})\right), 66.2(\mathrm{C}-2)$, 63.6 (C-4'), $53.4(\mathrm{C}-5), 47.2\left(\mathrm{CH}(\mathrm{Fmoc})\right.$), $25.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.1(\mathrm{C}),-5.4\left(\mathrm{CH}_{3}\right),-5.5$ $\left(\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (minor rotamer) 154.3, 144.0, 143.8, 141.3, 141.2, $138.3,138.2,128.2,127.8,127.7,127.6,126.7,126.5,125.5,124.7,119.9,80.2,78.6$, $74.9,74.8,71.0,65.9,65.5,63.5,54.2,47.7,25.7,18.0,-5.4$.
(1S,2S,5R)-(9H-Fluoren-9-yl)methyl 2-((1R,2R,3S)-1,2-bis(benzyloxy)-4-(tert-butyldimethylsilyloxy)-3-hydroxybutyl)-6-oxa-3-azabicyclo[3.1.0]hexane-3carboxylate (19).

Fmoc
19
To a solution of the olefin $\mathbf{1 8}(2.37 \mathrm{~g}, 3.37 \mathrm{mmol})$ in $\mathrm{MeCN}(35 \mathrm{~mL})$ was added Na_{2} EDTA ($13.5 \mathrm{~mL}, 4 \times 10^{-4} \mathrm{M}$) and $\mathrm{CF}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}(6.8 \mathrm{~mL}, 7.60 \mathrm{mmol})$. The reaction was chilled to $0{ }^{\circ} \mathrm{C}$ before the portionwise addition of a mixture of $\mathrm{NaHCO}_{3}(4.24 \mathrm{~g}$, $50.47 \mathrm{mmol})$ and oxone ($4.14 \mathrm{~g}, 6.73 \mathrm{mmol}$) over 15 min . After stirring for 2 h at 0
${ }^{\circ} \mathrm{C}$, the mixture was poured into water followed by removed of the volatiles under reduced pressure. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and then evaporated to leave a residue which was chromatographed on silica gel by FCC (10:90 to 20:80 EtOAc/petrol) to give $19(1.95 \mathrm{~g}, 81 \%)$ as a pale yellow oil. $\mathrm{R}_{f} 0.42$ (20:80 EtOAc/petrol).
$[\alpha]_{D}^{25}+99\left(c 1.1, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 744\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{NO}_{7} \mathrm{SiNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$744.3333, found 744.3360. IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3062,2945,2924,2858,1700,1454,1110$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major rotamer) 7.76-7.54 (m, 4H, Ar), 7.41-7.16 (m, 14H, Ar), 4.86 (d, 1H, J $10.5 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.67 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.64 (d, $1 \mathrm{H}, J 11.5 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.36 (d, $1 \mathrm{H}, J 11.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.36-4.30 (m, 3H, CH2 (Fmoc) and H-2), 4.26 (brs, 1H, H-1'), 4.19-4.15 (m, 1H, CH (Fmoc)), 3.91-3.86 (m, $1 \mathrm{H}, \mathrm{H}-3$ '), 3.86-3.80 (m, 2H, H-2' and H-3), 3.74-3.67 (m, 2H, H-4' and H-5), 3.63 (d, 1H, J $2.0 \mathrm{~Hz}, \mathrm{H}-4$), 3.59-3.53 (m, 1H, H-4'), 3.24-3.20 (m, 1H, H-5), 0.88 (s, 9H, t - Bu), $0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major rotamer) 154.9 (CO), 143.7 (C), 141.3 (C), 138.0 (C), 137.8 (C), 128.7 (CH), 128.2 (CH), $127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH})$, $127.1(\mathrm{CH}), 127.0(\mathrm{CH}), 125.0(\mathrm{CH}), 124.9(\mathrm{CH}), 119.9(\mathrm{CH}), 79.1(\mathrm{C}-1$ '), $77.2(\mathrm{C}-$ $\left.2^{\prime}\right), 74.9\left(\mathrm{CH}_{2}\right), 74.4\left(\mathrm{CH}_{2}\right), 70.6(\mathrm{C}-3 '), 67.1\left(\mathrm{CH}_{2}(\mathrm{Fmoc})\right), 63.5\left(\mathrm{C}-4{ }^{\prime}\right), 60.1(\mathrm{C}-2)$, 56.3 (C-3), 55.6 (C-4), 47.8 (C-5), 47.1 ($\mathrm{CH}(\mathrm{Fmoc})$), $25.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.1$ (C), -5.4 $\left(\mathrm{CH}_{3}\right),-5.5\left(\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (minor rotamer) 155.0, 144.0, 141.2, 137.9, 137.7, 127.8, 127.7, 127.69, 127.64, 127.63, 127.5, 127.4, 125.0, 124.7, 120.0, 80.6, 78.0, $75.0,74.8,70.8,66.2,63.4,59.8,56.4,54.9,48.2,47.6,25.7,18.07,-5.45,-5.48$.
(1S,2S,5R)-(9H-Fluoren-9-yl)methyl 2-((1R,2S,3S)-1,2-bis(benzyloxy)-4-(tert-butyldimethylsilyloxy)-3-(methylsulfonyloxy)butyl)-6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate (20).

20
To a solution of $\mathbf{1 9}(0.414 \mathrm{~g}, 0.574 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added anhydrous $\mathrm{Et}_{3} \mathrm{~N}(0.24 \mathrm{~mL}, 1.723 \mathrm{mmol})$ and methanesulfonyl chloride $(0.089 \mathrm{~mL}$, 1.148 mmol). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ under an atmosphere of N_{2} for 3 h , followed by the evaporation of all volatiles in vacuo. Water (20 mL) was added and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and then evaporated to leave a residue which was chromatographed on silica gel by FCC (10:90 to 30:70 EtOAc/petrol) to give 20 $(0.433 \mathrm{~g}, 94 \%)$ as a pale yellow oil. $\mathrm{R}_{f} 0.5$ (30:70 EtOAc/petrol).
$[\alpha]_{D}^{25}+64\left(c 1.1, \mathrm{CHCl}_{3}\right)$
MS (ESI +ve) $m / z 822\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{NO}_{9} \mathrm{SSi}\left(\mathrm{M}+\mathrm{H}^{+}\right) 800.3289$, found 800.3273.
IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 2950,2924,2888,2852,1695,1360,1328,1175,1110$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major rotamer) 7.70-7.66 (m, 2H, Ar), 7.45 (app. t, $2 \mathrm{H}, J 6.8 \mathrm{~Hz}, \mathrm{Ar}), 7.35-7.11$ (m, 14H, Ar), 4.76-4.73 (m, 1H, H-3'), 4.64 (d, 1H, J $10.5 \mathrm{~Hz}, \mathrm{CHHPh}), 4.64-4.61$ (m, 2H, 2xCHHPh), 4.34 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.31-4.29 (m, 2H, CH ${ }_{2}$ (Fmoc)), 4.16 (brs, 1H, H-2), 4.13 (app. t, 1H, J $7.0 \mathrm{~Hz}, \mathrm{CH}$ (Fmoc)), 4.02-4.00 (m, 2H, H-1' and H-2'), 3.97-3.94 (m, 2H, 2x H-4'), 3.74-3.72 (m, $1 \mathrm{H}, \mathrm{H}-3$), 3.68 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{H}-5$), 3.58-3.56 (m, 1H, H-4), 3.20 (d, 1H, J 13.0 $\mathrm{Hz}, \mathrm{H}-5), 3.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Ms})\right), 0.82(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.04\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major rotamer) 154.9 (CO), 144.0 (C), 143.7 (C), 141.3 (C), 141.2 (C), 137.9 (C), 137.5 (C), 128.5 (CH), 128.4 (CH), 128.1 (CH), $128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 127.0(\mathrm{CH}), 125.0(\mathrm{CH}), 124.9(\mathrm{CH}), 120.0$ $(\mathrm{CH}), 81.5\left(\mathrm{C}-3^{\prime}\right), 79.1\left(\mathrm{C}-1\right.$ '), $78.6\left(\mathrm{C}-2^{\prime}\right), 75.7\left(\mathrm{CH}_{2}\right), 75.0\left(\mathrm{CH}_{2}\right), 67.1\left(\mathrm{CH}_{2}\right.$ (Fmoc)), 61.1 (C-4'), 60.6 (C-2), 56.0 (C-3), 55.6 (C-4), 47.8 (C-5), 47.2 (CH (Fmoc)), $38.4\left(\mathrm{CH}_{3}(\mathrm{Ms})\right), 25.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.1(\mathrm{C}),-5.4\left(\mathrm{CH}_{3}\right),-5.5\left(\mathrm{CH}_{3}\right)$.
(1aR,4R,5R,6R,6aS,6bS)-5,6-Bis(benzyloxy)-4-((tert-
butyldimethylsilyloxy)methyl)hexahydro-1aH-oxireno[2,3-a]pyrrolizine (21) and (1aR,5S,6S,7R,7aS,7bS)-6,7-bis(benzyloxy)-5-(tert-
butyldimethylsilyloxy)octahydrooxireno[2,3-a]indolizine (22).

22

To a solution of $\mathbf{2 0}(470.3 \mathrm{mg}, 0.589 \mathrm{mmol})$ in $\mathrm{MeCN}(6 \mathrm{~mL})$ was added piperidine $(0.12 \mathrm{~mL}, 1.12 \mathrm{mmol})$. The reaction was stirring for 15 h at rt , the volatiles were removed under reduced pressure and the residue was purified by FCC (10:90 to 30:70 EtOAc/petrol) to give a mixture of 21 and 22 (91:9) as a pale yellow oil $(271.0 \mathrm{mg}$, 96%). A pure sample of 21 was obtained by further purification of this mixture by FCC to give $\mathbf{2 1}$ as yellow needles.

21: $\mathrm{R}_{f} 0.27$ (30:70 EtOAc/petrol).
mp. 40.9-43. $1^{\circ} \mathrm{C}$ (yellow needles)
$[\alpha]_{D}^{24}+12\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 482\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (CI +ve) calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 482.2727$, found 482.2729 .
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3032,2945,2924,2858,1255,1109$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.24(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.61(\mathrm{~d}, 1 \mathrm{H}, J 12.0 \mathrm{~Hz}$, CHHPh), 4.60 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.54 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.51 (d, $1 \mathrm{H}, J 12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.15 (app. t, 1H, J $3.8 \mathrm{~Hz}, \mathrm{H}-2$), 3.91 (dd, 1H, J 7.3, 3.8 Hz , $\mathrm{H}-1$), 3.69-3.68 (m, 1H, H-6), 3.66 (dd, 1H, J 10.0, 6.0 Hz, H-8), 3.64-3.62 (m, 2H, H-7 and H-7a), 3.50 (app. t, 1H, J $10.0 \mathrm{~Hz}, \mathrm{H}-8$), 3.45 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{H}-5$), 3.083.04 (m, 1H, H-3), 2.98 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{H}-5$), 0.88 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), $0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 0.03 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.1$ (C), 137.7 (C), 128.4 (CH), 128.3 (CH), 127.8 $(\mathrm{CH}), 127.7(\mathrm{CH}), 127.64(\mathrm{CH}), 127.6(\mathrm{CH}), 88.7(\mathrm{C}-2), 85.9(\mathrm{C}-1), 72.1\left(\mathrm{CH}_{2}\right), 71.8$ $\left(\mathrm{CH}_{2}\right), 70.8(\mathrm{C}-3), 69.0(\mathrm{C}-7 \mathrm{a}), 64.4(\mathrm{C}-8), 58.5(\mathrm{C}-7), 57.0(\mathrm{C}-6), 55.6(\mathrm{C}-5), 25.9$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2(\mathrm{C}),-5.4\left(\mathrm{CH}_{3}\right),-5.43\left(\mathrm{CH}_{3}\right)$.
(1S,2S,5R,6R,7R,7aR)-6,7-Bis(benzyloxy)-5-(hydroxymethyl)hexahydro-1H-pyrrolizine-1,2-diol (23).

23
To a solution of the epoxide 21 ($37.4 \mathrm{mg}, 0.078 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL) was added $\mathrm{NaHSO}_{4}(46.7 \mathrm{mg}, 0.389 \mathrm{mmol})$. The reaction mixture was stirred and heated at reflux for 2 days under an atmosphere of N_{2}. The reaction was quenched by the addition of water (5 mL) and stirred for 1 h . The solvent was removed under reduced pressure and the residue was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and evaporated. NMR analysis of this crude reaction mixture showed an 86:14 mixture of regioisomers. The crude mixture was purified by FCC ($100 \% \mathrm{EtOAc}$ to $8.5: 1: 0.5 \mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{NH}_{3}$) to give 23 (a $92: 8$ mixture of diastereomers) as a pale yellow oil ($15.3 \mathrm{mg}, 51 \%$).

23 (on a 92:8 mixture of diastereomers):
$\mathrm{R}_{f} 0.34$ (8.6:1.0:0.4 / EtOAc:MeOH: NH_{3}).
$[\alpha]_{D}^{23}+19\left(c 1.1, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) m/z 386 ($\mathrm{M}+\mathrm{H}^{+}, 100 \%$).
HRMS (ESI +ve) calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right)$386.1967, found 386.1967.
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3390,3027,2929,2873,1449,1103,1063$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.36-7.24$ (m, 10H, Ar), 4.68 (d, 2H, J 12.0 Hz , $2 \mathrm{xCHHPh}), 4.60(\mathrm{~d}, 1 \mathrm{H}, J 11.5 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J 12.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 4.19$ (app. t, 1H, J5.3 Hz, H-1), 4.08 (dd, 1H, J 10.5, $5.5 \mathrm{~Hz}, \mathrm{H}-2$), 4.04 (app. t, 1H, J 5.3 Hz, H-7), 3.98 (dd, 1H, J 6.5, 5.5 Hz, H-6), 3.62 (dd, 1H, J 11.0, 4.8 Hz, H-8), 3.51 (dd, 1H, J 11.3, 5.8 Hz, H-8), 3.30 (m, 1H, H-5), 3.27 (app. t, $1 \mathrm{H}, J 5.0 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 3.18 (app. dt, 1H, J 5.8, $5.0 \mathrm{~Hz}, \mathrm{H}-3$), 2.87 (dd, 1H, J $11.3,5.8 \mathrm{~Hz}, \mathrm{H}-5$).
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 139.6(\mathrm{C}), 139.5(\mathrm{C}), 129.4(\mathrm{CH}), 129.3(\mathrm{CH})$, $128.95(\mathrm{CH}), 129.5(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 87.2(\mathrm{C}-1), 85.6(\mathrm{C}-6), 81.4(\mathrm{C}-7)$, $79.2(\mathrm{C}-2), 75.2(\mathrm{C}-7 \mathrm{a}), 73.3\left(\mathrm{CH}_{2}\right), 72.9\left(\mathrm{CH}_{2}\right), 72.6(\mathrm{C}-3), 63.5(\mathrm{C}-8), 60.1(\mathrm{C}-5)$.
(1R,2R,3R,6S,7S)-3-(Hydroxymethyl)hexahydro-1H-pyrrolizine-1,2,6,7-tetraol (casuarine) (2).

To a solution of 92% diastereomerically pure $\mathbf{2 3}(21.0 \mathrm{mg}, 0.055 \mathrm{mmol})$ in MeOH (2 $\mathrm{mL})$ was added $\mathrm{PdCl}_{2}(10.0 \mathrm{mg}, 0.055 \mathrm{mmol})$. The mixture was stirred at rt under an atmosphere of H_{2} (balloon) for 1.5 h . The mixture was filtered through a celite pad and the solids were washed with MeOH . The combined filtrates were evaporated in vacuo and the residue was dissolved in water (1 mL) and applied to a column of Amberlyst $\left(\mathrm{OH}^{-}\right)$A- 26 resin (3 cm). Elution with water followed by evaporation in vacuo gave casuarine $2(\mathrm{dr}=95: 5)$ as a brown foamy solid ($10.4 \mathrm{mg}, 93 \%$).
$[\alpha]_{D}^{23}+18.1\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right) .\left[\right.$ Lit. $\left.{ }^{4} ;[\alpha]_{D}^{24}+16.9^{\circ}\left(c 0.8, \mathrm{H}_{2} \mathrm{O}\right)\right]$.
MS (ESI +ve) m/z 206 ($\mathrm{M}+\mathrm{H}^{+}, 100 \%$).
HRMS (ESI +ve) calculated for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right)$206.1028, found 206.0953.
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3284,2919,1378,1128,1102,1029$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.22-4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6\right.$ and H-7), $4.16\left(\mathrm{t}, 1 \mathrm{H}, J_{1,2}=J_{1,7 \mathrm{a}}=\right.$ $8.7 \mathrm{~Hz}, \mathrm{H}-1), 3.79\left(\mathrm{t}, 1 \mathrm{H}, J_{1,2}=J_{2,3}=8.0 \mathrm{~Hz}, \mathrm{H}-2\right), 3.77\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8^{\prime}}=10.0, J_{3,8}=3.5\right.$ $\mathrm{Hz}, \mathrm{H}-8), 3.61\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{8,8^{\prime}}=11.3, J_{3,8^{\prime}}=6.8 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 3.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{5 \alpha, 5 \beta}=12.3\right.$, $\left.J_{5 \beta, 6}=4.3 \mathrm{~Hz}, \mathrm{H}-5 \beta\right), 3.06\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,7 \mathrm{a}}=8.0, J_{7,7 \mathrm{a}}=3.0 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}\right), 3.04-3.00(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-3), 2.90\left(\mathrm{dd}, 1 \mathrm{H}, J_{5 \alpha, 5 \beta}=11.8, J_{5 \alpha, 6}=4.3 \mathrm{~Hz}, \mathrm{H}-5 \alpha\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 79.9$ (C-7), 78.9 (C-1), 78.5 (C-6), 77.8 (C-2), 73.1 (C7a), 71.0 (C-3), 63.5 (C-8), 59.0 (C-5).

Table 2 Physical and spectral Data for (+)-Casuarine ${ }^{4}$ and 2.

	Casuarine ${ }^{4}$	Synthetic 2	
Physical Appearance	Crystallize solid	Brown foamy solid	
Optical Rotation	$[\alpha]_{D}^{24}+16.9{ }^{\circ}\left(c 0.8, \mathrm{H}_{2} \mathrm{O}\right)$	$[\alpha]_{D}^{23}+18.1\left(c 1.0, \mathrm{H}_{2} \mathrm{O}\right)$	
Melting Point	$181-182^{\circ} \mathrm{C}$	-	
${ }^{1} \mathrm{H}$ NMR	$500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}(\mathrm{pH}=8.35)$	$500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$	
	4.21 (m, 1H, J=4.7, 4.0 Hz, H-6)	4.22-4.18 (m, 2H, H-6 and H-7)	
	4.19 (m, 1H, J=3.5 Hz, H-7)		
	$4.162(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1)$	$\begin{aligned} & 4.16\left(\mathrm{t}, 1 \mathrm{H}, J_{1,2}=J_{1,7 \mathrm{a}}=8.7 \mathrm{~Hz},\right. \\ & \mathrm{H}-1) \end{aligned}$	
	3.796 (t, 1H, $J=8.0 \mathrm{~Hz}, \mathrm{H}-2)$	$\begin{aligned} & 3.79\left(\mathrm{t}, 1 \mathrm{H}, J_{1,2}=J_{2,3}=8.0 \mathrm{~Hz},\right. \\ & \mathrm{H}-2) \end{aligned}$	
	$\begin{aligned} & 3.771(\mathrm{dd}, 1 \mathrm{H}, J=11.9,3.8 \mathrm{~Hz}, \mathrm{H}- \\ & 8) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.77\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8^{\prime}}=10.0, J_{3,8}=\right. \\ & 3.5 \mathrm{~Hz}, \mathrm{H}-8) \end{aligned}$	
	$\begin{aligned} & 3.611(\mathrm{dd}, 1 \mathrm{H}, J=11.9,6.6 \mathrm{~Hz}, \mathrm{H}- \\ & \left.8^{\prime}\right) \end{aligned}$	$\begin{aligned} & 3.61\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8^{\prime}}=11.3, J_{3,8^{\prime}}=\right. \\ & \left.6.8 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right) \end{aligned}$	
	$\begin{aligned} & 3.270(\mathrm{dd}, 1 \mathrm{H}, J=12.2,4.7 \mathrm{~Hz}, \mathrm{H}- \\ & 5 \beta) \end{aligned}$	$\begin{aligned} & 3.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{5 \alpha, 5 \beta}=12.3, J_{5 \beta, 6}\right. \\ & =4.3 \mathrm{~Hz}, \mathrm{H}-5 \beta) \end{aligned}$	
	$3.071(\mathrm{dd}, 1 \mathrm{H}, J=8.0,3.5 \mathrm{~Hz}, \mathrm{H}-$ 7a)	$\begin{aligned} & 3.06\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,7 \mathrm{a}}=8.0, J_{7,7 \mathrm{a}}=\right. \\ & 3.0 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}) \end{aligned}$	
	$\begin{aligned} & 3.04-3.00(\mathrm{~m}, 1 \mathrm{H}, J=8.0,6.6,3.8 \\ & \mathrm{Hz}, \mathrm{H}-3) \end{aligned}$	3.04-3.00 (m, 1H, H-3)	
	$\begin{aligned} & 2.911(\mathrm{dd}, 1 \mathrm{H}, J=12.2,4.0 \mathrm{~Hz}, \mathrm{H}- \\ & 5 \alpha) \end{aligned}$	$\begin{aligned} & 2.90\left(\mathrm{dd}, 1 \mathrm{H}, J_{5 \alpha, 5 \beta}=11.8, J_{5 \alpha, 6}\right. \\ & =4.3 \mathrm{~Hz}, \mathrm{H}-5 \alpha) \end{aligned}$	
${ }^{13} \mathrm{C}$ NMR	$125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ (ref acetone $\delta 29.8$)	$\begin{aligned} & 125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} \\ & (\text { ref acetone } \\ & \delta 29.8) \end{aligned}$	$\Delta \delta$ (ppm)
	78.8 (C-7)	79.9 (C-7)	-1.1
	77.8 (C-1)	78.9 (C-1)	-1.1
	77.4 (C-6)	78.5 (C-6)	-1.1
	76.6 (C-2)	77.8 (C-2)	-1.2
	72.1 (C-7a)	73.1 (C-7a)	-1.0
	70.0 (C-3)	71.0 (C-3)	-1.0
	62.2 (C-8)	63.5 (C-8)	-1.3
	58.0 (C-5)	59.0 (C-5)	-1.0

4. Nash, R. J.; Thomas, P. I.; Waigh, R. D.; Fleet, G. W. J.; Wormald, M. R.; de Q. Lilley, P. M.; Watkin, D. J., Tetrahedron Lett.
1994, 35, 7849-7852. 1994, 35, 7849-7852.
($1 R, 5 R, 6 R, 7 R, 7 a R)-6,7-B i s(b e n z y l o x y)-5-(h y d r o x y m e t h y l) h e x a h y d r o-1 H-$ pyrrolizin-1-ol (24),
($1 R, 5 R, 6 R, 7 R, 7 \mathrm{a} R)$-6,7-bis(benzyloxy)-5-((tert-
butyldimethylsilyloxy)methyl)hexahydro-1H-pyrrolizin-1-ol (26) and ($1 R, 6 S, 7 S, 8 R, 8 \mathrm{R}$)-7,8-bis(benzyloxy)-6-(tert-
butyldimethylsilyloxy)octahydroindolizin-1-ol (26a)

26a

To solution of a $91: 9$ mixture of 21 and $22(611.5 \mathrm{mg}, 1.271 \mathrm{mmol})$ in anhydrous THF (13 mL) was added dropwise a solution of lithium aluminium hydride (1 M in THF, $1.53 \mathrm{~mL}, 1.526 \mathrm{mmol}$). The reaction mixture was stirring for 8 h at $0{ }^{\circ} \mathrm{C}$. The solvent was evaporated and the mixture was chromatographed on silica gel by FCC (50:50 EtOAc/petrol to 8.5:1.0:0.5 EtOAc/MeOH/ NH_{3}) to give a mixture of $\mathbf{2 4}$ and $\mathbf{2 5}$ ($\mathbf{2 4 : 2 5}=88: 12$) as a yellow viscous oil ($106 \mathrm{mg}, 27 \%$), a mixture of $\mathbf{2 6}$ and $\mathbf{2 7}(\mathbf{2 6 : 2 7}$ $=92: 8)$ as a yellow viscous oil ($330 \mathrm{mg}, 64 \%$), 26a($10.3 \mathrm{mg}, 2 \%$) as a pale yellow oil and unreacted starting material ($97.5 \mathrm{mg}, 16 \%$).

24 (on 88:12 mixture): $\mathrm{R}_{f} 0.40$ (9:1:0.2 EtOAc/MeOH/ NH_{3}).
$[\alpha]_{D}^{22}+6\left(c 1.1, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 370\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (CI +ve) calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 370.2018$, found 370.2000.
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3385,2924,2873,1449,1362,1105$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.28(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J 11.5 \mathrm{~Hz}$, CHHPh), 4.65 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.62 (d, 2H, J $10.0 \mathrm{~Hz}, 2 \mathrm{xCHHPh}$), 4.194.17 (m, 1H, H-7), 4.07 (app. t, 1H, J $6.8 \mathrm{~Hz}, \mathrm{H}-2$), 3.80 (app. t, $1 \mathrm{H}, J 6.0 \mathrm{~Hz}, \mathrm{H}-1$), 3.56 (app. t, 2H, J $3.3 \mathrm{~Hz}, 2 \mathrm{xH}-8$), 3.29 (dd, 1H, J 6.0, $3.5 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 3.17-3.12 (m, $1 \mathrm{H}, \mathrm{H}-5), 2.82-2.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.78-2.73$ (m, 1H, H-5), 2.04-1.97 (m, 1H, H-6), 1.78-1.73 (m, 1H, H-6).
${ }^{13}{ }^{1}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.1$ (C), 138.0 (C), 128.5 (CH), 128.4 (CH), 127.9 (CH), $127.8(\mathrm{CH}), 127.78(\mathrm{CH}), 127.7(\mathrm{CH}), 86.6(\mathrm{C}-1), 83.7(\mathrm{C}-2), 76.7(\mathrm{C}-7), 75.7$ (C-7a), $72.9\left(\mathrm{CH}_{2}\right), 72.2\left(\mathrm{CH}_{2}\right), 69.3(\mathrm{C}-3), 60.5(\mathrm{C}-8), 51.6(\mathrm{C}-5), 33.7(\mathrm{C}-6)$.

To a solution of the diol $24(0.145 \mathrm{~g}, 0.039 \mathrm{mmol})$ and a crystal of 4dimethylaminopyridine in THF (4 mL) under N_{2} at rt was added imidazole $(0.056 \mathrm{~g}$, $0.083 \mathrm{mmol})$ and $\operatorname{TBSCl}(0.071 \mathrm{~g}, 0.047 \mathrm{mmol})$. The reaction mixture was stirred for

2 days and the reaction was quenched by the addition of water (10 mL). The solvent was removed under reduced pressure and the residue was extracted with EtOAc (3×20 $\mathrm{mL})$. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and then evaporated to leave a residue which was chromatographed on silica gel by FCC ($100 \% \mathrm{EtOAc}$ to $10: 2: 1 \mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{NH}_{3}$) to give a mixture of 26 and $27(26: 27=$ $82: 18)(0.056 \mathrm{~g}, 61 \%)$ as a yellow viscous oil.

26 (on 92:8 mixture): $\mathrm{R}_{f} 0.44$ (70:30 EtOAc/petrol).
$[\alpha]_{D}^{22}-16\left(c 2.3, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 484\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (CI +ve) calculated for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$484.2883, found 484.2891.
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3380,2929,2852,1454,1244,1098$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.25(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J 11.5 \mathrm{~Hz}$, CHHPh), 4.63 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.59 (d, 2H, J $12.0 \mathrm{~Hz}, 2 x C H H P h), 4.17$ (app. dt, 1H, J 5.0, 5.0 Hz, H-7), 3.95 (app. t, 1H, J5.3 Hz, H-2), 3.86 (app. t, 1H, J $4.8 \mathrm{~Hz}, \mathrm{H}-1$), 3.65 (dd, 1H, J 10.0, $6.0 \mathrm{~Hz}, \mathrm{H}-8$), 3.59 (dd, 1H, J 9.8, $6.3 \mathrm{~Hz}, \mathrm{H}-8$), 3.26 (app. t, 1H, J $4.8 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 3.24-3.19 (m, 1H, H-5), 2.91-2.83 (m, 2H, H-3 and H-5), 2.09-2.03 (m, 1H, H-6), 1.74-1.67 (m, 1H, H-6), $0.88(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.04(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4$ (C), 138.2 (C), 128.4 (CH), 128.3 (CH), 127.74 (CH), $127.7(\mathrm{CH}), 127.61(\mathrm{CH}), 127.6(\mathrm{CH}), 86.9(\mathrm{C}-1), 85.5(\mathrm{C}-2), 76.6(\mathrm{C}-7), 76.4$ (C-7a), $72.2\left(\mathrm{CH}_{2}\right), 71.9\left(\mathrm{CH}_{2}\right), 70.8(\mathrm{C}-3), 65.6(\mathrm{C}-8), 53.2(\mathrm{C}-5), 34.3(\mathrm{C}-6), 26.0$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.3(\mathrm{C}),-5.4\left(2 \mathrm{xCH}_{3}\right)$.

26a: $\mathrm{R}_{f} 0.38$ (40:60 EtOAc/petrol).
$[\alpha]_{D}^{25}+13.5\left(c 0.7, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 484\left(M+\mathrm{H}^{+}, 100 \%\right)$.
HRMS ($\mathrm{CI}+\mathrm{ve}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$484.2883, found 484.2892.
IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3349,2922,2850,1248,1069$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.26(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J 11.0 \mathrm{~Hz}$, CHHPh), 4.88 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.81 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.66 (d, $1 \mathrm{H}, J 11.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 3.93-3.89 (m, 1H, H-1), 3.84-3.79 (m, 1H, H-6), 3.44-3.38 (m, 2H, H-7 and H-8), 2.99 (dd, 1H, J 10.3, 5.3 Hz, H-5), 2.91 (app. t, 1H, J 8.3 Hz, H-3), 2.42 (app. dt, 1H, J 9.0, $8.5 \mathrm{~Hz}, \mathrm{H}-3$), 2.25-2.17 (m, 1H, H-2), 2.10 (app. t, 1H,
$J 10.5 \mathrm{~Hz}, \mathrm{H}-5), 1.96$ (app. t, 1H, J $7.8 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}$), $1.65-1.58$ (m, 1H, H-2), 0.90 (s, $9 \mathrm{H}, t-\mathrm{Bu}), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.9$ (C), 138.3 (C), 128.7 (CH), 128.3 (CH), 128.2 $(\mathrm{CH}), 128.1(\mathrm{CH}), 127.5(\mathrm{CH}), 127.4(\mathrm{CH}), 88.7(\mathrm{C}-7$ or $\mathrm{C}-8), 81.9(\mathrm{C}-7$ or $\mathrm{C}-8), 75.5$ $\left(\mathrm{CH}_{2}\right), 75.1(\mathrm{C}-1), 74.8\left(\mathrm{CH}_{2}\right), 73.3(\mathrm{C}-8 \mathrm{a}), 72.8(\mathrm{C}-6), 57.5(\mathrm{C}-5), 51.7(\mathrm{C}-3), 32.0$ $(\mathrm{C}-2), 25.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.9(\mathrm{C}),-4.6\left(2 \mathrm{xCH}_{3}\right)$.
($1 S, 5 R, 6 R, 7 R, 7 \mathrm{a} R)$-6,7-Bis(benzyloxy)-5-((tert-butyldimethylsilyloxy)methyl)hexahydro-1H-pyrrolizin-1-ol (29).

29

To a solution of 92% diastereomerically pure $26(0.164 \mathrm{~g}, 0.34 \mathrm{mmol})$ in toluene (7 mL) was added triphenylphosphine ($0.223 \mathrm{~g}, 0.85 \mathrm{mmol}$) and para-nitrobenzoic acid $(0.142 \mathrm{~g}, 0.85 \mathrm{mmol})$. The mixture was stirred and cooled to $0{ }^{\circ} \mathrm{C}$ and diisopropyl azodicarboxylate ($0.17 \mathrm{~mL}, 0.85 \mathrm{mmol}$) was added. The mixture was heated and stirred at $80{ }^{\circ} \mathrm{C}$ for 1.5 h . The volatiles were removed in vacuo then satd. CuSO_{4} solution (20 mL) was added. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with satd. CuSO_{4} solution (20 mL) and water (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, filtered and then evaporated to give 28 as a brown oil that was used in the next step without further purification.
(1S,5R,6R,7R,7aR)-6,7-Bis(benzyloxy)-5-((tert-butyldimethylsilyloxy)methyl)hexahydro-1H-pyrrolizin-1-yl 4-nitrobenzoate (28).

28
28: $\mathrm{R}_{f} 0.42$ (30:70 EtOAc/petrol).
$[\alpha]_{D}^{22}+39\left(c 0.9, \mathrm{CHCl}_{3}\right)$.

MS (ESI +ve) $m / z 633\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$633.2996, found 633.3007.
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 2924,2858,1724,1528,1270,1102$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~d}, 2 \mathrm{H}, J 8.5 \mathrm{~Hz}, \mathrm{Ar}), 8.07(\mathrm{~d}, 2 \mathrm{H}, J 8.5 \mathrm{~Hz}, \mathrm{Ar})$, 7.38-7.16 (m, 10H, Ar), 5.46-5.43 (m, 1H, H-7), 4.65 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.62 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{CHHPh}), 4.55$ (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.46 (d, 1H, J 12.5 $\mathrm{Hz}, \mathrm{CHHPh}$), 4.20 (app. t, 1H, J $5.0 \mathrm{~Hz}, \mathrm{H}-1$), 4.07 (dd, $1 \mathrm{H}, J 7.8,5.3 \mathrm{~Hz}, \mathrm{H}-2$), 3.78 (dd, 1H, J 10.3, $3.8 \mathrm{~Hz}, \mathrm{H}-8$), 3.66 (app. t, $1 \mathrm{H}, J 4.5 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 3.63 (dd, 1H, J 10.5 , $7.0 \mathrm{~Hz}, \mathrm{H}-8$), $3.30-3.26$ (m, 1H, H-5), 3.00 (app. dt, $1 \mathrm{H}, J 7.5,4.0 \mathrm{~Hz}, \mathrm{H}-3$), 2.90-2.84 (m, 1H, H-5), 2.20-2.16 (m, 2H, 2xH-6), $0.90(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.07(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.9$ (CO), 150.7 (C), 138.2 (C), 137.7 (C), 135.2 (C), $130.7(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 127.6$ $(\mathrm{CH}), 123.5(\mathrm{CH}), 87.4(\mathrm{C}-2), 82.0(\mathrm{C}-1), 76.5(\mathrm{C}-7), 72.7\left(\mathrm{CH}_{2}\right), 72.1\left(\mathrm{CH}_{2}\right), 71.8$ (C-3), 71.5 (C-7a), 66.1 (C-8), 52.7 (C-5), $34.5(\mathrm{C}-6), 26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.3(\mathrm{C}),-5.3$ $\left(2 \mathrm{XCH}_{3}\right)$.

To a solution of crude $28(0.34 \mathrm{mmol})$ in $\mathrm{MeOH}(7 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.075 \mathrm{~g}$, 0.510 mmol). After stirring at rt for 2 h , the mixture was evaporated and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and the solution was washed with water (15 mL). The aqueous layer was extracted further with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and evaporated. The residue was purified by FCC (50:50 EtOAc/petrol to $100 \% \mathrm{EtOAc}$) to give diastereomerically pure 29 as a yellow oil ($93 \mathrm{mg}, 57 \%$). $\mathrm{R}_{f} 0.30$ ($80: 20 \mathrm{EtOAc} /$ petrol).
$[\alpha]_{D}^{22}-2.3\left(c 1.8, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 484\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 484.2883$, found 484.2873 . IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3402,2923,2850,1256,1100,1047$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.28(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J 12.0 \mathrm{~Hz}$, CHHPh), 4.59 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.56 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.52 (d, $1 \mathrm{H}, J 11.5 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.27 (app. t, 1H, J $3.0 \mathrm{~Hz}, \mathrm{H}-1$), 4.16-4.14 (m, 1H, H-7), 4.11 (app. t, 1H, J 3.0 Hz, H-2), 3.67-3.57 (m, 3H, H-7a and 2xH-8), 3.22 (app. t, 1H,
$J 8.5 \mathrm{~Hz}, \mathrm{H}-5), 3.04$ (dd, 1H, J 11.3, $7.3 \mathrm{~Hz}, \mathrm{H}-3$), 2.86-2.80 (m, 1H, H-5), 196-1.87
($\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{xH}-6$), $0.87(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.2$ (C), 137.6 (C), 128.5 (CH), $128.4(\mathrm{CH}), 127.84$ $(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 127.6(\mathrm{CH}), 85.4(\mathrm{C}-2), 81.9(\mathrm{C}-1), 74.0(\mathrm{C}-7 \mathrm{a}), 72.3$ (C-3), $71.94(\mathrm{C}-7), 71.9\left(\mathrm{CH}_{2}\right), 71.8\left(\mathrm{CH}_{2}\right), 65.1(\mathrm{C}-8), 53.2(\mathrm{C}-5), 36.9(\mathrm{C}-6), 26.0$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2(\mathrm{C}),-5.3\left(\mathrm{CH}_{3}\right),-5.4\left(\mathrm{CH}_{3}\right)$.
(1R,2R,3R,7S,7aR)-3-Hydroxymethyl-hexahydro-1H-pyrrolizine-1,2,7-triol (australine) (3).

3

To a solution of $29(74.6 \mathrm{mg}, 0.155 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added $\mathrm{PdCl}_{2}(41.1$ $\mathrm{mg}, 0.232 \mathrm{mmol}$). The mixture was stirred at rt under an atmosphere of H_{2} (balloon) for 3 h , follow by the dropwise addition of conc. HCl (10 drops) and stirring was continued at rt for 21 h . The mixture was filtered through a celite pad and the solids were washed with MeOH . The combined filtrates were evaporated in vacuo and the residue was dissolved in water (2 mL) and applied to a column of Amberlyst $\left(\mathrm{OH}^{-}\right)$A26 resin $(4 \mathrm{~cm})$. Elution with water followed by evaporation in vacuo gave australine 3 as a yellow oil ($25.1 \mathrm{mg}, 86 \%$).
$[\alpha]_{D}^{22}+9.4\left(c 2.4, \mathrm{H}_{2} \mathrm{O}\right) .\left[\right.$ Lit. $^{5} ;[\alpha]_{D}^{25}+8^{\circ}\left(c 0.35, \mathrm{H}_{2} \mathrm{O}\right)$.
MS (ESI +ve) $m / z 190\left(M+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (EI) calculated for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$189.1001, found 189.0994.
IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3318,2944,2873,2484,1388,1332,1123,1041$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.37-4.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 4.22\left(\mathrm{t}, 1 \mathrm{H}, J_{1,2}=J_{1,7 \mathrm{a}}=7.8 \mathrm{~Hz}\right.$, $\mathrm{H}-1), 3.89\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3}=9.5, J_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-2\right), 3.79\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8^{\prime}}=12.0 \mathrm{~Hz}, J_{3,8}=\right.$ $3.5 \mathrm{~Hz}, \mathrm{H}-8), 3.61\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8^{\prime}}=11.5 \mathrm{~Hz}, J_{3,8^{\prime}}=7.0 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 3.17\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,7 \mathrm{a}}=\right.$ $\left.7.8 \mathrm{~Hz}, J_{7,7 \mathrm{a}}=4.8 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}\right), 3.15-3.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.74-2.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and H5), 2.05-2.00 (m, 1H, H-6), 1.97-1.89 (m, 1H, H-6).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 79.5(\mathrm{C}-2), 73.7(\mathrm{C}-1), 71.3(\mathrm{C}-7 \mathrm{a}), 71.1(\mathrm{C}-3), 70.1$ (C7), 63.5 (C-8), 52.4 (C-5), 35.8 (C-6).

3-HCl salt: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.72-4.69$ (m, 1H, H-7), 4.51 (app. t, $1 \mathrm{H}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, \mathrm{H}-1), 4.18(\mathrm{dd}, 1 \mathrm{H}, J=10.0,8.0 \mathrm{~Hz}, \mathrm{H}-2), 4.02(\mathrm{dd}, 1 \mathrm{H}, J=13.0,2.5 \mathrm{~Hz}, \mathrm{H}-$
8), 3.95-3.92 (m, 1H, H-7a), 3.92 (dd, $1 \mathrm{H}, \quad J=13.8,4.3 \mathrm{~Hz}, \mathrm{H}-8$), 3.84 (app. brt, 1H, $J=9.8 \mathrm{~Hz}, \mathrm{H}-5$), 3.45-3.38 (m, 2H, H-5 and H-3), 2.36-2.31 (m, 1H, H-6), 2.05-2.00 (m, 1H, H-6), 2.29-2.27 (m, 1H, H-6).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 76.2$ (C-2), 73.3 (C-7a), 72.1 (C-1), 71.4 (C-3), 68.7 (C7), 56.5 (C-8), 52.9 (C-5), 35.0 (C-6).
5. Pearson, W. H.; Hines, J. V., J. Org. Chem. 2000, 65, 5785-5793.

Table 3 Physical and spectral Data for (+)-Australine ${ }^{6,7,8,9}$ and 3.

	Natural Product	Synthetic	
		Denmark ${ }^{9}$	3 (This work)
Physical Appearance	Colourless prisms ${ }^{6}$	Yellow oil	Yellow oil
Optical Rotation	$[\alpha]_{D}^{26}+19.3{ }^{\circ}(\mathrm{c} 2.09, \mathrm{MeOH})^{6}$	$[\alpha]_{D}^{25}+8^{\circ}\left(\mathrm{c} 0.35, \mathrm{H}_{2} \mathrm{O}\right)^{5}$	$[\alpha]_{D}^{22}+9.4\left(c 2.4, \mathrm{H}_{2} \mathrm{O}\right)$
Melting Point	148-149 ${ }^{\circ} \mathrm{C}^{6}$	-	-
${ }^{1} \mathrm{H}$ NMR	$500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pH}=8.6^{7}$	$500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$	$500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$
	$\begin{aligned} & 4.43\left(\mathrm{ddd}, 1 \mathrm{H}, J_{7,7 \mathrm{a}}=4.4, J_{6,7}=4.2, J_{6,7}\right. \\ & =2.4 \mathrm{~Hz}, \mathrm{H}-7) \end{aligned}$	$4.19\left(\mathrm{dt}, 1 \mathrm{H}, J_{\mathrm{d}}=2.2, J_{\mathrm{t}}=4.2 \mathrm{~Hz}, \mathrm{H}-7\right)$	4.37-4.35 (m, 1H, H-7)
	$\begin{aligned} & 4.29\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=8.2, J_{1,7 \mathrm{a}}=7.4 \mathrm{~Hz},\right. \\ & \mathrm{H}-1) \end{aligned}$	4.04 (t, 1H, $J=7.8 \mathrm{~Hz}, \mathrm{H}-1)$	$4.22\left(\mathrm{t}, 1 \mathrm{H}, J_{1,2}=J_{1,7_{\mathrm{a}}}=7.8 \mathrm{~Hz}, \mathrm{H}-\right.$ 1)
	$3.96\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3}=9.5, J_{1,2}=8.2 \mathrm{~Hz}, \mathrm{H}-\right.$ 2)	3.71 (dd, 1H, $J=9.5,8.3 \mathrm{~Hz}, \mathrm{H}-2)$	$\begin{aligned} & 3.89\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3}=9.5, J_{1,2}=8.0\right. \\ & \mathrm{Hz}, \mathrm{H}-2) \end{aligned}$
	3.85	$\begin{aligned} & 3.60\left(\mathrm{AB}_{x}, \mathrm{dd}, 1 \mathrm{H}, J=12.0,3.7 \mathrm{~Hz}, \mathrm{H}-\right. \\ & 8) \end{aligned}$	$\begin{aligned} & 3.79\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8^{\prime}}=12.0, J_{3,8}=3.5\right. \\ & \mathrm{Hz}, \mathrm{H}-8) \end{aligned}$
	3.68	$3.43\left(\mathrm{AB}_{x}, \mathrm{dd}, 1 \mathrm{H}, J=12.0,6.6 \mathrm{~Hz}, \mathrm{H}-\right.$ 8')	$\begin{aligned} & 3.61\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}_{8,8^{\prime}}=11.5, J_{3,8^{\prime}}=7.0\right. \\ & \left.\mathrm{Hz}, \mathrm{H}-8^{\prime}\right) \end{aligned}$
	$\begin{aligned} & 3.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,7 \mathrm{a}}=7.4, J_{7,7 \mathrm{a}}=4.4 \mathrm{~Hz},\right. \\ & \mathrm{H}-7 \mathrm{a}) \end{aligned}$	3.02 (dd, 1H, $J=7.6,4.4 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a})$	$\begin{aligned} & 3.17\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,7 \mathrm{a}}=7.8, J_{7,7_{\mathrm{a}}}=4.8\right. \\ & \mathrm{Hz}, \mathrm{H}-7 \mathrm{a}) \end{aligned}$
	$\begin{aligned} & 3.23\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6}=11.5, J_{5.6}=6.0 \mathrm{~Hz},\right. \\ & \mathrm{H}-5 \mathrm{a}) \end{aligned}$	2.98 (ddd, 1H, J = 9.8, 7.6, $2.2 \mathrm{~Hz}, \mathrm{H}-5$)	3.15-3.12 (m, 1H, H-5)
	2.80 (m, 2H, H-3 and H-5b)	2.58-2.52 (m, 2H, H-3 and H-5)	2.74-2.69 (m, 2H, H-3 and H-5)
	$\begin{aligned} & 2.10\left(\mathrm{ddd}, 1 \mathrm{H}, J_{5,6}=6.0, J_{6,7}=2.4, J_{5,6}=\right. \\ & 2.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}) \end{aligned}$	1.87-1.82 (m, 1H, H-6)	2.05-2.00 (m, 1H, H-6)
	$\begin{aligned} & 2.00\left(\mathrm{ddd}, 1 \mathrm{H}, J_{5,6}=11.5, J_{5,6}=7.5, J_{6,7}\right. \\ & =4.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}) \end{aligned}$	1.79-1.71 (m, 1H, H-6).	1.97-1.89 (m, 1H, H-6).

Table 3 continued

	Natural Product ${ }^{8}$ (Original assignment / reassignment)	Synthetic		
		Denmark ${ }^{9}$	Pearson ${ }^{5 *}$	3 (This work)
${ }^{13} \mathrm{C}$ NMR	$\begin{aligned} & 125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} \\ & (\text { (ref TSP } \delta 0.0) \end{aligned}$	$\begin{gathered} 100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} \\ \text { (not given) } \end{gathered}$	$\begin{gathered} 90 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} \\ \text { (ref dioxane) } \end{gathered}$	$\begin{gathered} 125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} \\ (\operatorname{ref} \mathrm{MeCN} \delta 1.47) \end{gathered}$
	81.8 (C-7 / C-2)	78.4 (C-2)	79.5	79.5 (C-2)
	75.9 (C-1)	72.7 (C-1)	73.9	73.7 (C-1)
	73.5 (C-2 / C-7a)	70.5 (C-7a)	71.7	71.3 (C-7a)
	73.3 (C-3)	70.2 (C-3)	71.4	71.1 (C-3)
	72.3 (C-7a / C-7)	69.1 (C-7)	70.3	70.1 (C-7)
	65.5 (C-8)	62.2 (C-8)	63.1	63.5 (C-8)
	54.6 (C-5)	51.6 (C-5)	52.7	52.4 (C-5)
	38.0 (C-6)	34.9 (C-6)	35.9	35.8 (C-6)

* Signals were not assigned.

5. Pearson, W. H.; Hines, J. V., J. Org. Chem. 2000, 65, 5785-5793.
6. Molyneux, R. J.; Benson, M.; Wong, R. Y.; J. Nat. Prod. 1988, 51, 1198-1206.
7.Wormald, M. R.; Nash, R. J.; Hrnciar, P.; White, J. D.; Molyneux, R. J.; Fleet, G. W. J., Tetrahedron: Asym. 1998, 9, 2549-2558.
7. Kato, A.; Kano, E.; Adachi, I.; Molyneux, R. J.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J.; Wormald, M. R.; Kizu, H.; Ikeda, K.; Asano, N., Tetrahedron: Asym. 2003, 14, 325-331.
8. Denmark, S. E.; Martinborough, E. A., J. Am. Chem. Soc. 1999, 121, 3046-3056.
(2R,3R,4R)-3,4-Bis(benzyloxy)-4-((1S,2S,5R)-6-oxa-3-azabicyclo[3.1.0]hexan-2-yl)-1-(tert-butyldimethylsilyloxy)butan-2-ol (30).

30
To a solution of $19(0.095 \mathrm{~g}, 0.131 \mathrm{mmol})$ in toluene (2 mL) was added triphenylphosphine ($0.086 \mathrm{~g}, 0.328 \mathrm{mmol}$) and para-nitrobenzoic acid ($0.055 \mathrm{~g}, 0.328$ mmol). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and diisopropyl azodicarboxylate ($64.5 \mu \mathrm{~L}$, 0.28 mmol) was added. The mixture was stirred at rt for 5 h . The volatiles were removed in vacuo then satd. CuSO_{4} solution (20 mL) was added. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{~mL}$). The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with water (5 mL), dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, filtered and then evaporated to give 30a as a pale yellow oil that was used in the next step without further purification.
(1S,2S,5R)-(9H-Fluoren-9-yl)methyl 2-((1R,2S,3R)-1,2-bis(benzyloxy)-4-(tert-butyldimethylsilyloxy)-3-(4-nitrobenzoyloxy)butyl)-6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate (30a).

30a
30a: $\mathrm{R}_{f} 0.41$ (30:70 EtOAc/petrol).
$[\alpha]_{D}^{22}+35\left(c 2.6, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 870\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{50} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 871.3626$, found 871.3611 .
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 2950,2940,2857,1720,1701,1529,1271,1101$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major rotamer) 8.29-8.23 (m, 2H, Ar), 7.79-7.57 (m, 2H, Ar), 7.42-7.20 (m, 18H, Ar), 5.45 (dd, 1H, J 9.0, $5.5 \mathrm{~Hz}, \mathrm{H}-3$) , 4.91 (d, 1H, J $11.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.84 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}), 4.60$ (d, 1H, J $11.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.45 (d, 2H, J $6.5 \mathrm{~Hz}, \mathrm{CH}_{2}$ (Fmoc)), 4.37 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.28-4.14 (m, $5 \mathrm{H}, \mathrm{H}-1$ ' or H-2', H-3 or H-4, 2xH-4' and CH (Fmoc)), 4.07 (d, 1H, J $3.0 \mathrm{~Hz}, \mathrm{H}-3$ or

H-4), 3.78 (brs, 1H, H-1' or H-2'), 3.76 (d, 1H, J 12.0, Hz, H-5), 3.68 (brd, 1H, J 2.0 $\mathrm{Hz}, \mathrm{H}-2), 3.25$ (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{H}-5$), 0.91 (s, $9 \mathrm{H}, t-\mathrm{Bu}$), 0.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 0.07 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (major rotamer) $163.9(\mathrm{CO}), 154.8(\mathrm{CO}), 150.5(\mathrm{C})$, 143.8 (C), 143.5 (C), 141.2 (C), 141.1 (C), 137.6 (C), 137.4 (C), 135.2 (C), 130.7 $(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH})$, $127.7(\mathrm{CH}), 127.5(\mathrm{CH}), 127.0(\mathrm{CH}), 126.9(\mathrm{CH}), 124.7(\mathrm{CH}), 123.4(\mathrm{CH}), 119.9$ $(\mathrm{CH}), 80.7$ (C-1'), $79.0\left(\mathrm{C}-2^{\prime}\right), 75.8\left(\mathrm{C}-3^{\prime}\right), 74.5\left(\mathrm{CH}_{2}\right), 74.8\left(\mathrm{CH}_{2}\right), 67.0\left(\mathrm{CH}_{2}\right.$ (Fmoc)), 61.8 (C-2), 60.5 (C-4'), 56.4 (C-3 or C-4), 55.7 (C-3 or C-4), 47.6 (C-5), $47.1(\mathrm{CH}(\mathrm{Fmoc})), 25.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.0(\mathrm{C}),-5.4\left(\mathrm{CH}_{3}\right),-5.5\left(\mathrm{CH}_{3}\right)$.

To a solution of crude 30a (0.131 mmol) in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.015$ $\mathrm{g}, 0.109 \mathrm{mmol}$). After stirring at rt for 1 day, the mixture was evaporated and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was washed with water (5 mL) and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and evaporated. The residue was purified by FCC ($50: 50 \mathrm{EtOAc} /$ petrol to $100 \% \mathrm{EtOAc}$) to give 30 as a yellow oil ($36 \mathrm{mg}, 55 \%$). $\mathrm{R}_{f} 0.08$ (30:70 EtOAc/petrol).
$[\alpha]_{D}^{23}+53\left(c 2.8, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) m/z $500\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 500.2832$, found 500.2836 .
IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right)$: $3362,2930,1449,1250,1100$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.25$ (m, 10H, Ar), 4.86 (d, 1H, J 11.0 Hz ,
CHHPh), 4.71 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.62 (d, 1H, J $11.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.57 (d, $1 \mathrm{H}, J 11.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 3.81 (brs, 3H, H-2', H-3' and H-4'), 3.73 (dd, J 9.5, 3.5 Hz , 1H, H-4'), 3.67 (d, 1H, J $2.5 \mathrm{~Hz}, \mathrm{H}-3$ or H-4), 3.55 (dd, 1H, J 9.5, $2.0 \mathrm{~Hz}, \mathrm{H}-1$ ') 3.42 (d, 1H, J 9.5 Hz, H-2), 3.39 (d, 1H, J 2.5 Hz, H-3 or H-4), 3.02 (d, 1H, J $13.5 \mathrm{~Hz}, \mathrm{H}-$ 5), $2.70(\mathrm{~d}, 1 \mathrm{H}, J 13.0 \mathrm{~Hz}, \mathrm{H}-5), 0.91(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.08\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3$ (C), 138.2 (C), 128.4 (CH), $128.3(\mathrm{CH}), 128.22$ $(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 79.4(\mathrm{C}-2$ '), 78.5 (C-1'), $74.52\left(\mathrm{CH}_{2}\right), 74.5\left(\mathrm{CH}_{2}\right), 71.7(\mathrm{C}-3$ '), $64.4(\mathrm{C}-4$ '), $59.9(\mathrm{C}-2), 58.0(\mathrm{C}-3$ or C4), $55.8(\mathrm{C}-3$ or $\mathrm{C}-4), 46.9(\mathrm{C}-5), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.3(\mathrm{C}),-5.28\left(\mathrm{CH}_{3}\right),-5.3\left(\mathrm{CH}_{3}\right)$.
(1aR,4S,5R,6R,6bS)-5,6-Bis(benzyloxy)-4-((tert-
butyldimethylsilyloxy)methyl)hexahydro-1aH-oxireno[2,3-a]pyrrolizine (31) and (1 a R,5R,6S,7R,7aS,7bS)-6,7-bis(benzyloxy)-5-(tert-
butyldimethylsilyloxy)octahydrooxireno[2,3-a]indolizine (32).

To a solution of $\mathbf{3 0}(0.500 \mathrm{~g}, 1.002 \mathrm{mmol})$ in toluene (10 mL) was added triphenylphosphine ($0.657 \mathrm{~g}, 2.505 \mathrm{mmol}$). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and diisopropyl azodicarboxylate ($0.49 \mathrm{~mL}, 2.505 \mathrm{mmol}$) was added. The mixture was heated and stirred at $80^{\circ} \mathrm{C}$ for 12 h . The volatiles were removed in vacuo then satd. CuSO_{4} solution (20 mL) was added. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 25 \mathrm{~mL}$). The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with water (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, filtered and then evaporated. The residue was purified by FCC ($50: 50$ EtOAc/petrol to $100 \% \mathrm{EtOAc}$) to give to give 31 as a yellow oil ($0.337 \mathrm{~g}, 70 \%$) and 32 as a yellow oil ($0.02 \mathrm{~g}, 4 \%$).
31: $\mathrm{R}_{f} 0.26$ (70:30 EtOAc/petrol).
$[\alpha]_{D}^{25}+43\left(\mathrm{c} 1.6, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 482\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$482.2727, found 482.2717.
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 2952,2930,2850,1447,1250,1095$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.25(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.55(\mathrm{~d}, 1 \mathrm{H}, J 12.0 \mathrm{~Hz}$, CHHPh), 4.53 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.51 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.48 (d, $1 \mathrm{H}, J 12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.09 (d, 1H, J $4.0 \mathrm{~Hz}, \mathrm{H}-2$), 3.99 (app. t, 1H, J $9.3 \mathrm{~Hz}, \mathrm{H}-8$), 3.91 (dd, 1H, J 10.0, 5.0 Hz, H-8), 3.80 (d, 1H, J $4.5 \mathrm{~Hz}, \mathrm{H}-1$), 3.68-3.66 (m, 2H, H-6 or H-7 and H-7a), 3.60 (d, 1H, J $2.0 \mathrm{~Hz}, \mathrm{H}-6$ or H-7), 3.39 (app. dt, $1 \mathrm{H}, J 8.5,4.3 \mathrm{~Hz}$, H-3), 3.19 (d, 1H, J $10.5 \mathrm{~Hz}, \mathrm{H}-5$), 3.03 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{H}-5$), 0.09 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), $0.06\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3$ (C), $137.6(\mathrm{C}), 128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 127.9$ $(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 127.3(\mathrm{CH}), 86.9(\mathrm{C}-2), 85.3(\mathrm{C}-1), 72.2\left(\mathrm{CH}_{2}\right), 71.9$ (C-7a), $71.7\left(\mathrm{CH}_{2}\right), 65.7(\mathrm{C}-3), 58.5(\mathrm{C}-8), 57.6(\mathrm{C}-6$ or C-7), $57.3(\mathrm{C}-6$ or $\mathrm{C}-7), 48.1$ $(\mathrm{C}-5), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2(\mathrm{C}),-5.4\left(\mathrm{CH}_{3}\right),-5.5\left(\mathrm{CH}_{3}\right)$.

32: $\mathrm{R}_{f} 0.25$ (70:30 EtOAc/petrol).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.26(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J 11.5 \mathrm{~Hz}$, CHHPh), 4.73 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.65 (d, 2H, J $11.5 \mathrm{~Hz}, 2 \mathrm{xCHHPh}), 4.15$ (m, 1H, H-6), 3.63 (app. t, 1H, J 7.8 Hz, H-8), 3.55 (d, 1H, J $3.0 \mathrm{~Hz}, \mathrm{H}-1$ or H-2), 3.52 (d, 1H, J $10.5 \mathrm{~Hz}, \mathrm{H}-3), 3.45$ (d, 1H, J $3.0 \mathrm{~Hz}, \mathrm{H}-1$ or H-2), 3.38 (dd, 1H, J 10.0, $3.0 \mathrm{~Hz}, \mathrm{H}-7$), 3.20 (d, 1H, J $10.5 \mathrm{~Hz}, \mathrm{H}-3$), 3.15 (d, 1H, J $9.5 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{a}$), 2.96 (dd, 1H, $J 15.0,1.5 \mathrm{~Hz}, \mathrm{H}-5), 2.86$ (brd, 1H, J $15.0 \mathrm{~Hz}, \mathrm{H}-5$), 0.91 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.10 (s, 3H, CH_{3}), $0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13}{ }^{\text {C NMR (}} 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5$ (C), 138.3 (C), $133.2(\mathrm{CH}), 133.0(\mathrm{CH}), 128.6$ (CH), 128.4 (CH), 128.2 (CH), 127.8 (CH), 127.6 (CH), 127.5 (CH), 84.1 (C-7), 75.0 $\left(\mathrm{CH}_{2}\right), 72.7(\mathrm{C}-8), 72.2\left(\mathrm{CH}_{2}\right), 71.3(\mathrm{C}-6), 61.8(\mathrm{C}-8 \mathrm{a}), 57.8(\mathrm{C}-1$ or $\mathrm{C}-2), 54.7(\mathrm{C}-1$ or C-2), $52.0(\mathrm{C}-3), 50.3(\mathrm{C}-5), 28.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2(\mathrm{C}),-4.6\left(\mathrm{CH}_{3}\right),-4.7\left(\mathrm{CH}_{3}\right)$.
($1 R, 5 S, 6 R, 7 R, 7 \mathrm{a} R)-6,7-$ Bis(benzyloxy)-5-((tert-
butyldimethylsilyloxy)methyl)hexahydro-1H-pyrrolizin-1-ol (33) and (2S,5S,6R,7R,7aR)-6,7-bis(benzyloxy)-5-((tert-butyldimethylsilyloxy)methyl)hexahydro-1H-pyrrolizin-2-ol (34).

33

34

To a solution of crude $31(0.037 \mathrm{mg}, 0.098 \mathrm{mmol})$ in anhydrous THF (2 mL) was added dropwise a solution of lithium aluminium hydride (1 M in THF, $0.1 \mathrm{~mL}, 0.1$ $\mathrm{mmol})$. The mixture was stirred at rt for 12 h . The solvent was evaporated and the mixture was chromatographed on silica gel by FCC (80:20 EtOAc/petrol to 10:90 $\mathrm{MeOH} / \mathrm{EtOAc}$) to give 33 as a pale yellow oil ($15.3 \mathrm{mg}, 41 \%$) and $\mathbf{3 4}(3.3 \mathrm{mg}, 9 \%)$ as a pale yellow oil.
33: $\mathrm{R}_{f} 0.31$ ($\left.5: 95 \mathrm{MeOH} / \mathrm{EtOAc}\right)$.
$[\alpha]_{D}^{22}-4\left(c 1.4, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 484\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 484.2883$, found 484.2868 .
IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3390,2923,2858,1260,1095$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.25(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.59(\mathrm{~d}, 1 \mathrm{H}, J 11.5 \mathrm{~Hz}$, CHHPh), 4.57 (d, 1H, J $10.5 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.52 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.48 (d, $1 \mathrm{H}, J 11.5 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.16 (app. dt, 1H, J 6.5, $5.5 \mathrm{~Hz}, \mathrm{H}-7$), 4.04 (dd, 1H, J 4.5, 2.0 $\mathrm{Hz}, \mathrm{H}-2), 3.95$ (dd, 1H, J 10.0, $7.3 \mathrm{~Hz}, \mathrm{H}-8$), 3.89-3.86 (m, 2H, H-1 and H-8), 3.35 (app. dt, 1H, J 6.5, $4.8 \mathrm{~Hz}, \mathrm{H}-3$), 3.30 (app. t, 1H, J $4.5 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 3.09 (ddd, 1H, J 9.3, 7.0, $6.5 \mathrm{~Hz}, \mathrm{H}-5$), 2.91-2.87 (m, 1H, H-5), 2.19-2.13 (m, 1H, H-6), 1.84-1.78 (m, $1 \mathrm{H}, \mathrm{H}-6), 0.88$ ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), $0.40\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right.$).
${ }^{13}{ }^{3}$ NMR (125 MHz, CDCl_{3}) $\delta 138.4$ (C), 138.1 (C), 128.4 (CH), 128.3 (CH), 127.7 $(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 127.3(\mathrm{CH}), 85.9(\mathrm{C}-1), 85.6(\mathrm{C}-2), 77.7(\mathrm{C}-7 \mathrm{a}), 75.6$ (C-7), $72.1\left(\mathrm{CH}_{2}\right), 71.4\left(\mathrm{CH}_{2}\right), 65.3(\mathrm{C}-3), 58.8(\mathrm{C}-8), 46.1(\mathrm{C}-5), 35.6(\mathrm{C}-6), 25.9$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.3(\mathrm{C}),-5.4\left(\mathrm{CH}_{3}\right),-5.5\left(\mathrm{CH}_{3}\right)$.

34: $\mathrm{R}_{f} 0.11$ (5:95 MeOH/EtOAc).
$[\alpha]_{D}^{25}+10.3\left(c 1.1, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 484\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$484.2883, found 484.2863.
IR $v_{\text {max }}\left(\mathrm{cm}^{-1}\right)$: 3236, 2952, 2923, 1250, 1096.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.24(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J 12.0 \mathrm{~Hz}$, CHHPh), 4.53 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.48 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.45 (d, $1 \mathrm{H}, J 12.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.43 (brt, 1H, J $4.0 \mathrm{~Hz}, \mathrm{H}-6$), 4.10 (dd, 1H, J 4.5, 2.0 Hz, H2), $3.91(\mathrm{~d}, 2 \mathrm{H}, J 6.0 \mathrm{~Hz}, 2 \mathrm{xH}-8), 3.88-3.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-7 \mathrm{a}), 3.54$ (app. dt, 1 H , $J 6.0,5.0 \mathrm{~Hz}, \mathrm{H}-3), 3.23$ (dd, 1H, J 10.0, $3.5 \mathrm{~Hz}, \mathrm{H}-5$), 2.96 (d, 1H, J $10.0 \mathrm{~Hz}, \mathrm{H}-5$), 2.18 (dd, 1H, J 13.0, 7.3 Hz, H-7), 1.86-1.81 (m, 1H, H-7), 0.89 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$), 0.05 (s, $6 \mathrm{H}, 2 \mathrm{xCH}_{3}$).
${ }^{13}{ }^{1} \mathrm{~N}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.0(\mathrm{C}), 137.9(\mathrm{C}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 127.8$ $(\mathrm{CH}), 127.7(\mathrm{CH}), 127.6(\mathrm{CH}), 127.4(\mathrm{CH}), 86.8(\mathrm{C}-1), 85.7(\mathrm{C}-2), 73.7(\mathrm{C}-6), 72.4$ $\left(\mathrm{CH}_{2}\right), 71.5\left(\mathrm{CH}_{2}\right), 68.7(\mathrm{C}-7 \mathrm{a}), 64.5(\mathrm{C}-3), 58.5(\mathrm{C}-8), 56.2(\mathrm{C}-5), 39.5(\mathrm{C}-7), 25.9$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.3(\mathrm{C}),-5.4\left(\mathrm{CH}_{3}\right),-5.5\left(\mathrm{CH}_{3}\right)$.
(1S,5S,6R,7R,7aR)-6,7-Bis(benzyloxy)-5-((tert-butyldimethylsilyloxy)methyl)hexahydro-1H-pyrrolizin-1-ol (35).

35
To a solution of $33(0.040 \mathrm{~g}, 0.083 \mathrm{mmol})$ in toluene (2 mL) was added triphenylphosphine ($0.055 \mathrm{~g}, 0.021 \mathrm{mmol}$) and para-nitrobenzoic acid ($0.035 \mathrm{~g}, 0.021$ mmol). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ and diisopropyl azodicarboxylate $(41.1 \mu \mathrm{~L}$, 0.021 mmol) was added. The mixture was stirred at rt for 8 h . The volatiles were removed in vacuo then satd. CuSO_{4} solution (20 mL) was added. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with water (5 mL), dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, filtered and then evaporated to give 35a as a brown oil that was used in the next step without further purification.
(1S,5S,6R,7R,7aR)-6,7-Bis(benzyloxy)-5-((tert-butyldimethylsilyloxy)methyl)hexahydro-1H-pyrrolizin-1-yl 4-nitrobenzoate (35a).

35a

35a: $\mathrm{R}_{f} 0.39$ (50:50 EtOAc/petrol).
$[\alpha]_{D}^{26}+31\left(c 3.0, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 633\left(\mathrm{M}+\mathrm{H}^{+}, 70 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$633.2996, found 633.2986.
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 2926,2853,1726,1528,1272,1096$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95$ (s, 4H, Ar), 7.37-7.12 (m, 10H, Ar), 5.63 (app. t, $1 \mathrm{H}, J 5.8 \mathrm{~Hz}, \mathrm{H}-7$), 4.56 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.51 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.49 (d, 1H, J $13.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.47 (d, $1 \mathrm{H}, J 13.5 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.13 (dd, 1H, J 4.5, $1.5 \mathrm{~Hz}, \mathrm{H}-2), 4.07$ (dd, 1H, J 10.3, $7.3 \mathrm{~Hz}, \mathrm{H}-8$), 4.05 (dd, $1 \mathrm{H}, J 4.3,2.3 \mathrm{~Hz}, \mathrm{H}-1$), 4.00 (dd, 1H, J 10.3, $6.8 \mathrm{~Hz}, \mathrm{H}-8$), 3.68 (app. t, $1 \mathrm{H}, J 4.8 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 3.40 (app. dt, 1H, $J 6.0,5.0 \mathrm{~Hz}, \mathrm{H}-3$), 3.30-3.25 (m, 1H, H-5), 2.81 (app. brt, 1H, J $6.5 \mathrm{~Hz}, \mathrm{H}-5$), 2.30-
2.23 (m, 1H, H-6), 2.05 (brd, 1H, J $12.0 \mathrm{~Hz}, \mathrm{H}-6$), 0.90 (s, 9H, t-Bu), 0.08 (s, 3H, CH_{3}), $0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8$ (CO), 150.4 (C), 138.3 (C), 137.7 (C), 135.2 (C), $130.6(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 126.9(\mathrm{CH}), 123.3$ (CH), 86.9 (C-2), $81.7(\mathrm{C}-1), 74.3(\mathrm{C}-7), 73.7(\mathrm{C}-7 \mathrm{a}), 72.3\left(\mathrm{CH}_{2}\right), 71.7\left(\mathrm{CH}_{2}\right), 65.4$ (C-3), 59.9 (C-8), $46.2(\mathrm{C}-5), 34.7(\mathrm{C}-6), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.3(\mathrm{C}),-5.3\left(\mathrm{CH}_{3}\right),-5.4$ $\left(\mathrm{CH}_{3}\right)$.

To a solution of crude $\mathbf{3 5 a}(0.083 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.023$ $\mathrm{g}, 0.1669 \mathrm{mmol})$. After stirring at rt for 4 h , the mixture was evaporated and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then washed with water. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and evaporated. The residue was purified by FCC (80:20 EtOAc/petrol to 10:90 $\mathrm{MeOH} / \mathrm{EtOAc}$) to give 35 as a pale yellow oil ($26 \mathrm{mg}, 64 \%$). $\mathrm{R}_{f} 0.19$ (10:90 $\mathrm{MeOH} / \mathrm{EtOAc})$.
$[\alpha]_{D}^{24}-5.3\left(c 1.2, \mathrm{CHCl}_{3}\right)$.
MS (ESI +ve) $m / z 484\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 484.2883$, found 484.2882. IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3418,2930,2850,1673,1250,1089$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.26(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.68(\mathrm{~d}, 1 \mathrm{H}, J 11.5 \mathrm{~Hz}$, CHHPh), 4.62 (d, 1H, J $12.0 \mathrm{~Hz}, \mathrm{C} H \mathrm{HPh}$), 4.57 (d, 1H, J $11.5 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.56 (d, $1 \mathrm{H}, J 12.0 \mathrm{~Hz}, \mathrm{CHHPh}$), 4.25 (app. t, 1H, J5.0 Hz, H-1), 4.23 (app. t, 1H, J5.0 Hz, H-2), 4.12 (app. brt, 1H, J $2.5 \mathrm{~Hz}, \mathrm{H}-7$), 3.97 (dd, 1H, J $10.8,5.3 \mathrm{~Hz}, \mathrm{H}-8$), 3.82 (dd, $1 \mathrm{H}, J 10.8,5.3 \mathrm{~Hz}, \mathrm{H}-8$), 3.49 (app. t, $1 \mathrm{H}, J 4.3 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 3.31 (app. dt, $1 \mathrm{H}, J 4.8$, $4.0 \mathrm{~Hz}, \mathrm{H}-3$), 3.04-2.99 (m, 1H, H-5), 2.81 (brt, 1H, J7.8 Hz, H-5), 1.96-1.94 (m, 2H, $2 \mathrm{xH}-6$), 0.88 ($\mathrm{s}, 9 \mathrm{H}, t \mathrm{Bu}$), $0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4$ (C), 137.9 (C), 128.4 (CH), 128.3 (CH), 128.0 $(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 85.5(\mathrm{C}-2), 79.5(\mathrm{C}-1), 73.2(\mathrm{C}-7 \mathrm{a}), 73.0$ $\left.\mathrm{CH}_{2}\right), 71.9\left(\mathrm{CH}_{2}\right), 71.2(\mathrm{C}-7), 62.5(\mathrm{C}-3), 59.3(\mathrm{C}-8), 43.9(\mathrm{C}-5), 36.9(\mathrm{C}-6), 26.0$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.6(\mathrm{C}),-5.3\left(\mathrm{CH}_{3}\right),-5.8\left(\mathrm{CH}_{3}\right)$.
(1R,2R,3S,7S,7aR)-3-(Hydroxymethyl)hexahydro-1H-pyrrolizine-1,2,7-triol (3-epi-australine) (4).

To a solution of $35(21 \mathrm{mg}, 0.045 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added $\mathrm{PdCl}_{2}(12 \mathrm{mg}$, 0.065 mmol). The mixture was stirred at rt under an atmosphere of H_{2} (balloon) for 3 h, follow by the dropwise addition of conc. HCl (5 drops). Stirring at rt was continued for 21 h . The mixture was filtered through a celite pad and the solids were washed with MeOH . The combined filtrates were evaporated in vacuo and the residue was dissolved in water (1 mL) and applied to a column of Amberlyst $\left(\mathrm{OH}^{-}\right)$A-26 resin (3 cm). Elution with water followed by evaporation in vacuo gave 3-epi-australine 4 as a brown viscous oil ($7.2 \mathrm{mg}, 88 \%$).
$[\alpha]_{D}^{23}-10.5\left(c 0.7, \mathrm{H}_{2} \mathrm{O}\right)$.
MS (ESI +ve) $m / z 190\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$190.1079, found 190.1086.
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3279,2924,2888,1429,1357,1058$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.41\left(\mathrm{brt}, 1 \mathrm{H}, J_{6,7}=J_{7,7 \mathrm{a}}=4.0 \mathrm{~Hz}, \mathrm{H}-7\right), 4.30\left(\mathrm{t}, 1 \mathrm{H}, J_{1,2}\right.$ $\left.=J_{1,7 \mathrm{a}}=3.3 \mathrm{~Hz}, \mathrm{H}-1\right), 4.15\left(\mathrm{t}, 1 \mathrm{H}, J_{1,2}=J_{2,3}=4.0 \mathrm{~Hz}, \mathrm{H}-2\right), 4.01\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8}=11.8\right.$ $\left.\mathrm{Hz}, J_{3,8}=5.8 \mathrm{~Hz}, \mathrm{H}-8\right), 3.92\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8^{\prime}}=11.8 \mathrm{~Hz}, J_{3,8^{\prime}}=6.3 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 3.38(\mathrm{t}, 1 \mathrm{H}$, $\left.J_{1,7 \mathrm{a}}=J_{7,7 \mathrm{a}}=4.3 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}\right), 3.30\left(\mathrm{dt}, 1 \mathrm{H}, J_{3,8^{\prime}}=5.3 \mathrm{~Hz}, J_{2,3}=J_{3,8}=4.5 \mathrm{~Hz}, \mathrm{H}-3\right)$, 3.15-3.10 (m, 1H, H-5 $), 2.88\left(\mathrm{t}, 1 \mathrm{H}, J_{5,5}=J_{5,6}=8.0 \mathrm{~Hz}, \mathrm{H}-5 \beta\right), 2.00-1.87(\mathrm{~m}, 2 \mathrm{H}$, $2 \mathrm{xH}-6$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 79.3$ (C-2), 75.2 (C-7a), 74.7 (C-1), 70.4 (C-7), 63.9 (C3), 57.8 (C-8), 45.3 (C-5), 35.6 (C-6).

4-HCl salt: $[\alpha]_{D}^{23}-37\left(c 0.7, \mathrm{H}_{2} \mathrm{O}\right) .\left[\right.$ Lit. ${ }^{10} ;[\alpha]_{D}^{20}-3.5^{\circ}\left(c 1.35, \mathrm{H}_{2} \mathrm{O}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 4.77-4.73$ (m, 1H, H-7), 4.65 (s, 1H, H-1), 4.34 (d, 1H, J $=3.5 \mathrm{~Hz}, \mathrm{H}-2), 4.29(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}), 4.16(\mathrm{dd}, 1 \mathrm{H}, J=12.0,4.5 \mathrm{~Hz}, \mathrm{H}-8)$, 4.13-4.04 (m, 2H, H-8 and H-3), $3.74(\mathrm{dd}, 1 \mathrm{H}, J=11.3,5.3 \mathrm{~Hz}, \mathrm{H}-5), 3.71-3.65(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-5$), 2.28 (dd, 1H, $J=14.0,5.0 \mathrm{~Hz}, \mathrm{H}-6$), 2.21-2.13 (m, 1H, H-6).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 79.3$ (C-7a), 77.4 (C-2), 74.2 (C-1), 69.3 (C-7), 67.1 (C3), 56.1 (C-8), 48.4 (C-5), 35.0 (C-6).

[^1]Table 4 Physical and spectral Data for (-)-3-Epi-australine ${ }^{10}$ and 4.

	3-Epi-australine ${ }^{10}$	Synthetic 4	
Physical Appearance	oil	brown viscous oil	
Optical Rotation	$\begin{aligned} & {[\alpha]_{D}^{20}-3.5^{\circ}\left(c 1.35, \mathrm{H}_{2} \mathrm{O}\right), \mathrm{HCl}} \\ & \text { salt. } \end{aligned}$	$\begin{aligned} & {[\alpha]_{D}^{23}-37\left(c 0.7, \mathrm{H}_{2} \mathrm{O}\right), \mathrm{HCl}} \\ & \text { salt } \end{aligned}$	
${ }^{1} \mathrm{H}$ NMR	$500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$	$500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$	
	4.24 (dt, 1H, J= 4.5, 2.0 Hz, H-7)	$\begin{aligned} & 4.41 \text { (brt, } 1 \mathrm{H}, J_{6,7}=J_{7,7 \mathrm{a}}=4.0 \\ & \mathrm{~Hz}, \mathrm{H}-7) \end{aligned}$	
	4.12 (t, 1H, J=3.5 Hz, H-1)	$\begin{aligned} & 4.30\left(\mathrm{t}, 1 \mathrm{H}, J_{1,2}=J_{1,7 \mathrm{a}}=3.3\right. \\ & \mathrm{Hz}, \mathrm{H}-1) \end{aligned}$	
	3.96 (dd, 1H, J= 4.5, 3.5 Hz, H-2)	$\begin{aligned} & 4.15\left(\mathrm{t}, 1 \mathrm{H}, J_{1,2}=J_{2,3}=4.0\right. \\ & \mathrm{Hz}, \mathrm{H}-2) \end{aligned}$	
	3.80-3.70 ($2 \mathrm{H}, \mathrm{AB}$ part of ABX ,	$\begin{aligned} & 4.01\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8}=11.8 \mathrm{~Hz},\right. \\ & \left.J_{3,8}=5.8 \mathrm{~Hz}, \mathrm{H}-8\right) \end{aligned}$	
	$\left.\mathrm{CH}_{2} \mathrm{OH}\right)$	$\begin{aligned} & 3.92\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}_{8,8^{\prime}}=11.8 \mathrm{~Hz},\right. \\ & \left.J_{3,8^{\prime}}=6.3 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right) \end{aligned}$	
	$\begin{aligned} & 3.25(\mathrm{dd}, 1 \mathrm{H}, J=4.5,4.0 \mathrm{~Hz}, \mathrm{H}- \\ & 7 \mathrm{a}) \end{aligned}$	$\begin{aligned} & 3.38\left(\mathrm{t}, 1 \mathrm{H}, \quad J_{1,7 \mathrm{a}}=J_{7,7 \mathrm{a}}=4.3\right. \\ & \mathrm{Hz}, \mathrm{H}-7 \mathrm{a}) \end{aligned}$	
	3.16 (dt, 1H, $J=6.0,4.5 \mathrm{~Hz}, \mathrm{H}-3)$	$\begin{aligned} & 3.30\left(\mathrm{dt}, 1 \mathrm{H}, J_{3,8^{\prime}}=5.3 \mathrm{~Hz}, J_{2,3}\right. \\ & \left.=J_{3,8}=4.5 \mathrm{~Hz}, \mathrm{H}-3\right) \end{aligned}$	
	$\begin{aligned} & 2.96 \text { (ddd, } 1 \mathrm{H}, J=11.5,9.0,6.0 \\ & \mathrm{~Hz}, \mathrm{H}-5) \end{aligned}$	3.15-3.10 (m, 1H, H-5)	
	2.74 (m, 1H, H-5)	$\begin{aligned} & 2.88\left(\mathrm{t}, 1 \mathrm{H}, J_{5,5}=J_{5,6}=8.0\right. \\ & \mathrm{Hz}, \mathrm{H}-5) \end{aligned}$	
	1.82 (m, 2H, 2xH-6)	2.00-1.87 (m, 2H, 2xH-6)	
${ }^{13} \mathrm{C}$ NMR	$\begin{aligned} & 125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} \\ & \text { (ref not given) } \end{aligned}$	$\begin{aligned} & 125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} \\ & (\operatorname{ref~} \mathrm{MeCN} \\ & \delta 1.47) \end{aligned}$	$\Delta \delta$ (ppm)
	78.5 (C-2)	79.3 (C-2)	0.8
	74.8 (C-7a)	75.2 (C-7a)	0.4
	74.0 (C-1)	74.7 (C-1)	0.7
	69.6 (C-7)	70.4 (C-7)	0.8
	63.5 (C-3)	63.9 (C-3)	0.4
	56.9 (C-8)	57.8 (C-8)	0.9
	44.9 (C-5)	45.3 (C-5)	0.4
	34.8 (C-6)	35.6 (C-6)	0.8

10. Nash, R. J.; Fellows, L. E.; Dring, J. V.; Fleet, G. W. J.; Derome, A. E.; Hamor, T. A.; Scofield, A. M.; Watkin, D. J., Tetrahedron Lett. 1988, 29, 2487-2490.
(1R,2R,3S,7R,7aR)-3-(Hydroxymethyl)hexahydro-1H-pyrrolizine-1,2,7-triol (3,7-Diepi-australine) (36).

To a solution of $33(20 \mathrm{mg}, 0.041 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added $\mathrm{PdCl}_{2}(11 \mathrm{mg}$, 0.062 mmol). The mixture was stirred at rt under an atmosphere of H_{2} (balloon) for 3 h , follow by the dropwise addition of conc. HCl (5 drops) at rt for 15 h . The mixture was filtered through a celite pad and the solids were washed with MeOH . The combined filtrates were evaporated in vacuo and the residue was dissolved in water (1 $\mathrm{mL})$ and applied to a column of Amberlyst $\left(\mathrm{OH}^{-}\right)$A- 26 resin (3 cm). Elution with water followed by evaporation in vacuo gave 3,7-diepi-australine 36 as a white solid ($7.0 \mathrm{mg}, 90 \%$).
$[\alpha]_{D}^{24}-9.3\left(c 1.1, \mathrm{H}_{2} \mathrm{O}\right)$.
MS (ESI +ve) $m / z 190\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.
HRMS (ESI +ve) calculated for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$190.1079, found 190.1074.
IR $v_{\max }\left(\mathrm{cm}^{-1}\right): 3370,3309,2509,1454,1202,1060$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.30\left(\mathrm{dt}, 1 \mathrm{H}, J_{6,7}=J_{7,7 \mathrm{a}}=6.5 \mathrm{~Hz}, J_{6,7}=6.0 \mathrm{~Hz}, \mathrm{H}-7\right)$, 4.16 (brd, $\left.1 \mathrm{H}, J_{2,3}=3.5 \mathrm{~Hz}, \mathrm{H}-2\right), 4.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 3.97\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8}=11.8 \mathrm{~Hz}, J_{3,8}\right.$ $=7.0 \mathrm{~Hz}, \mathrm{H}-8), 3.92\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8^{\prime}}=12.0 \mathrm{~Hz}, J_{3,8^{\prime}}=7.0 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 3.28\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2,3}\right.$ $\left.=9.0, J_{3,8}=7.0, J_{2,3}=4.0 \mathrm{~Hz}, \mathrm{H}-3\right), 3.11\left(\mathrm{ddd}, 1 \mathrm{H}, J_{5,5}=10.0, J_{5,6}=10.0, J_{5,6}=6.0\right.$ $\mathrm{Hz}, \mathrm{H}-5 \alpha), 3.06\left(\mathrm{dd}, 1 \mathrm{H}, J_{7,7 \mathrm{a}}=2.0, J_{1,7 \mathrm{a}}=5.5 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}\right), 2.98\left(\mathrm{t}, 1 \mathrm{H}, J_{5,5}=J_{5,6}=8.5\right.$ $\mathrm{Hz}, \mathrm{H}-5 \beta$), 2.23-2.18 (m, 1H, H-6 $), 1.80-1.72$ (m, 1H, H-6 $)$.
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 80.5(\mathrm{C}-1), 79.8(\mathrm{C}-2), 78.2(\mathrm{C}-7 \mathrm{a}), 75.1(\mathrm{C}-7), 64.9(\mathrm{C}-$ 3), 57.6 (C-8), 46.4 (C-5), 34.5 (C-6).

36 $\cdot \mathrm{HCl}$ salt: $[\alpha]_{D}^{21}-21\left(c 0.63, \mathrm{H}_{2} \mathrm{O}\right)$, HCl salt. $\left[L i t .{ }^{11}\right.$ for ent-36 $\cdot \mathrm{HCl} ;[\alpha]_{D}^{20}+33^{\circ}(c$ $0.1, \mathrm{H}_{2} \mathrm{O}$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.63\left(\mathrm{dt}, 1 \mathrm{H}, J_{6,7}=8.0 \mathrm{~Hz}, J_{6,7}=J_{7,7 \mathrm{a}}=6.0 \mathrm{~Hz}, \mathrm{H}-7\right)$, 4.41 (brs, $1 \mathrm{H}, \mathrm{H}-1$), 4.35 (d, 1H, $\left.J_{1,2}=2.5 \mathrm{~Hz} \mathrm{H}-2\right), 4.13\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8}=12.5 \mathrm{~Hz}, J_{3,8}\right.$ $=5.0 \mathrm{~Hz}, \mathrm{H}-8), 4.10\left(\mathrm{~d}, 1 \mathrm{H}, J_{8,8}=9.0 \mathrm{~Hz}, \mathrm{H}-8\right), 4.06-4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.84(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{7,7 \mathrm{a}}=6.5 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}\right), 3.75\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,5}=11.3 \mathrm{~Hz}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}-5\right), 3.73(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{5,5}=10.8 \mathrm{~Hz}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}-5\right), 2.54-2.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 80.1$ (C-7a), 77.6 (C-1), 77.1 (C-2), 73.1 (C-7), 67.7 (C3), 55.8 (C-8), 48.6 (C-5), 33.1 (C-6).
11. Chikkanna, D.; Singh, O. V.; Kong, S. B.; Han, H.,. Tetrahedron Lett. 2005, 46, 8865-8868.

Table 5 Physical and spectral Data for (+)-1,2-Diepi-alexine $\cdot \mathrm{HCl}$ salt [ent-36] ${ }^{11}$ and $\mathbf{3 6} \cdot \mathrm{HCl}$ salt $[3,7$-diepi-australine $\cdot \mathrm{HCl}$ salt].

	1,2-Diepi-alexine $\cdot \mathrm{HCl}$ salt ${ }^{11}$	Synthetic 36-HCl salt	
Physical Appearance	Not reported	Pale yellow viscous oil	
Optical Rotation	$[\alpha]_{D}^{20}+33^{\circ}\left(c 0.1, \mathrm{H}_{2} \mathrm{O}\right), \mathrm{HCl}$ salt	$[\alpha]_{D}^{21}-21\left(c 0.63, \mathrm{H}_{2} \mathrm{O}\right), \mathrm{HCl}$ salt	
${ }^{1} \mathrm{H}$ NMR	$500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$	$500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$	
	4.62-4.58 (m, 1H)	$\begin{aligned} & 4.63\left(\mathrm{dt}, 1 \mathrm{H}, J_{6,7}=8.0 \mathrm{~Hz}, J_{6,7}=\right. \\ & \left.J_{7,7 \mathrm{a}}=6.0 \mathrm{~Hz}, \mathrm{H}-7\right) \end{aligned}$	
	4.37 (brs, 1H)	4.41 (brs, 1H, H-1)	
	4.32 (brs, 1H)	4.35 (d, 1H, $\left.J_{1,2}=2.5 \mathrm{~Hz} \mathrm{H}-2\right)$	
	4.12-3.98 (m, 3H)	$\begin{aligned} & 4.13\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,8^{\prime}}=12.5 \mathrm{~Hz}, J_{3,8}\right. \\ & =5.0 \mathrm{~Hz}, \mathrm{H}-8) \\ & 4.10\left(\mathrm{~d}, 1 \mathrm{H}, J_{8,8^{\prime}}=9.0 \mathrm{~Hz}, \mathrm{H}-8\right) \\ & 4.06-4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3) \end{aligned}$	
	3.80 (d, 1H, $J=5.8 \mathrm{~Hz})$	$\begin{aligned} & 3.84\left(\mathrm{~d}, 1 \mathrm{H}, J_{7,7 \mathrm{a}}=6.5 \mathrm{~Hz}, \mathrm{H}-\right. \\ & 7 \mathrm{a}) \end{aligned}$	
	3.75-3.60 (m, 2H)	$\begin{aligned} & 3.75\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,5}=11.3 \mathrm{~Hz}, J_{5,6}\right. \\ & =6.3 \mathrm{~Hz}, \mathrm{H}-5 \alpha) \end{aligned}$	
	3.75-3.60 (m, 2H)	$\begin{aligned} & 3.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,5}=10.8 \mathrm{~Hz}, J_{5,6}\right. \\ & =6.3 \mathrm{~Hz}, \mathrm{H}-5 \beta) \end{aligned}$	
	2.51-2.44 (m, 1H)	2.54-2.48 (m, 1H, H-6)	
	2.04-1.96 (m, 1H)	2.07-1.99 (m, 1H, H-6)	
${ }^{13} \mathrm{C}$ NMR	$\begin{aligned} & 75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} \\ & \text { (ref not given) } \end{aligned}$	$\begin{aligned} & 125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O} \\ & (\text { ref } \mathrm{MeCN} \delta 1.47) \end{aligned}$	$\Delta \delta(\mathrm{ppm})$
	81.8	80.1 (C-7a)	1.7
	79.4	77.6 (C-1)	1.8
	78.9	77.1 (C-2)	1.8
	74.8	73.1 (C-7)	1.7
	69.8	67.7 (C-3)	2.1
	57.6	55.8 (C-8)	1.8
	50.3	48.6 (C-5)	1.7
	34.9	33.1 (C-6)	1.8

[^2]${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

10

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

13

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, $\mathrm{D}_{2} \mathrm{O}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

tr080821_Unif1roine_A_13C

ep4 s2pu1				
SAmple D,O			SPECIAL	
date	Aug 212008	temp		25.0
solven	nt cocts	gain		t used
file	/nmrdata/pyner	spin		t used
$/ \mathrm{fids}$	/Archive/bup-~	hst		0.008
080903	3/thunwadee/t \sim	pw90		15.600
r08082	21_Uniflroine~	alfa		6.600
			FL	n
sw	31421.8	in		
at	1.300	dp		
np	81726	hs		nn
fb	17000		PROCESSI	N
bs	64	1b		0.50
d1	1.000	fn		used
nt	776		DISPLAY	
ct TRANSMITTER 320		sp		5779.7
		wp		5026.7
tn	C13	rfi		9423.4
sfrq	125.716	rfp		7269.4
tof	1884.0	rp		-176.6
tpwr	63	1p		-187.8
DECOUPLER		w	PLOT	
dn	H1	sc		
dof	0	vs		622
$\mathrm{dm}_{\mathrm{m}}^{\text {d }}$	yyy	th		13
dmm			cdc ph	
${ }_{\text {dmf }}$	12500			

C-8 C-5

Mn.

85	80	75	70	65	60	55	50	ppm
$\begin{gathered} { }^{13} \mathrm{C} \text { NMR }\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \\ \text { SI- } 51- \end{gathered}$								

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

15

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

SI- 52 -
${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

SI- 53 -
${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

SI- 54 -
${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

${ }^{\circ}$ Fmoc
18

* EtOAc
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

19

* EtOAc
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

SI- 56 -
${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

20

* Impurity
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

SI- 57 -
${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

$21+\underline{22}$ (minor)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

SI- 58 -
${ }^{1} \mathrm{H}$ NMR (5OO MHz, $\mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{3} \mathrm{OD}$)

[^3]${ }^{1} \mathrm{H}$ NMR (5OO MHz, $\mathrm{D}_{2} \mathrm{O}$)

2

\sim

ppm (f1)
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

* Acetone

SI- 60 -
tr090210_Rtr086_casuarine

${ }^{1} \mathrm{H}$ NMR ($5 \mathrm{OO} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($5 \mathrm{OO} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

SI- 64 -
${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

26a

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

28

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($5 \mathrm{OO} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (50O MHz, $\mathrm{D}_{2} \mathrm{O}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

ppm (f1)
tr090321_Rtr107
exp3 s2pul

H-1

${ }^{1} \mathrm{H}$ NMR (50O MHz, $\mathrm{D}_{2} \mathrm{O}$)
SI- 69 -

SAMPLE D $\mathrm{D}_{2} \mathrm{O}$

3

Pulse sequence: grosy Solvent: D20
 F1e: tros
INOVA
"wuthrich"
Relax. delay 1.000 sec Acq. time 0.128 sec
Width 7998.4 Hz
2 D Width 7998.4 Hz 20 Width 7998.4
32 repetitions 256 increments
OBSERVE H1, 499.9119776 MH

 Sq. Sine be 1100064
F1 DATA PROCESSING F1. DATA PROCESSING
Line hradening 3 . $\mathrm{H} /$
Sq. sine bell 0.016 sec Sq. sine bel1. 0.016
FT size 2048×1024 Total time $2 \mathrm{hr}, 38 \mathrm{~min}, 16 \mathrm{sec}$

COSY (500 MHz, $\mathrm{D}_{2} \mathrm{O}$)
SI- 71 -

OBSERVE H1, 499.9119726 MHZ
DECOUPLE C13, 125.7123834
Power 47 dB
on during acquisilion
off during delay
W40 triax modulated
W40-triax modulat
DATA-PROCESSING
Line broadening 3.0 Hz
Gauss apodization
Gauss apodization 0.064
FI DATA PROCESSING
Line broadening 3.0 Hz
Gauss apodization 0.006 sec

H-3 $\mathrm{H}-5=$

H-5
H-7a

Clen

HSQC (500 MHz, $\mathrm{D}_{2} \mathrm{O}$)
SI- 72 -
Temp. 25.0 c , 298.1 K
File: tr090321-Rtr107-gHMBC

Relax. delay 1.000 sec Acq. time 0.128 sec
Width 7998.4 Hz
2 LWidth 30165.9 Hz
128 repetitions
256 increments
Line broadening 3.0 Hz
Sq. Sine bell 0.064 sec
F1 DATA PROCESSING
Line broadening 3.0 Hz
Sq. sine bell 0.001 sec
ze 2048×1024
Total time $11 \mathrm{hr}, 3 \mathrm{~min}, 20$

HMBC (500 MHz, D2O)
SI- 73 -

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

${ }^{1} \mathrm{H}$ NMR ($5 \mathrm{OO} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

$31+\underline{32}$ (minor)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($5 \mathrm{OO} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($5 \mathrm{OO} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($5 \mathrm{OO} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, $\mathrm{D}_{2} \mathrm{O}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

tr090522_Rtr137-13C
exp1 s2pul D_{2}

4

${ }^{1} \mathrm{H}$ NMR (5OO MHz, $\mathrm{D}_{2} \mathrm{O}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, $\mathrm{D}_{2} \mathrm{O}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

${ }^{1} \mathrm{H}$ NMR (5OO MHz, $\mathrm{D}_{2} \mathrm{O}$)
SI- 88 -

C-2 C-7a C-7

C-3
C-8

C-5
C-6

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$
SI- 89 -
${ }^{1} \mathrm{H}$ NMR (5OO MHz, $\mathrm{D}_{2} \mathrm{O}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

Figure Structure of $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{Si} 21$ with labelling of selected atoms. Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Crystal/refinement data have been deposited with the Cambridge Crystallographic Data Centre (CCDC 752850).

[^0]: 1. Davis, A. S.; Pyne, S. G.; Skelton, B. W.; White, A. H., J. Org. Chem. 2004, 69, 3139-3143.
[^1]: 10. Nash, R. J.; Fellows, L. E.; Dring, J. V.; Fleet, G. W. J.; Derome, A. E.; Hamor, T. A.; Scofield, A. M.; Watkin, D. J., Tetrahedron Lett. 1988, 29, 2487-2490.
[^2]: 11. Chikkanna, D.; Singh, O. V.; Kong, S. B.; Han, H.,. Tetrahedron Lett. 2005, 46, 8865-8868.
[^3]: * Acetone

