Synthesis of (-)-Uniflorine A, (+)-Casuarine, (+)-Australine, (-)-3-*Epi*-australine and (-)-3,7-*Diepi*-australine

Thunwadee Ritthiwigrom, Anthony C. Willis and Stephen G. Pyne

SUPPORTING INFORMATION

General Methods and Experimental Procedures S	SI-1 - SI-39
---	--------------

TABLES

$TABLE \ 1 \ \text{Physical and Spectral Data for (-)-Uniflorine A and 1 \ldots SI-9}$				
TABLE 2 PHYSICAL AND SPECTRAL DATA FOR (+)-CASUARINE AND 2				
TABLE 3 Physical and spectral Data for (+)-Australine and $3SI-26$ –SI-27				
TABLE 4 PHYSICAL AND SPECTRAL DATA FOR (-)-3-EPI-AUSTRALINE AND 4				
Table 5 Physical and spectral Data for (+)-1,2-Diepi-alexine HCl salt [ent-36] and				
36 •HCl salt [3,7-di <i>epi</i> -australine•HCl salt]SI-39				
COPIES OF ¹H and ¹³C NMR SPECTRA SI-40-SI-89				
COPIES OF ¹ H and ¹³ C NMR SPECTRASI-40-SI-89NOTE: COPIES OF THE ¹ H AND ¹³ C NMR SPECTRA FOR THE ENANTIOMERS OF				
NOTE: COPIES OF THE ¹ H AND ¹³ C NMR SPECTRA FOR THE ENANTIOMERS OF				
NOTE: COPIES OF THE ¹ H and ¹³ C NMR SPECTRA FOR THE ENANTIOMERS OF COMPOUNDS 5 and 6 CAN BE FOUND IN THE SUPPORTING INFORMATION OF OUR				
NOTE: COPIES OF THE ¹ H and ¹³ C NMR SPECTRA FOR THE ENANTIOMERS OF COMPOUNDS 5 and 6 CAN BE FOUND IN THE SUPPORTING INFORMATION OF OUR EARLIER PUBLICATION. ¹				

INIVIR SPECTRA (INCLUDING COST, HSQC AND I	HMBC) OF $(+)$ -AUSTRALINE 5 51-07 – 51-72
NMR SPECTRA OF (-)-3-EPI-AUSTRALINE 4	SI-82 – SI-84
NMR SPECTRA OF (+)-3,7-DIEPI-AUSTRALINE 36	

ORTEP PLOT for compound **21**

SI-90

1. Davis, A. S.; Pyne, S. G.; Skelton, B. W.; White, A. H., J. Org. Chem. 2004, 69, 3139-3143.

General methods: All IR spectra were run as neat samples. NMR assignments were made on the basis of COSY, DEPT, HSQC and sometimes HMBC experiments. In the case of epoxide compounds NMR assignments are given based on the numbering system of the parent pyrrolidine, pyrrolizine or indolizine and not the systematic numbering. Petrol refers to the hydrocarbon fraction of bp 40-60 $^{\circ}$ C

(6E)-5-(Allylamino)-5,6,7-trideoxy-7-phenyl-D-gluco-hept-6-enitol (5).

To a mixture of L-xylose (11.00 g, 73.3 mmol) and *trans*-2-phenylvinyl boronic acid (11.93 g, 80.6 mmol) was added absolute ethanol (110 mL) and allylamine (6.05 mL, 80.6 mmol). The reaction mixture was stirred at rt for 3 days, followed by the evaporation of all volatiles *in vacuo*. The residue was dissolved in 1 M HCl (*ca* 20 mL), applied to a column of DOWEX resin (H⁺ form, 150 mL) and washed with distilled H₂O (2 L). The product was eluted with 7 M NH₄OH (2 L) and 14 M NH₄OH (2 L). The fractions containing the product were combined and concentrated to a brown foamy solid (19.78 g, 92%).

 $[\alpha]_{D}^{25}$ +27 (*c* 0.06, MeOH).

This compound had the same R_f , MS, IR and NMR spectroscopic data as reported earlier.¹

1. Davis, A. S.; Pyne, S. G.; Skelton, B. W.; White, A. H., J. Org. Chem. 2004, 69, 3139-3143.

tert-Butyl allyl((2*S*,3*S*,4*R*,5*R*,*E*)-1,2,3,4-tetrahydroxy-7-phenylpent-6-en-5-yl)carbamate (6).

To a solution of **5** (21.49 g, 73.34 mmol) in anhydrous MeOH (300 mL) was added anhydrous Et_3N (20.45 mL, 14.67 mmol) and di-*tert*-butyl-dicarbonate (47.44 g, 16.87 mmol). The reaction mixture was stirred at rt under an atmosphere of N_2 for 3 days, followed by the evaporation of all volatiles *in vacuo*. The residue was purified by flash column chromatography (FCC) (80:20 to 100:0 EtOAc/petrol and then 20:80 MeOH/EtOAc) to give a brown oil (23.1 g, 80%).

 $[\alpha]_{D}^{25}$ -50 (*c* 3.0, CHCl₃).

This compound had the same R_f , MS, IR and NMR spectroscopic data as reported earlier.¹

1. Davis, A. S.; Pyne, S. G.; Skelton, B. W.; White, A. H., J. Org. Chem. 2004, 69, 3139-3143.

tert-Butyl allyl((2*S*,3*S*,4*R*,5*R*,*E*)-1,2-*O*-(1-methylethylidene)-3,4-dihydroxy-7-phenylpent-6-en-5-yl)carbamate (7).

To a solution of **6** (4.957 g, 12.61 mmol) in anhydrous acetone (70 mL) was added 2,2-dimethoxypropane (1.86 mL, 15.13 mmol) and pyridinium *p*-toluenesulfonate (0.317 g, 1.261 mmol). The reaction mixture was stirred under an atmosphere of N₂ for 22 h, followed by the evaporation of all volatiles *in vacuo* to give a brown oil. The residue was purified by FCC (30:70 to 50:50 EtOAc/petrol) to give **7** (3.485 g, 64%) as a white solid, foamy solid. A small amount of another regioisomeric compound was also isolated (1.759 g, 19%). This compound was not further characterized. $[\alpha]_{p}^{22}$ -36 (*c* 6.5, CHCl₃). [Lit.² for (+)-**7**; $[\alpha]_{p}^{23}$ +41 (*c* 10.1, CHCl₃)].

This compound had the same R_f , MS, IR and NMR spectroscopic data as reported for (+)-7.²

^{2.} Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.

(2*R*)-*tert*-Butyl 2-((1*R*,2*S*,3*S*)-1,2,3,4-tetrahydroxybutyl-3,4-*O*-(1-methylethylidene))-2,5-dihydro-1*H*-pyrrole-1-carboxylate (8).

To a solution of **7** (5.553 g, 12.82 mmol) in anhydrous CH_2Cl_2 (260 mL) was added Grubbs' I catalyst (1.055 g, 1.282 mmol). The reaction mixture was stirred and heated at reflux for 18 h under an atmosphere of N₂ followed by the removal of all volatiles *in vacuo*. The residue was purified by FCC (50:50 to 70:30 EtOAc/petrol) to give **8** as a dark brown viscous oil (4.09 g, 97%).

 $[\alpha]_{D}^{21}$ +125 (*c* 4.5, CHCl₃). [Lit.² for (-)-8; $[\alpha]_{D}^{22}$ -37 (*c* 5.75, CHCl₃)].

This compound had the same R_f , MS, IR and NMR spectroscopic data as reported for (-)-8.²

2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.

(2*R*,3*S*,4*R*)-*tert*-Butyl 2-((1*R*,2*S*,3*S*)-1,2,3,4-tetrahydroxybutyl-3,4-*O*-(1-methylethylidene))-3,4-dihydroxypyrrolidine-1-carboxylate (9).

To a solution of **8** (4.00 g, 12.16 mmol) in acetone (60 mL) and water (60 mL) was added potassium osmate-dihydrate (223.7 mg, 0.608 mmol) and 4-morpholine-*N*-oxide (2.987 g, 25.53 mmol). The reaction mixture was stirred for 18 h at rt and evaporated to give a dark brown oil which was purified by FCC (100% EtOAc to 4:96 MeOH/EtOAc) to give **9** as a brown foamy solid (3.174 g, 72%).

 $[\alpha]_{D}^{22}$ +32 (*c* 4.9, CHCl₃). [Lit.² for (-)-9; $[\alpha]_{D}^{22}$ -32 (*c* 4.8, CHCl₃).

This compound had the same R_f , MS, IR and NMR spectroscopic data as reported for (-)-9.²

^{2.} Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.

(2*R*,3*S*,4*R*)-*tert*-Butyl 3,4-bis(benzyloxy)-2-((1*R*,2*S*,3*S*)- 1,2-bis(benzyloxy)-3,4-O-(1-methylethylidene))- 3,4-dihydroxybutylpyrrolidine-1-carboxylate (10).

To a solution of **9** (3.077 g, 8.477 mmol) in dry THF (85 mL) was added *n*-Bu₄NI (313.1 mg, 0.848 mmol) and BnBr (8.07 mL, 67.81 mmol) follow by NaH (2.441 g, 50.86 mmol, 50 % in mineral oil) at 0 °C. After H₂ evolution had ceased (15 min) the reaction mixture was stirred at rt for 24 h. MeOH (50 mL) was then added followed by evaporation of all volatiles *in vacuo*. The residue was dissolved in EtOAc and filtered through celite, followed by further washings of the solids with EtOAc. The solvent was evaporated and the residue was purified by FCC (10:90 to 15:85 EtOAc/petrol) to give **10** as a pale yellow syrup (5.89 g, 96%).

 $[\alpha]_{D}^{23}$ -50 (*c* 5.4, CHCl₃). [Lit.² for (+)-**10**; $[\alpha]_{D}^{23}$ +45 (*c* 4.26, CHCl₃).

This compound had the same R_f , MS, IR and NMR spectroscopic data as reported for (+)-10.²

2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.

1-[(2*S*,3*R*,4*R*)-3,4-Bisbenzyloxy-2-pyrrolidinyl]-(1*R*,2*S*,3*R*)-1,2-dibenzyloxy-butane-3,4-diol (11).

To a solution of **10** (5.78 g, 7.994 mmol) in MeOH (200 mL) was added dropwise conc. HCl solution (40 mL) and the mixture was stirred at rt for 18 h. The reaction mixture was basified at 0 $^{\circ}$ C with aqueous NH₃ solution (28%). The mixture was extracted with EtOAc, dried (Na₂CO₃), evaporated and purified by FCC (100% EtOAc to 93:5:2 EtOAc/MeOH/NH₃) to give **11** (3.788 g, 81%) as a yellow viscous oil.

 $[\alpha]_{p}^{22}$ -27 (c 3.7, CHCl₃). [Lit.² for (+)-11; $[\alpha]_{p}^{21}$ +35 (c 1.45, CHCl₃).

This compound had the same R_f , MS, IR and NMR spectroscopic data as reported for (+)-**11**.² It should be noted that the reported assignments for H-3 and H-4 and C-3 and C-4 should be interchanged.

2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.

1-[(2*S*,3*R*,4*R*)-3,4-Bisibenzyloxy-2-pyrrolidinyl]-(1*R*,2*S*,3*R*)-1,2-dibenzyloxy-4-(*tert*-butyldimethylsilyloxy)-butan-3-ol (12).

To a solution of the diol **11** (0.312 g, 0.535 mmol), imidazole (0.77 mg, 1.123 mmol) and 4-dimethylaminopyridine (6.5 mg, 0.053 mmol) in THF (6 mL) under N₂ at rt was added TBSCl (0.97 g, 0.642 mmol). The reaction mixture was stirred for 2 days and the reaction was quenched by the addition of water. The solvent was removed under reduced pressure and the residue was extracted with CH_2Cl_2 . The combined CH_2Cl_2 extracts were combined and washed with brine, dried (Na₂CO₃) and then evaporated to leave a residue which was chromatographed on silica gel by FCC (30:70 EtOAc/petrol to 2:98 MeOH /EtOAc). This gave **12** (0.316 g, 85%) as a yellow viscous oil.

 $[\alpha]_{D}^{22}$ -17 (*c* 4.6, CHCl₃). [Lit.² for (+)-12; $[\alpha]_{D}^{22}$ +21 (*c* 0.7, CHCl₃).

This compound had the same R_f , MS, IR and NMR spectroscopic data as reported for (+)-12.² It should be noted that the reported assignments for H-3 and H-4 and C-3 and C-4 should be interchanged.

2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.

(1*R*,2*R*,3*R*,6*R*,7*S*,7a*R*)-1,2,6,7-Tetrabenzyloxy-3-((*tert*-butyldimethylsilyloxy)methyl)-hexahydro-1*H*-pyrrolizine (13).

To a solution of **12** (0.792 g, 1.136 mmol) in pyridine (11 mL) was added triphenylphosphine (0.301 g, 1.148 mmol), triethylamine hydrochloride (0.156 g, 1.136 mmol) and diisopropyl azodicarboxylate (0.56 mL, 2.841 mmol). The mixture was stirred at rt for 3 days. The volatiles were removed in *vacuo* then satd. CuSO₄ solution (20 mL) was added. The reaction mixture was extracted with CH₂Cl₂ (3 x 25 mL). The combined CH₂Cl₂ extracts were washed with satd. CuSO₄ solution (20 mL), dried (Na₂CO₃), filtered and then evaporated. FCC (100% petrol to 20:80 EtOAc/petrol) gave **13** as a yellow viscous oil (0.587 g, 76%).

 $[\alpha]_{D}^{20}$ -34 (*c* 0.4, CHCl₃).

IR v_{max} (cm⁻¹): 3070, 3040, 2924, 2852, 1454, 1120, 1097.

This compound had the same R_f , MS and NMR spectroscopic data as reported for (+)-13.²

2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.

((1*R*,2*R*,3*R*,6*R*,7*S*,7a*R*)-1,2,6,7-Tetrabenzyloxy-hexahydro-1*H*-pyrrolizin-3-yl)methanol (14).

To a solution of **13** (1.417 g, 2.087 mmol) in MeOH (50 mL) was added dropwise conc. HCl solution (12.5 mL) and the mixture was stirred at rt for 18 h. The mixture was basified at 0 0 C with aqueous NH₃ solution (28%). The mixture was extracted with EtOAc, dried (Na₂CO₃), evaporated and purified by FCC (50:50 EtOAc/petrol) to give **14** (1.058 g, 90%) as a pale yellow viscous oil. R_f 0.11 (50:50 EtOAc/petrol). $[\alpha]_D^{20}$ -35 (*c* 1.3, CHCl₃). [Lit.² for (+)-**14**; $[\alpha]_D^{23}$ +34 (*c* 1.3, CHCl₃). IR v_{max} (cm⁻¹): 3446, 3050, 2893, 2858, 1449, 1107, 1097.

This compound had the same R_f , MS and NMR spectroscopic data as reported for (+)-14.²

2. Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.

(1*R*,2*R*,3*R*,6*R*,7*S*,7a*R*)-Hexahydro-3-(hydroxymethyl)-1*H*-pyrrolizine-1,2,6,7-tetraol (uniflorine A) (1).

To a solution of **14** (0.636 g, 1.126 mmol) in MeOH (12 mL) was added PdCl₂ (0.300 g, 1.690 mmol). The mixture was stirred at rt under an atmosphere of H₂ (balloon) for 1 day. The mixture was filtered through a celite pad and the solids were washed with MeOH. The combined filtrates were evaporated *in vacuo* and the residue was dissolved in water (3 mL) and applied to a column of Amberlyst (OH⁻) A-26 resin (7 cm). Elution with water followed by evaporation *in vacuo* gave uniflorine A **1** (0.201 g, 87%) as a white solid. mp. 163.2-164.8 °C, (Lit.³ mp. 174 - 178 °C).

 $[\alpha]_{D}^{23}$ -3.7 (*c* 1.2, H₂O). [Lit.³ for (-)-uniflorine A; $[\alpha]_{D}$ -4.4 ° (*c* 1.2, H₂O).

This compound had the same R_f , MS, IR and NMR spectroscopic data as reported for (+)-1.²

^{2.} Ritthiwigrom, T.; Pyne, S. G., Org. Lett. 2008, 10, 2769-2771.

^{3.} Matsumura, T.; Kasai, M.; Hayashi, T.; Arisawa, M.; Momose, Y.; Arai, I.; Amagaya, S.; Komatsu, Y., *Pharmaceutical Biol.* **2000**, *38*, 302-307.

Table I Physical and spectral Data for (-)-Uniflorine A ⁺ and I.				
	Uniflorine A ³	Synthetic 1		
Physical Appearance	Colourless Microcrystals	White solid		
Optical Rotation	$[\alpha]_{\rm D}$ -4.4 ° (<i>c</i> 1.2, H ₂ O)	$[\alpha]_{D}^{23}$ -3.7 (c 1.2, H ₂ O)		
Melting Point	174 - 178 °C	163.2-164.8 °C		
Mass Spectrometry	ISMS $m/z 206 (M^+ + H)$	ESI +ve m/z 206 (M + H ⁺ , 100%)		
¹ H NMR	500 MHz, D ₂ O	500 MHz, D ₂ O		
	4.35 (m, 1H, H-2)	4.34 (dt, 1H, $J_{5\alpha,6} = J$ 4.8 Hz, H-6)	$J_{5\beta,6} = J_{6,7} =$	
	4.18 (t, 1H, $J_{1,8a} = J_{1,2} = 4.5$ Hz, H-1)	4.17 (t, 1H, $J_{6,7} = J_{6,7}$ H-7)	$_{a} = 4.5 \text{ Hz},$	
	$3.94 (t, 1H, J_{7, 8} = J_{8, 8a} = 7.7$ Hz, H-8)	3.92 (t, 1H, $J_{1,2} = J_{1,7}$ H-1)	$_{a} = 7.5 \text{ Hz},$	
	$3.81 (dd, 1H, J_{6,7} = 9.0, J_{7,8} = 7.7 Hz, H-7)$	3.79 (t, 1H, $J_{1,2} = J_{2,3}$ 2)	= 8.5 Hz, H-	
	$3.76 \text{ (dd, 1H, } J_{5\beta, 6} = 3.8, J_{5\alpha, 5\beta}$ = 11.8 Hz, H-5β)	$\begin{array}{l} 3.76 \ (dd, 1H, J_{8,8'} = 11.8 \ Hz, J_{3,8'} \\ = 3.8 \ Hz, H-8') \\ \hline f_{5\alpha, 5\beta} \\ 3.61 \ (dd, 1H, J_{3,8} = 6.5, J_{8,8'} = 11.5 \ Hz, H-8) \\ \hline f_{5\alpha, 5\beta} \\ 3.61 \ (dd, 1H, J_{3,8} = 6.5, J_{8,8'} = 11.5 \ Hz, H-8) \\ \hline f_{3\alpha, 3\beta} \\ 3.02 \ (dd, 1H, J_{1,7a} = 7.5, J_{7,7a} = 5.8, Hz, H-7a) \\ \hline f_{3\alpha, 3\beta} \\ 3.02 \ (dd, 1H, J_{5\beta,6} = 5.8, J_{5\alpha,5\beta} = 11.8 \ Hz, H-5\beta) \\ \hline f_{3\alpha, 3\beta} \\ 2.96 \ (dd, 1H, J_{5\alpha,6} = 5.3, J_{5\alpha,5\beta} = 12.3 \ Hz, H-5\alpha) \end{array}$		
	3.61 (dd, 1H, $J_{5\alpha, 6} = 6.4, J_{5\alpha, 5\beta}$			
	$= 11.8 \text{ Hz, H-5}\alpha)$ 3.14 (dd, 1H, $J_{8, 8a} = 7.7, J_{1,8a} =$			
	4.5 Hz, H-8a)			
	3.04 (dd, 1H, $J_{2, 3\alpha} = 5.1, J_{3\alpha, 3\beta}$ = 12.1 Hz, H-3 α)			
	2.98 (dd, 1H, $J_{2, 3\beta} = 5.1, J_{3\alpha, 3\beta}$ = 12.1 Hz, H-3 β)			
	$\frac{2.76 \text{ (m, 1H, } J_{5\alpha, 6} = 6.4, J_{5\beta, 6}}{3.8, J_{6, 7} = 9.0 \text{ Hz, H-6}}$			
¹³ C NMR	125 MHz, D ₂ O	125 MHz, D ₂ O		
	(ref. TMS?)	(ref. MeCN, δ 1.47)	Δδ (ppm)	
	81.2 (d, C-8)	79.1 (C-1)	2.1	
	79.9 (d, C-7)	77.8 (C-2)	2.1	
	78.1 (d, C-1)	76.0 (C-7)	2.1	
	74.2 (d, C-2)	72.1 (C-6)	2.1	
	73.6 (d, C-8a)	71.5 (C-7a)	2.1	
	72.5 (d, C-6)	70.3 (C-3)	2.2	
	65.3 (t, C-5)	63.2 (C-8)	2.1	
	60.0 (t, C-3)	57.8 (C-5)	2.2	

Table 1 Physical and spectral Data for (-)-Uniflorine A³ and **1**.

3. Matsumura, T.; Kasai, M.; Hayashi, T.; Arisawa, M.; Momose, Y.; Arai, I.; Amagaya, S.; Komatsu, Y., *Pharmaceutical Biol.* **2000**, *38*, 302-307.

(*R*)-*tert*-Butyl 2-((1*R*,2*S*)-1,2-bis(benzyloxy)-2-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl)-2,5-dihydro-1*H*-pyrrole-1-carboxylate (15).

15

To a solution of the diol **8** (8.55 g, 25.84 mmol) in dry THF (260 mL) was added *n*-Bu₄NI (954.3 mg, 2.58 mmol) and BnBr (9.27 mL, 78.0 mmol) follow by NaH (3.74 g, 78.0 mmol, 50 % in mineral oil) at 0 °C. After H₂ evolution had ceased (15 min) the reaction mixture was stirred at rt for 18 h. MeOH (50 mL) was then added followed by evaporation of all volatiles *in vacuo*. The residue was dissolved in EtOAc and filtered through celite, followed by further washings of the solids with EtOAc. The solvent was evaporated and the residue was purified by FCC (10:90 to 40:60 EtOAc/petrol) to give **15** as a yellow syrup (12.21 g, 92%). R_f 0.21 (15:85 EtOAc/petrol).

 $[\alpha]_{D}^{22}$ +56 (*c* 1.4, CHCl₃).

MS (ESI +ve) m/z 510 (M + H⁺, 30%).

HRMS (ESI +ve) calculated for $C_{30}H_{40}NO_6$ (M+H⁺) 510.2856, found 510.2854.

IR v_{max} (cm⁻¹): 2980, 2929, 1696, 1393, 1107, 1060.

¹H NMR (500 MHz, CDCl₃) δ (major rotamer) 7.36-7.22 (m, 10H, Ar), 5.88 (app. t, 2H, *J* 8.5 Hz, H-3 and H-4), 4.81 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.74 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.55 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.50 (d, 1H, *J* 5.0 Hz, H-2), 4.35-4.25 (m, 2H, H-1' or H-2' and C*H*HPh), 4.16-3.98 (m, 2H, 2xH-5), 3.91 (d, 1H, *J* 4.5 Hz, H-1' or H-2'), 3.60-3.42 (m, 3H, 2xH-4' and H-3'), 1.45 (s, 9H, *t*-Bu), 1.42 (s, 3H, CH₃), 1.35 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ (major rotamer) 153.9 (CO), 138.1 (C), 137.6(C), 128.48 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 127.7 (CH), 127.6 (C-3 or C-4), 126.3 (C-3 or C-4), 109.1 (C), 80.8 (C-3'), 79.9 (C), 79.3 (C-1' or C-2'), 77.1 (C-1' or C-2'), 74.1 (CH₂), 73.7 (CH₂), 67.5 (C-2), 65.5 (C-4'), 53.2 (C-5), 28.5 (C(*CH₃*)₃), 26.6 (CH₃), 25.5 (CH₃).

¹³C NMR (125 MHz, CDCl₃) δ (minor rotamer) 154.2, 138.4, 137.9, 128.42, 128.39 128.3, 128.1, 127.8, 127.5, 126.9, 125.7, 109.0, 81.4, 79.7, 79.5, 77.5, 73.9, 73.5, 67.9, 65.8, 53.3, 28.4, 26.6, 25.6.

(2S,3R,4R)-3,4-Bis(benzyloxy)-4-((R)-2,5-dihydro-1H-pyrrol-2-yl)butane-1,2-diol (16).

To a solution of **15** (10.93 g, 21.47 mmol) in MeOH (500 mL) was added dropwise conc. HCl solution (95 mL) and the mixture was stirred at rt for 30 h. The reaction mixture was basified at 0 $^{\circ}$ C with aqueous NH₃ solution (28%). The mixture was extracted with EtOAc and the combined extracts were dried (Na₂CO₃), evaporated and purified by FCC (100% EtOAc to 8:2:1 EtOAc/MeOH/NH₃) to give **16** (6.0 g, 76%) as a brown foamy solid. R_f 0.34 (9:0.8:0.2 EtOAc/MeOH/NH₃).

 $[\alpha]_{D}^{21}$ +122 (*c* 3.2, CHCl₃).

MS (ESI +ve) m/z 370 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_{22}H_{28}NO_4$ (M+H⁺) 370.2018, found 370.2009.

IR v_{max} (cm⁻¹): 3390, 3288, 3062, 3027, 2955, 2909, 1078, 1059.

¹H NMR (500 MHz, CDCl₃) δ 7.3.4-7.27 (m, 10H, Ar), 5.97 (dd, 1H, *J* 6.0, 1.5 Hz, H-4), 5.89 (dd, 1H, *J* 6.0, 1.5 Hz, H-3), 4.73 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.67 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.60 (d, 1H, *J* 11.0 Hz, C*H*HPh), 4.53 (d, 1H, *J* 11.0 Hz, C*H*HPh), 4.27 (brs, 1H, H-2), 3.90-3.88 (m, 1H, H-3'), 3.76-3.70 (m, 3H, 2xH-5 and H-4'), 3.65-3.63 (m, 1H, H-2'), 3.61-3.56 (m, 2H, H-1' and H-4').

¹³C NMR (125 MHz, CDCl₃) δ 138.0 (C), 137.9 (C), 129.9 (C-4), 128.8 (C-3), 128.42 (CH), 128.4 (CH), 128.2 (CH), 127.9 (CH), 127.8 (CH), 127.7 (CH), 81.6 (C-1'), 80.9 (C-2'), 74.4 (CH₂), 74.2 (CH₂), 70.6 (C-3'), 66.4 (C-2), 63.7 (C-4'), 52.7 (C-5).

(2*S*,3*R*,4*R*)-3,4-Bis(benzyloxy)-1-(*tert*-butyldimethylsilyloxy)-4-((*R*)-2,5-dihydro-1*H*-pyrrol-2-yl)butan-2-ol (17).

To a solution of the diol **16** (0.302 g, 0.816 mmol) and a crystal of 4dimethylaminopyridine in THF (8 mL) under N₂ at rt was added imidazole (0.121 g, 1.776 mmol) and TBSCl (0.153 g, 1.02 mmol). The reaction mixture was stirred for 24 h and the reaction was quenched by the addition of water. The solvent was removed under reduced pressure and the residue was extracted with EtOAc. The combined extracts were washed with brine, dried (Na₂CO₃) and then evaporated to leave a residue which was chromatographed on silica gel by FCC (100% EtOAc to 10:2:1 EtOAc/MeOH/NH₃) to give **17** (0.320 g, 81%) as a brown viscous oil. R_f 0.65 (9:0.8:0.2 EtOAc/MeOH/NH₃).

 $[\alpha]_{D}^{21}$ +93 (*c* 2.3, CHCl₃).

MS (ESI +ve) m/z 484 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_{28}H_{42}NO_4Si$ (M+H⁺) 484.2883, found 484.2906. IR v_{max} (cm⁻¹): 3390, 3288, 3062, 3021, 2955, 2929, 1077, 1062.

¹H NMR (500 MHz, CDCl₃) δ 7.3.6-7.27 (m, 10H, Ar), 5.98 (dd, 1H, *J* 5.5, 1.5 Hz, H-4), 5.92 (dd, 1H, *J* 6.0, 2.0 Hz, H-3), 4.75 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.73 (d, 1H, *J* 10.0 Hz, C*H*HPh), 4.69 (d, 1H, *J* 11.0 Hz, C*H*HPh), 4.52 (d, 1H, *J* 11.0 Hz, C*H*HPh), 4.21-4.18 (m, 1H, H-2), 3.88-3.85 (m, 2H, H-2' and H-3'), 3.74-3.70 (m, 4H, 2xH-5 and 2xH-4'), 3.57 (app. t, 1H, *J* 7.0 Hz, H-1'), 0.91 (s, 9H, *t*-Bu), 0.08 (s, 3H, CH₃), 0.07 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ 138.6 (C), 138.2 (C), 130.2 (C-4), 129.4 (C-3), 128.3 (CH), 128.2 (CH), 128.0 (CH), 127.8 (CH), 127.6 (CH), 127.5 (CH), 82.6 (C-1'), 79.8 (C-2'), 74.6 (CH₂), 74.0 (CH₂), 70.3 (C-3'), 66.2 (C-2), 63.2 (C-4'), 53.1 (C-5), 25.9 (C(*CH₃*)₃), 18.1 (C), -5.4 (CH₃), -5.5 (CH₃).

(*R*)-(9*H*-Fluoren-9-yl)methyl 2-((1*R*,2*R*,3*S*)-1,2-bis(benzyloxy)-4-(*tert*-butyldimethylsilyloxy)-3-hydroxybutyl)-2,5-dihydro-1*H*-pyrrole-1-carboxylate (18).

To a solution of **1**7 (6.05 g, 0.013 mol) in THF (125 mL) and satd. Na₂CO₃ solutiuon (60 mL) was added 9-fluorenylmethylchloroformate (3.89 g, 15.03 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 3 h. Water (20 mL) was added and the solvent was removed under reduced pressure and the residue was extracted with CH_2Cl_2 (3x70 mL). The combined extracts were washed with brine, dried (Na₂CO₃) and then evaporated to leave a residue which was chromatographed on silica gel by

FCC (10:90 to 30:70 EtOAc/petrol) to give **18** (8.31 g, 94%) as a colourless viscous oil. $R_f 0.47$ (20:80 EtOAc/petrol).

 $[\alpha]_{D}^{24}$ +125 (*c* 2.0, CHCl₃).

MS (ESI +ve) m/z 706 (M + H⁺, 20%).

HRMS (ESI +ve) calculated for $C_{43}H_{52}NO_6Si$ (M+H⁺) 706.3564, found 706.3537.

IR v_{max} (cm⁻¹): 3061, 3028, 2945, 2924, 1700, 1413, 1107.

¹H NMR (500 MHz, CDCl₃) δ (major rotamer) 7.78-7.59 (m, 4H, Ar), 7.42-7.16 (m, 14H, Ar), 5.97-5.95 (m, 1H, H-3), 5.92-5.89 (m, 1H, H-4), 4.90 (d, 2H, *J* 11.0 Hz, 2xC*H*HPh), 4.91-4.89 (m, 1H, H-2), 4.67-4.63 (m, 1H, C*H*HPh), 4.47 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.45 (d, 1H, *J* 8.0 Hz, H-1' or H-2'), 4.39 (dd, 2H, *J* 7.0, 2.3 Hz, CH₂ (Fmoc)), 4.26-4.20 (m, 1H, C*H* (Fmoc)), 4.26-4.07 (m, 2H, 2xH-5), 3.88 (dd, 1H, *J* 13.5, 7.5 Hz, H-3'), 3.77 (d, 1H, *J* 7.5 Hz, H-1' or H-2'), 0.90 (s, 9H, *t*-Bu), 0.07 (s, 3H, CH₃), 0.06 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ (major rotamer) 154.3 (CO), 144.0 (C), 143.9 (C), 141.3 (C), 141.2 (C), 138.4 (C), 138.2 (C), 128.3 (CH), 128.2 (CH), 128.1 (CH), 127.9 (CH), 127.6 (CH), 127.5 (CH), 126.9 (CH), 125.0 (CH), 119.9 (CH), 78.3 (C-1'), 77.8 (C-2'), 74.7 (CH₂), 74.3 (CH₂), 70.8 (C-3'), 66.9 (CH₂ (Fmoc)), 66.2 (C-2), 63.6 (C-4'), 53.4 (C-5), 47.2 (CH (Fmoc)), 25.8 (C(*CH₃*)₃), 18.1 (C), -5.4 (CH₃), -5.5 (CH₃).

¹³C NMR (125 MHz, CDCl₃) δ (minor rotamer) 154.3, 144.0, 143.8, 141.3, 141.2, 138.3, 138.2, 128.2, 127.8, 127.7, 127.6, 126.7, 126.5, 125.5, 124.7, 119.9, 80.2, 78.6, 74.9, 74.8, 71.0, 65.9, 65.5, 63.5, 54.2, 47.7, 25.7, 18.0, -5.4.

(1*S*,2*S*,5*R*)-(9*H*-Fluoren-9-yl)methyl 2-((1*R*,2*R*,3*S*)-1,2-bis(benzyloxy)-4-(*tert*-butyldimethylsilyloxy)-3-hydroxybutyl)-6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate (19).

To a solution of the olefin **18** (2.37 g, 3.37 mmol) in MeCN (35 mL) was added Na₂EDTA (13.5 mL, 4 x 10^{-4} M) and CF₃C(O)CH₃ (6.8 mL, 7.60 mmol). The reaction was chilled to 0 °C before the portionwise addition of a mixture of NaHCO₃ (4.24 g, 50.47 mmol) and oxone (4.14 g, 6.73 mmol) over 15 min. After stirring for 2 h at 0

^oC, the mixture was poured into water followed by removed of the volatiles under reduced pressure. The residue was extracted with CH_2Cl_2 (3x40 mL) and the combined organic extracts were washed with brine, dried (Na₂CO₃) and then evaporated to leave a residue which was chromatographed on silica gel by FCC (10:90 to 20:80 EtOAc/petrol) to give **19** (1.95 g, 81%) as a pale yellow oil. R_f 0.42 (20:80 EtOAc/petrol).

 $[\alpha]_{D}^{25}$ +99 (*c* 1.1, CHCl₃).

MS (ESI +ve) m/z 744 (M + Na⁺, 100%).

HRMS (ESI +ve) calculated for $C_{43}H_{51}NO_7SiNa$ (M+Na⁺) 744.3333, found 744.3360. IR v_{max} (cm⁻¹): 3062, 2945, 2924, 2858, 1700, 1454, 1110.

¹H NMR (500 MHz, CDCl₃) δ (major rotamer) 7.76-7.54 (m, 4H, Ar), 7.41-7.16 (m, 14H, Ar), 4.86 (d, 1H, *J* 10.5 Hz, *CH*HPh), 4.67 (d, 1H, *J* 12.0 Hz, *CH*HPh), 4.64 (d, 1H, *J* 11.5 Hz, *CH*HPh), 4.36 (d, 1H, *J* 11.0 Hz, *CH*HPh), 4.36-4.30 (m, 3H, *CH*₂ (Fmoc) and H-2), 4.26 (brs, 1H, H-1'), 4.19-4.15 (m, 1H, *CH* (Fmoc)), 3.91-3.86 (m, 1H, H-3'), 3.86-3.80 (m, 2H, H-2' and H-3), 3.74-3.67 (m, 2H, H-4' and H-5), 3.63 (d, 1H, *J* 2.0 Hz, H-4), 3.59-3.53 (m, 1H, H-4'), 3.24-3.20 (m, 1H, H-5), 0.88 (s, 9H, *t*-Bu), 0.04 (s, 3H, CH₃), 0.03 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ (major rotamer) 154.9 (CO), 143.7 (C), 141.3 (C), 138.0 (C), 137.8 (C), 128.7 (CH), 128.2 (CH), 127.9 (CH), 127.8 (CH), 127.6 (CH), 127.1 (CH), 127.0 (CH), 125.0 (CH), 124.9 (CH), 119.9 (CH), 79.1 (C-1'), 77.2 (C-2'), 74.9 (CH₂), 74.4 (CH₂), 70.6 (C-3'), 67.1 (CH₂ (Fmoc)), 63.5 (C-4'), 60.1 (C-2), 56.3 (C-3), 55.6 (C-4), 47.8 (C-5), 47.1 (CH (Fmoc)), 25.8 (C(*CH₃*)₃), 18.1 (C), -5.4 (CH₃), -5.5 (CH₃).

¹³C NMR (125 MHz, CDCl₃) δ (minor rotamer) 155.0, 144.0, 141.2, 137.9, 137.7, 127.8, 127.7, 127.69, 127.64, 127.63, 127.5, 127.4, 125.0, 124.7, 120.0, 80.6, 78.0, 75.0, 74.8, 70.8, 66.2, 63.4, 59.8, 56.4, 54.9, 48.2, 47.6, 25.7, 18.07, -5.45, -5.48.

(1*S*,2*S*,5*R*)-(9*H*-Fluoren-9-yl)methyl 2-((1*R*,2*S*,3*S*)-1,2-bis(benzyloxy)-4-(*tert*-butyldimethylsilyloxy)-3-(methylsulfonyloxy)butyl)-6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate (20).

To a solution of **19** (0.414 g, 0.574 mmol) in anhydrous CH_2Cl_2 (6 mL) was added anhydrous Et_3N (0.24 mL, 1.723 mmol) and methanesulfonyl chloride (0.089 mL, 1.148 mmol). The reaction mixture was stirred at 0 °C under an atmosphere of N₂ for 3 h, followed by the evaporation of all volatiles *in vacuo*. Water (20 mL) was added and the residue was extracted with CH_2Cl_2 (3x20 mL). The combined organic extracts were washed with brine, dried (Na₂CO₃) and then evaporated to leave a residue which was chromatographed on silica gel by FCC (10:90 to 30:70 EtOAc/petrol) to give **20** (0.433 g, 94%) as a pale yellow oil. R_f 0.5 (30:70 EtOAc/petrol).

 $[\alpha]_{D}^{25}$ +64 (*c* 1.1, CHCl₃)

MS (ESI +ve) m/z 822 (M + Na⁺, 100%).

HRMS (ESI +ve) calculated for C₄₄H₅₄NO₉SSi (M+H⁺) 800.3289, found 800.3273. IR v_{max} (cm⁻¹): 2950, 2924, 2888, 2852, 1695, 1360, 1328, 1175, 1110.

¹H NMR (500 MHz, CDCl₃) δ (major rotamer) 7.70-7.66 (m, 2H, Ar), 7.45 (app. t, 2H, *J* 6.8 Hz, Ar), 7.35-7.11 (m, 14H, Ar), 4.76-4.73 (m, 1H, H-3'), 4.64 (d, 1H, *J* 10.5 Hz, *CH*HPh), 4.64-4.61 (m, 2H, 2x*CH*HPh), 4.34 (d, 1H, *J* 11.5 Hz, *CH*HPh), 4.31-4.29 (m, 2H, *CH*₂ (Fmoc)), 4.16 (brs, 1H, H-2), 4.13 (app. t, 1H, *J* 7.0 Hz, *CH* (Fmoc)), 4.02-4.00 (m, 2H, H-1' and H-2'), 3.97-3.94 (m, 2H, 2x H-4'), 3.74-3.72 (m, 1H, H-3), 3.68 (d, 1H, *J* 12.0 Hz, H-5), 3.58-3.56 (m, 1H, H-4), 3.20 (d, 1H, *J* 13.0 Hz, H-5), 3.04 (s, 3H, CH₃(Ms)), 0.82 (s, 9H, *t*-Bu), 0.04 (s, 6H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ (major rotamer) 154.9 (CO), 144.0 (C), 143.7 (C), 141.3 (C), 141.2 (C), 137.9 (C), 137.5 (C), 128.5 (CH), 128.4 (CH), 128.1 (CH), 128.0 (CH), 127.8 (CH), 127.7 (CH), 127.0 (CH), 125.0 (CH), 124.9 (CH), 120.0 (CH), 81.5 (C-3'), 79.1 (C-1'), 78.6 (C-2'), 75.7 (CH₂), 75.0 (CH₂), 67.1 (*C*H₂ (Fmoc)), 61.1 (C-4'), 60.6 (C-2), 56.0 (C-3), 55.6 (C-4), 47.8 (C-5), 47.2 (*C*H (Fmoc)), 38.4 (CH₃(Ms)), 25.8 (C(*CH₃*)₃), 18.1 (C), -5.4 (CH₃), -5.5 (CH₃).

(1a*R*,4*R*,5*R*,6*R*,6a*S*,6b*S*)-5,6-Bis(benzyloxy)-4-((*tert*-butyldimethylsilyloxy)methyl)hexahydro-1a*H*-oxireno[2,3-a]pyrrolizine (21) and (1a*R*,5*S*,6*S*,7*R*,7a*S*,7b*S*)-6,7-bis(benzyloxy)-5-(*tert*-butyldimethylsilyloxy)octahydrooxireno[2,3-a]indolizine (22).

To a solution of **20** (470.3 mg, 0.589 mmol) in MeCN (6 mL) was added piperidine (0.12 mL, 1.12 mmol). The reaction was stirring for 15 h at rt, the volatiles were removed under reduced pressure and the residue was purified by FCC (10:90 to 30:70 EtOAc/petrol) to give a mixture of **21** and **22** (91:9) as a pale yellow oil (271.0 mg, 96%). A pure sample of **21** was obtained by further purification of this mixture by FCC to give **21** as yellow needles.

21: R_f 0.27 (30:70 EtOAc/petrol).

mp. 40.9-43.1 °C (yellow needles)

 $[\alpha]_{D}^{24}$ +12 (*c* 1.0, CHCl₃).

MS (ESI +ve) m/z 482 (M + H⁺, 100%).

HRMS (CI +ve) calculated for $C_{28}H_{40}NO_4Si$ (M+H⁺) 482.2727, found 482.2729.

IR v_{max} (cm⁻¹): 3032, 2945, 2924, 2858, 1255, 1109.

¹H NMR (500 MHz, CDCl₃) δ 7.36-7.24 (m, 10H, Ar), 4.61 (d, 1H, *J* 12.0 Hz, *CH*HPh), 4.60 (d, 1H, *J* 11.5 Hz, *CH*HPh), 4.54 (d, 1H, *J* 12.0 Hz, *CH*HPh), 4.51 (d, 1H, *J* 12.0 Hz, *CH*HPh), 4.15 (app. t, 1H, *J* 3.8 Hz, H-2), 3.91 (dd, 1H, *J* 7.3, 3.8 Hz, H-1), 3.69-3.68 (m, 1H, H-6), 3.66 (dd, 1H, *J* 10.0, 6.0 Hz, H-8), 3.64-3.62 (m, 2H, H-7 and H-7a), 3.50 (app. t, 1H, *J* 10.0 Hz, H-8), 3.45 (d, 1H, *J* 11.5 Hz, H-5), 3.08-3.04 (m, 1H, H-3), 2.98 (d, 1H, *J* 12.0 Hz, H-5), 0.88 (s, 9H, *t*-Bu), 0.04 (s, 3H, CH₃), 0.03 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ 138.1 (C), 137.7 (C), 128.4 (CH), 128.3 (CH), 127.8 (CH), 127.7 (CH), 127.64 (CH), 127.6 (CH), 88.7 (C-2), 85.9 (C-1), 72.1 (CH₂), 71.8 (CH₂), 70.8 (C-3), 69.0 (C-7a), 64.4 (C-8), 58.5 (C-7), 57.0 (C-6), 55.6 (C-5), 25.9 (C(*CH₃*)₃), 18.2 (C), -5.4 (CH₃), -5.43 (CH₃).

(1*S*,2*S*,5*R*,6*R*,7*R*,7a*R*)-6,7-Bis(benzyloxy)-5-(hydroxymethyl)hexahydro-1*H*-pyrrolizine-1,2-diol (23).

To a solution of the epoxide **21** (37.4 mg, 0.078 mmol) in anhydrous CH_2Cl_2 (4 mL) was added NaHSO₄ (46.7 mg, 0.389 mmol). The reaction mixture was stirred and heated at reflux for 2 days under an atmosphere of N₂. The reaction was quenched by the addition of water (5 mL) and stirred for 1 h. The solvent was removed under reduced pressure and the residue was extracted with EtOAc (3x10 mL). The combined extracts were dried (Na₂CO₃) and evaporated. NMR analysis of this crude reaction mixture showed an 86:14 mixture of regioisomers. The crude mixture was purified by FCC (100% EtOAc to 8.5:1:0.5 EtOAc/MeOH/NH₃) to give **23** (a 92:8 mixture of diastereomers) as a pale yellow oil (15.3 mg, 51%).

23 (on a 92:8 mixture of diastereomers):

R_f 0.34 (8.6:1.0:0.4 / EtOAc:MeOH:NH₃).

 $[\alpha]_{D}^{23}$ +19 (*c* 1.1, CHCl₃).

MS (ESI +ve) m/z 386 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_{22}H_{28}NO_5$ (M+H⁺) 386.1967, found 386.1967.

IR v_{max} (cm⁻¹): 3390, 3027, 2929, 2873, 1449, 1103, 1063.

¹H NMR (500 MHz, CD₃OD) δ 7.36-7.24 (m, 10H, Ar), 4.68 (d, 2H, *J* 12.0 Hz, 2xC*H*HPh), 4.60 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.54 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.19 (app. t, 1H, *J* 5.3 Hz, H-1), 4.08 (dd, 1H, *J* 10.5, 5.5 Hz, H-2), 4.04 (app. t, 1H, *J* 5.3 Hz, H-7), 3.98 (dd, 1H, *J* 6.5, 5.5 Hz, H-6), 3.62 (dd, 1H, *J* 11.0, 4.8 Hz, H-8), 3.51 (dd, 1H, *J* 11.3, 5.8 Hz, H-8), 3.30 (m, 1H, H-5), 3.27 (app. t, 1H, *J* 5.0 Hz, H-7a), 3.18 (app. dt, 1H, *J* 5.8, 5.0 Hz, H-3), 2.87 (dd, 1H, *J* 11.3, 5.8 Hz, H-5).

¹³C NMR (125 MHz, CD₃OD) δ 139.6 (C), 139.5 (C), 129.4 (CH), 129.3 (CH), 128.95 (CH), 129.5 (CH), 128.7 (CH), 128.5 (CH), 87.2 (C-1), 85.6 (C-6), 81.4 (C-7), 79.2 (C-2), 75.2 (C-7a), 73.3 (CH₂), 72.9 (CH₂), 72.6 (C-3), 63.5 (C-8), 60.1 (C-5).

(1*R*,2*R*,3*R*,6*S*,7*S*)-3-(Hydroxymethyl)hexahydro-1*H*-pyrrolizine-1,2,6,7-tetraol (casuarine) (2).

To a solution of 92% diastereomerically pure **23** (21.0 mg, 0.055 mmol) in MeOH (2 mL) was added PdCl₂ (10.0 mg, 0.055 mmol). The mixture was stirred at rt under an atmosphere of H₂ (balloon) for 1.5 h. The mixture was filtered through a celite pad and the solids were washed with MeOH. The combined filtrates were evaporated *in vacuo* and the residue was dissolved in water (1 mL) and applied to a column of Amberlyst (OH⁻) A-26 resin (3 cm). Elution with water followed by evaporation *in vacuo* gave casuarine **2** (dr = 95:5) as a brown foamy solid (10.4 mg, 93%).

 $[\alpha]_{D}^{23}$ +18.1 (*c* 1.0, H₂O). [Lit.⁴; $[\alpha]_{D}^{24}$ +16.9 ° (*c* 0.8, H₂O)].

MS (ESI +ve) m/z 206 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_8H_{16}NO_5$ (M+H⁺) 206.1028, found 206.0953.

IR v_{max} (cm⁻¹): 3284, 2919, 1378, 1128, 1102, 1029.

¹H NMR (500 MHz, D₂O) δ 4.22-4.18 (m, 2H, H-6 and H-7), 4.16 (t, 1H, $J_{1,2} = J_{1,7a} =$ 8.7 Hz, H-1), 3.79 (t, 1H, $J_{1,2} = J_{2,3} =$ 8.0 Hz, H-2), 3.77 (dd, 1H, $J_{8,8'} =$ 10.0, $J_{3,8} =$ 3.5 Hz, H-8), 3.61 (dd, 1H, $J_{8,8'} =$ 11.3, $J_{3,8'} =$ 6.8 Hz, H-8'), 3.27 (dd, 1H, $J_{5\alpha,5\beta} =$ 12.3, $J_{5\beta,6} =$ 4.3 Hz, H-5 β), 3.06 (dd, 1H, $J_{1,7a} =$ 8.0, $J_{7,7a} =$ 3.0 Hz, H-7a), 3.04-3.00 (m, 1H, H-3), 2.90 (dd, 1H, $J_{5\alpha,5\beta} =$ 11.8, $J_{5\alpha,6} =$ 4.3 Hz, H-5 α).

¹³C NMR (125 MHz, D₂O) δ 79.9 (C-7), 78.9 (C-1), 78.5 (C-6), 77.8 (C-2), 73.1 (C-7a), 71.0 (C-3), 63.5 (C-8), 59.0 (C-5).

^{4.} Nash, R. J.; Thomas, P. I.; Waigh, R. D.; Fleet, G. W. J.; Wormald, M. R.; de Q. Lilley, P. M.; Watkin, D. J., *Tetrahedron Lett.* **1994**, *35*, 7849-7852.

	cal and spectral Data for (+)-Casuarine Casuarine ⁴	Synthetic 2		
Physical	Crystallize solid			
Appearance		Brown foamy solid		
Optical Rotation	$[\alpha]_{D}^{24}$ +16.9 ° (<i>c</i> 0.8, H ₂ O)	$[\alpha]_{D}^{23}$ +18.1 (<i>c</i> 1.0, H ₂ O)		
Melting Point	181-182 °C	-		
¹ H NMR	$500 \text{ MHz}, D_2O (pH = 8.35)$	500 MHz, D ₂ O		
	4.21 (m, 1H, <i>J</i> = 4.7, 4.0 Hz, H-6)	4.22-4.18 (m, 2H, H-6 and H-7) 4.16 (t, 1H, $J_{1,2} = J_{1,7a} = 8.7$ Hz, H-1) 3.79 (t, 1H, $J_{1,2} = J_{2,3} = 8.0$ Hz, H-2)		
	4.19 (m, 1H, <i>J</i> = 3.5 Hz, H-7)			
	4.162 (t, 1H, J = 8.0 Hz, H-1)			
	3.796 (t, 1H, J = 8.0 Hz, H-2)			
	3.771 (dd, 1H, <i>J</i> = 11.9, 3.8 Hz, H- 8)			
	3.611 (dd, 1H, <i>J</i> = 11.9, 6.6 Hz, H- 8')			
	3.270 (dd, 1H, $J = 12.2, 4.7$ Hz, H- 5 β)	H- 3.27 (dd, 1H, $J_{5\alpha,5\beta} = 12.3$, $J_{5\beta,6} = 4.3$ Hz, H-5 β) H- 3.06 (dd, 1H, $J_{1,7a} = 8.0$, $J_{7,7a} = 3.0$ Hz, H-7a)		
	3.071 (dd, 1H, J = 8.0, 3.5 Hz, H- 7a)			
	3.04-3.00 (m, 1H, <i>J</i> = 8.0, 6.6, 3.8 Hz, H-3)			
	2.911 (dd, 1H, $J = 12.2$, 4.0 Hz, H- 5 α)	$\begin{array}{c c} 2.90 \ (dd, 1H, J_{5\alpha,5\beta} = 11.8, J_{5\alpha,0} \\ = 4.3 \ Hz, H-5\alpha) \end{array}$		
	125 MHz D O	125 MHz, D ₂ O		
¹³ C NMR	$125 \text{ MHz}, D_2O$	(ref acetone	$\Delta\delta$ (ppm)	
	(ref acetone δ 29.8)	δ 29.8)		
	78.8 (C-7)	79.9 (C-7)	-1.1	
	77.8 (C-1)	78.9 (C-1)	-1.1	
	77.4 (C-6)	78.5 (C-6)	-1.1	
	76.6 (C-2)	77.8 (C-2)	-1.2	
	72.1 (C-7a)	73.1 (C-7a)	-1.0	
	70.0 (C-3)	71.0 (C-3)	-1.0	
	62.2 (C-8)	63.5 (C-8)	-1.3	
	58.0 (C-5)	59.0 (C-5)	-1.0	

Table 2 Physical and spectral Data for (+)-Casuarine⁴ and **2**.

4. Nash, R. J.; Thomas, P. I.; Waigh, R. D.; Fleet, G. W. J.; Wormald, M. R.; de Q. Lilley, P. M.; Watkin, D. J., *Tetrahedron Lett.* **1994**, *35*, 7849-7852.

(1*R*,5*R*,6*R*,7*R*,7a*R*)-6,7-Bis(benzyloxy)-5-(hydroxymethyl)hexahydro-1*H*-pyrrolizin-1-ol (24),

(1*R*,5*R*,6*R*,7*R*,7a*R*)-6,7-bis(benzyloxy)-5-((*tert*butyldimethylsilyloxy)methyl)hexahydro-1*H*-pyrrolizin-1-ol (26) and (1*R*,6*S*,7*S*,8*R*,8a*R*)-7,8-bis(benzyloxy)-6-(*tert*butyldimethylsilyloxy)octahydroindolizin-1-ol (26a)

To solution of a 91:9 mixture of **21** and **22** (611.5 mg, 1.271 mmol) in anhydrous THF (13 mL) was added dropwise a solution of lithium aluminium hydride (1M in THF, 1.53 mL, 1.526 mmol). The reaction mixture was stirring for 8 h at 0 °C. The solvent was evaporated and the mixture was chromatographed on silica gel by FCC (50:50 EtOAc/petrol to 8.5:1.0:0.5 EtOAc/MeOH/NH₃) to give a mixture of **24** and **25** (**24:25** = 88:12) as a yellow viscous oil (106 mg, 27%), a mixture of **26** and **27** (**26:27** = 92:8) as a yellow viscous oil (330 mg, 64%), **26a** (10.3 mg, 2%) as a pale yellow oil and unreacted starting material (97.5 mg, 16%).

24 (on 88:12 mixture): R_f 0.40 (9:1:0.2 EtOAc/MeOH/NH₃).

 $[\alpha]_{D}^{22}$ +6 (*c* 1.1, CHCl₃).

MS (ESI +ve) m/z 370 (M + H⁺, 100%).

HRMS (CI +ve) calculated for C₂₂H₂₈NO₄ (M+H⁺) 370.2018, found 370.2000.

IR v_{max} (cm⁻¹): 3385, 2924, 2873, 1449, 1362, 1105.

¹H NMR (500 MHz, CDCl₃) δ 7.36-7.28 (m, 10H, Ar), 4.73 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.65 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.62 (d, 2H, *J* 10.0 Hz, 2xC*H*HPh), 4.19-4.17 (m, 1H, H-7), 4.07 (app. t, 1H, *J* 6.8 Hz, H-2), 3.80 (app. t, 1H, *J* 6.0 Hz, H-1), 3.56 (app. t, 2H, *J* 3.3 Hz, 2xH-8), 3.29 (dd, 1H, *J* 6.0, 3.5 Hz, H-7a), 3.17-3.12 (m, 1H, H-5), 2.82-2.79 (m, 1H, H-3), 2.78-2.73 (m, 1H, H-5), 2.04-1.97 (m, 1H, H-6), 1.78-1.73 (m, 1H, H-6).

¹³C NMR (125 MHz, CDCl₃) δ 138.1 (C), 138.0 (C), 128.5 (CH), 128.4 (CH), 127.9 (CH), 127.8 (CH), 127.78 (CH), 127.7 (CH), 86.6 (C-1), 83.7 (C-2), 76.7 (C-7), 75.7 (C-7a), 72.9 (CH₂), 72.2 (CH₂), 69.3 (C-3), 60.5 (C-8), 51.6 (C-5), 33.7 (C-6).

To a solution of the diol **24** (0.145 g, 0.039 mmol) and a crystal of 4dimethylaminopyridine in THF (4 mL) under N_2 at rt was added imidazole (0.056 g, 0.083 mmol) and TBSCl (0.071 g, 0.047 mmol). The reaction mixture was stirred for 2 days and the reaction was quenched by the addition of water (10 mL). The solvent was removed under reduced pressure and the residue was extracted with EtOAc (3x20 mL). The combined extracts were washed with brine, dried (Na₂CO₃) and then evaporated to leave a residue which was chromatographed on silica gel by FCC (100% EtOAc to 10:2:1 EtOAc/MeOH/NH₃) to give a mixture of **26** and **27** (**26**:**27** = 82:18) (0.056 g, 61%) as a yellow viscous oil.

26 (on 92:8 mixture): R_f 0.44 (70:30 EtOAc/petrol).

 $[\alpha]_{D}^{22}$ -16 (*c* 2.3, CHCl₃).

MS (ESI +ve) m/z 484 (M + H⁺, 100%).

HRMS (CI +ve) calculated for $C_{28}H_{42}NO_4Si$ (M+H⁺) 484.2883, found 484.2891.

IR v_{max} (cm⁻¹): 3380, 2929, 2852, 1454, 1244, 1098.

¹H NMR (500 MHz, CDCl₃) δ 7.35-7.25 (m, 10H, Ar), 4.64 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.63 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.59 (d, 2H, *J* 12.0 Hz, 2xC*H*HPh), 4.17 (app. dt, 1H, *J* 5.0, 5.0 Hz, H-7), 3.95 (app. t, 1H, *J* 5.3 Hz, H-2), 3.86 (app. t, 1H, *J* 4.8 Hz, H-1), 3.65 (dd, 1H, *J* 10.0, 6.0 Hz, H-8), 3.59 (dd, 1H, *J* 9.8, 6.3 Hz, H-8), 3.26 (app. t, 1H, *J* 4.8 Hz, H-7a), 3.24-3.19 (m, 1H, H-5), 2.91-2.83 (m, 2H, H-3 and H-5), 2.09-2.03 (m, 1H, H-6), 1.74-1.67 (m, 1H, H-6), 0.88 (s, 9H, *t*-Bu), 0.04 (s, 3H, CH₃), 0.03 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ 138.4 (C), 138.2 (C), 128.4 (CH), 128.3 (CH), 127.74 (CH), 127.7 (CH), 127.61 (CH), 127.6 (CH), 86.9 (C-1), 85.5 (C-2), 76.6 (C-7), 76.4 (C-7a), 72.2 (CH₂), 71.9 (CH₂), 70.8 (C-3), 65.6 (C-8), 53.2 (C-5), 34.3 (C-6), 26.0 (C(CH_3)₃), 18.3 (C), -5.4 (2xCH₃).

26a: R_f 0.38 (40:60 EtOAc/petrol).

 $[\alpha]_{D}^{25}$ +13.5 (*c* 0.7, CHCl₃).

MS (ESI +ve) m/z 484 (M + H⁺, 100%).

HRMS (CI +ve) calculated for C₂₈H₄₂NO₄Si (M+H⁺) 484.2883, found 484.2892.

IR v_{max} (cm⁻¹): 3349, 2922, 2850, 1248, 1069.

¹H NMR (500 MHz, CDCl₃) δ 7.39-7.26 (m, 10H, Ar), 4.98 (d, 1H, *J* 11.0 Hz, *CH*HPh), 4.88 (d, 1H, *J* 11.5 Hz, *CH*HPh), 4.81 (d, 1H, *J* 11.5 Hz, *CH*HPh), 4.66 (d, 1H, *J* 11.0 Hz, *CH*HPh), 3.93-3.89 (m, 1H, H-1), 3.84-3.79 (m, 1H, H-6), 3.44-3.38 (m, 2H, H-7 and H-8), 2.99 (dd, 1H, *J* 10.3, 5.3 Hz, H-5), 2.91 (app. t, 1H, *J* 8.3 Hz, H-3), 2.42 (app. dt, 1H, *J* 9.0, 8.5 Hz, H-3), 2.25-2.17 (m, 1H, H-2), 2.10 (app. t, 1H,

J 10.5 Hz, H-5), 1.96 (app. t, 1H, *J* 7.8 Hz, H-8a), 1.65-1.58 (m, 1H, H-2), 0.90 (s, 9H, *t*-Bu), 0.09 (s, 3H, CH₃), 0.07 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ 138.9 (C), 138.3 (C), 128.7 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 127.5 (CH), 127.4 (CH), 88.7 (C-7 or C-8), 81.9 (C-7 or C-8), 75.5 (CH₂), 75.1 (C-1), 74.8 (CH₂), 73.3 (C-8a), 72.8 (C-6), 57.5 (C-5), 51.7 (C-3), 32.0 (C-2), 25.8 (C(*CH*₃)₃), 17.9 (C), -4.6 (2xCH₃).

(1*S*,5*R*,6*R*,7*R*,7a*R*)-6,7-Bis(benzyloxy)-5-((*tert*-butyldimethylsilyloxy)methyl)hexahydro-1*H*-pyrrolizin-1-ol (29).

To a solution of 92% diastereomerically pure **26** (0.164 g, 0.34 mmol) in toluene (7 mL) was added triphenylphosphine (0.223 g, 0.85 mmol) and *para*-nitrobenzoic acid (0.142 g, 0.85 mmol). The mixture was stirred and cooled to 0 °C and diisopropyl azodicarboxylate (0.17 mL, 0.85 mmol) was added. The mixture was heated and stirred at 80 °C for 1.5 h. The volatiles were removed in *vacuo* then satd. CuSO₄ solution (20 mL) was added. The reaction mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined CH₂Cl₂ extracts were washed with satd. CuSO₄ solution (20 mL), dried (Na₂CO₃), filtered and then evaporated to give **28** as a brown oil that was used in the next step without further purification.

(1*S*,5*R*,6*R*,7*R*,7a*R*)-6,7-Bis(benzyloxy)-5-((*tert*-butyldimethylsilyloxy)methyl)hexahydro-1*H*-pyrrolizin-1-yl 4-nitrobenzoate (28).

28: $R_f 0.42$ (30:70 EtOAc/petrol).

 $[\alpha]_{D}^{22}$ +39 (*c* 0.9, CHCl₃).

MS (ESI +ve) m/z 633 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_{35}H_{45}N_2O_7Si$ (M+H⁺) 633.2996, found 633.3007. IR v_{max} (cm⁻¹): 2924, 2858, 1724, 1528, 1270, 1102.

¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, 2H, *J* 8.5 Hz, Ar), 8.07 (d, 2H, *J* 8.5 Hz, Ar), 7.38-7.16 (m, 10H, Ar), 5.46-5.43 (m, 1H, H-7), 4.65 (d, 1H, *J* 11.5 Hz, CHHPh), 4.62 (d, 1H, *J* 11.5 Hz, CHHPh), 4.55 (d, 1H, *J* 12.0 Hz, CHHPh), 4.46 (d, 1H, *J* 12.5 Hz, CHHPh), 4.20 (app. t, 1H, *J* 5.0 Hz, H-1), 4.07 (dd, 1H, *J* 7.8, 5.3 Hz, H-2), 3.78 (dd, 1H, *J* 10.3, 3.8 Hz, H-8), 3.66 (app. t, 1H, *J* 4.5 Hz, H-7a), 3.63 (dd, 1H, *J* 10.5, 7.0 Hz, H-8), 3.30-3.26 (m, 1H, H-5), 3.00 (app. dt, 1H, *J* 7.5, 4.0 Hz, H-3), 2.90-2.84 (m, 1H, H-5), 2.20-2.16 (m, 2H, 2xH-6), 0.90 (s, 9H, *t*-Bu), 0.08 (s, 3H, CH₃), 0.07 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ163.9 (CO), 150.7 (C), 138.2 (C), 137.7 (C), 135.2 (C), 130.7 (CH), 128.4 (CH), 128.3 (CH), 127.9 (CH), 127.8 (CH), 127.7 (CH), 127.6 (CH), 123.5 (CH), 87.4 (C-2), 82.0 (C-1), 76.5 (C-7), 72.7 (CH₂), 72.1 (CH₂), 71.8 (C-3), 71.5 (C-7a), 66.1 (C-8), 52.7 (C-5), 34.5 (C-6), 26.0 (C(*CH₃*)₃), 18.3 (C), -5.3 (2xCH₃).

To a solution of crude **28** (0.34 mmol) in MeOH (7 mL) was added K₂CO₃ (0.075 g, 0.510 mmol). After stirring at rt for 2 h, the mixture was evaporated and dissolved in CH₂Cl₂ (15 mL) and the solution was washed with water (15 mL). The aqueous layer was extracted further with CH₂Cl₂ (3x10 mL) and the combined CH₂Cl₂ extracts were washed with brine, dried (Na₂CO₃) and evaporated. The residue was purified by FCC (50:50 EtOAc/petrol to 100% EtOAc) to give diastereomerically pure **29** as a yellow oil (93 mg, 57%). R_f 0.30 (80:20 EtOAc/petrol).

 $[\alpha]_{D}^{22}$ -2.3 (*c* 1.8, CHCl₃).

MS (ESI +ve) m/z 484 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_{28}H_{42}NO_4Si$ (M+H⁺) 484.2883, found 484.2873. IR v_{max} (cm⁻¹): 3402, 2923, 2850, 1256, 1100, 1047.

¹H NMR (500 MHz, CDCl₃) δ 7.36-7.28 (m, 10H, Ar), 4.63 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.59 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.56 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.52 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.27 (app. t, 1H, *J* 3.0 Hz, H-1), 4.16-4.14 (m, 1H, H-7), 4.11 (app. t, 1H, *J* 3.0 Hz, H-2), 3.67-3.57 (m, 3H, H-7a and 2xH-8), 3.22 (app. t, 1H,

J 8.5 Hz, H-5), 3.04 (dd, 1H, *J* 11.3, 7.3 Hz, H-3), 2.86-2.80 (m, 1H, H-5), 196-1.87 (m, 2H, 2xH-6), 0.87 (s, 9H, *t*-Bu), 0.02 (s, 3H, CH₃), 0.01 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ 138.2 (C), 137.6 (C), 128.5 (CH), 128.4 (CH), 127.84 (CH), 127.8 (CH), 127.7 (CH), 127.6 (CH), 85.4 (C-2), 81.9 (C-1), 74.0 (C-7a), 72.3 (C-3), 71.94 (C-7), 71.9 (CH₂), 71.8 (CH₂), 65.1 (C-8), 53.2 (C-5), 36.9 (C-6), 26.0 (C(*CH*₃)₃), 18.2 (C), -5.3 (CH₃), -5.4 (CH₃).

(1R,2R,3R,7S,7aR)-3-Hydroxymethyl-hexahydro-*1H*-pyrrolizine-1,2,7-triol (australine) (3).

To a solution of **29** (74.6 mg, 0.155 mmol) in MeOH (3 mL) was added $PdCl_2$ (41.1 mg, 0.232 mmol). The mixture was stirred at rt under an atmosphere of H₂ (balloon) for 3 h, follow by the dropwise addition of conc. HCl (10 drops) and stirring was continued at rt for 21 h. The mixture was filtered through a celite pad and the solids were washed with MeOH. The combined filtrates were evaporated *in vacuo* and the residue was dissolved in water (2 mL) and applied to a column of Amberlyst (OH⁻) A-26 resin (4 cm). Elution with water followed by evaporation *in vacuo* gave australine **3** as a yellow oil (25.1 mg, 86%).

 $[\alpha]_{D}^{22}$ +9.4 (*c* 2.4, H₂O). [Lit.⁵; $[\alpha]_{D}^{25}$ +8 ° (*c* 0.35, H₂O).

MS (ESI +ve) m/z 190 (M + H⁺, 100%).

HRMS (EI) calculated for $C_8H_{15}NO_4$ (M⁺) 189.1001, found 189.0994.

IR v_{max} (cm⁻¹): 3318, 2944, 2873, 2484, 1388, 1332, 1123, 1041.

¹H NMR (500 MHz, D₂O) δ 4.37-4.35 (m, 1H, H-7), 4.22 (t, 1H, $J_{1,2} = J_{1,7a} = 7.8$ Hz, H-1), 3.89 (dd, 1H, $J_{2,3} = 9.5$, $J_{1,2} = 8.0$ Hz, H-2), 3.79 (dd, 1H, $J_{8,8'} = 12.0$ Hz, $J_{3,8} = 3.5$ Hz, H-8), 3.61 (dd, 1H, $J_{8,8'} = 11.5$ Hz, $J_{3,8'} = 7.0$ Hz, H-8'), 3.17 (dd, 1H, $J_{1,7a} = 7.8$ Hz, $J_{7,7a} = 4.8$ Hz, H-7a), 3.15-3.12 (m, 1H, H-5), 2.74-2.69 (m, 2H, H-3 and H-5), 2.05-2.00 (m, 1H, H-6), 1.97-1.89 (m, 1H, H-6).

¹³C NMR (125 MHz, D₂O) δ 79.5 (C-2), 73.7 (C-1), 71.3 (C-7a), 71.1 (C-3), 70.1 (C-7), 63.5 (C-8), 52.4 (C-5), 35.8 (C-6).

3·HCl salt: ¹H NMR (500 MHz, D₂O) δ 4.72-4.69 (m, 1H, H-7), 4.51 (app. t, 1H, *J* = 7.5 Hz, H-1), 4.18 (dd, 1H, *J* = 10.0, 8.0 Hz, H-2), 4.02 (dd, 1H, *J* = 13.0, 2.5 Hz, H-

8), 3.95-3.92 (m, 1H, H-7a), 3.92 (dd, 1H, *J* = 13.8, 4.3 Hz, H-8), 3.84 (app. brt, 1H, *J* = 9.8 Hz, H-5), 3.45-3.38 (m, 2H, H-5 and H-3), 2.36-2.31 (m, 1H, H-6), 2.05-2.00 (m, 1H, H-6), 2.29-2.27 (m, 1H, H-6).

¹³C NMR (125 MHz, D₂O) δ 76.2 (C-2), 73.3 (C-7a), 72.1 (C-1), 71.4 (C-3), 68.7 (C-7), 56.5 (C-8), 52.9 (C-5), 35.0 (C-6).

5. Pearson, W. H.; Hines, J. V., J. Org. Chem. 2000, 65, 5785-5793.

	Natural Product	Synthetic		
	Natural I foduct	Denmark ⁹	3 (This work)	
Physical Appearance	Colourless prisms ⁶	Yellow oil	Yellow oil	
Optical Rotation	$[\alpha]_{D}^{26}$ +19.3 ° (c 2.09, MeOH) ⁶	$[\alpha]_{D}^{25}$ +8 ° (c 0.35, H ₂ O) ⁵	$[\alpha]_{D}^{22}$ +9.4 (c 2.4, H ₂ O)	
Melting Point	148-149 °C ⁶	-	-	
¹ H NMR	500 MHz, D_2O , $pH = 8.6^7$	500 MHz, D ₂ O	500 MHz, D ₂ O	
	4.43 (ddd, 1H, $J_{7,7a} = 4.4$, $J_{6,7} = 4.2$, $J_{6,7} = 2.4$ Hz, H-7)	4.19 (dt, 1H, J_d = 2.2, J_t = 4.2 Hz, H-7)	4.37-4.35 (m, 1H, H-7)	
	4.29 (dd, 1H, $J_{1,2}$ = 8.2, $J_{1,7a}$ = 7.4 Hz, H-1)	4.04 (t, 1H, J = 7.8 Hz, H-1)	4.22 (t, 1H, $J_{1,2} = J_{1,7a} = 7.8$ Hz, H- 1)	
	3.96 (dd, 1H, $J_{2,3} = 9.5$, $J_{1,2} = 8.2$ Hz, H- 2)	3.71 (dd, 1H, <i>J</i> = 9.5, 8.3 Hz, H-2)	3.89 (dd, 1H, $J_{2,3} = 9.5$, $J_{1,2} = 8.0$ Hz, H-2)	
	3.85	3.60 (AB _x , dd, 1H, $J = 12.0$, 3.7 Hz, H- 8)	3.79 (dd, 1H, $J_{8,8'}$ = 12.0, $J_{3,8}$ = 3.5 Hz, H-8)	
	3.68	3.43 (AB _x , dd, 1H, $J = 12.0$, 6.6 Hz, H- 8')	3.61 (dd, 1H, $J_{8,8'} = 11.5$, $J_{3,8'} = 7.0$ Hz, H-8')	
	3.27 (dd, 1H, $J_{1,7a} = 7.4$, $J_{7,7a} = 4.4$ Hz, H-7a)	3.02 (dd, 1H, J = 7.6, 4.4 Hz, H-7a)	3.17 (dd, 1H, $J_{1,7a}$ = 7.8, $J_{7,7a}$ = 4.8 Hz, H-7a)	
	3.23 (dd, 1H, $J_{5,6} = 11.5$, $J_{5,6} = 6.0$ Hz, H-5a)	2.98 (ddd, 1H, $J = 9.8, 7.6, 2.2$ Hz, H-5)	3.15-3.12 (m, 1H, H-5)	
	2.80 (m, 2H, H-3 and H-5b)	2.58-2.52 (m, 2H, H-3 and H-5)	2.74-2.69 (m, 2H, H-3 and H-5)	
	2.10 (ddd, 1H, $J_{5,6} = 6.0$, $J_{6,7} = 2.4$, $J_{5,6} = 2.1$ Hz, H-6a)	1.87-1.82 (m, 1H, H-6)	2.05-2.00 (m, 1H, H-6)	
	2.00 (ddd, 1H, $J_{5,6} = 11.5$, $J_{5,6} = 7.5$, $J_{6,7} = 4.2$ Hz, H-6b)	1.79-1.71 (m, 1H, H-6).	1.97-1.89 (m, 1H, H-6).	

Table 3 continued

	Natural Product ⁸	Synthetic		
	(Original assignment / reassignment)	Denmark ⁹	Pearson ^{5*}	3 (This work)
¹³ C NMR	125 MHz, D ₂ O	100 MHz, D ₂ O	90 MHz, D ₂ O	125 MHz, D ₂ O
	(ref TSP δ 0.0)	(not given)	(ref dioxane)	(ref MeCN δ 1.47)
	81.8 (C-7 / C-2)	78.4 (C-2)	79.5	79.5 (C-2)
	75.9 (C-1)	72.7 (C-1)	73.9	73.7 (C-1)
	73.5 (C-2 / C-7a)	70.5 (C-7a)	71.7	71.3 (C-7a)
	73.3 (C-3)	70.2 (C-3)	71.4	71.1 (C-3)
	72.3 (C-7a / C-7)	69.1 (C-7)	70.3	70.1 (C-7)
	65.5 (C-8)	62.2 (C-8)	63.1	63.5 (C-8)
	54.6 (C-5)	51.6 (C-5)	52.7	52.4 (C-5)
	38.0 (C-6)	34.9 (C-6)	35.9	35.8 (C-6)

* Signals were not assigned.

5. Pearson, W. H.; Hines, J. V., J. Org. Chem. 2000, 65, 5785-5793.

6. Molyneux, R. J.; Benson, M.; Wong, R. Y.; J. Nat. Prod. 1988, 51, 1198-1206.

7.Wormald, M. R.; Nash, R. J.; Hrnciar, P.; White, J. D.; Molyneux, R. J.; Fleet, G. W. J., Tetrahedron: Asym. 1998, 9, 2549-2558.

8. Kato, A.; Kano, E.; Adachi, I.; Molyneux, R. J.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J.; Wormald, M. R.; Kizu, H.; Ikeda, K.; Asano, N., Tetrahedron: Asym. 2003, 14, 325-331.

9. Denmark, S. E.; Martinborough, E. A., J. Am. Chem. Soc. 1999, 121, 3046-3056.

(2R,3R,4R)-3,4-Bis(benzyloxy)-4-((1S,2S,5R)-6-oxa-3-azabicyclo[3.1.0]hexan-2-yl)-1-(*tert*-butyldimethylsilyloxy)butan-2-ol (30).

30

To a solution of **19** (0.095 g, 0.131 mmol) in toluene (2 mL) was added triphenylphosphine (0.086 g, 0.328 mmol) and *para*-nitrobenzoic acid (0.055 g, 0.328 mmol). The mixture was cooled to 0 °C and diisopropyl azodicarboxylate (64.5 μ L, 0.28 mmol) was added. The mixture was stirred at rt for 5 h. The volatiles were removed in *vacuo* then satd. CuSO₄ solution (20 mL) was added. The reaction mixture was extracted with CH₂Cl₂ (3 x 10 mL). The combined CH₂Cl₂ extracts were washed with water (5 mL), dried (Na₂CO₃), filtered and then evaporated to give **30a** as a pale yellow oil that was used in the next step without further purification.

(1*S*,2*S*,5*R*)-(9*H*-Fluoren-9-yl)methyl 2-((1*R*,2*S*,3*R*)-1,2-bis(benzyloxy)-4-(*tert*-butyldimethylsilyloxy)-3-(4-nitrobenzoyloxy)butyl)-6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate (30a).

30a: R_f 0.41 (30:70 EtOAc/petrol).

 $[\alpha]_{D}^{22}$ +35 (*c* 2.6, CHCl₃).

MS (ESI +ve) m/z 870 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_{50}H_{55}N_2O_{10}Si$ (M+H⁺) 871.3626, found 871.3611. IR v_{max} (cm⁻¹): 2950, 2940, 2857, 1720, 1701, 1529, 1271, 1101.

¹H NMR (500 MHz, CDCl₃) δ (major rotamer) 8.29-8.23 (m, 2H, Ar), 7.79-7.57 (m, 2H, Ar), 7.42-7.20 (m, 18H, Ar), 5.45 (dd, 1H, *J* 9.0, 5.5 Hz, H-3'), 4.91 (d, 1H, *J* 11.0 Hz, *CH*HPh), 4.84 (d, 1H, *J* 11.5 Hz, *CH*HPh), 4.60 (d, 1H, *J* 11.0 Hz, *CH*HPh), 4.45 (d, 2H, *J* 6.5 Hz, *CH*₂ (Fmoc)), 4.37 (d, 1H, *J* 11.5 Hz, *CH*HPh), 4.28-4.14 (m, 5H, H-1' or H-2', H-3 or H-4, 2xH-4' and *CH* (Fmoc)), 4.07 (d, 1H, *J* 3.0 Hz, H-3 or

H-4), 3.78 (brs, 1H, H-1' or H-2'), 3.76 (d, 1H, *J* 12.0, Hz, H-5), 3.68 (brd, 1H, *J* 2.0 Hz, H-2), 3.25 (d, 1H, *J* 11.5 Hz, H-5), 0.91 (s, 9H, *t*-Bu), 0.08 (s, 3H, CH₃), 0.07 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ (major rotamer) 163.9 (CO), 154.8 (CO), 150.5 (C), 143.8 (C), 143.5 (C), 141.2 (C), 141.1 (C), 137.6 (C), 137.4 (C), 135.2 (C), 130.7 (CH), 128.4 (CH), 128.3 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 127.8 (CH), 127.7 (CH), 127.5 (CH), 127.0 (CH), 126.9 (CH), 124.7 (CH), 123.4 (CH), 119.9 (CH), 80.7 (C-1'), 79.0 (C-2'), 75.8 (C-3'), 74.5 (CH₂), 74.8 (CH₂), 67.0 (CH₂ (Fmoc)), 61.8 (C-2), 60.5 (C-4'), 56.4 (C-3 or C-4), 55.7 (C-3 or C-4), 47.6 (C-5), 47.1 (CH (Fmoc)), 25.7 (C(CH₃)₃), 18.0 (C), -5.4 (CH₃), -5.5 (CH₃).

To a solution of crude **30a** (0.131 mmol) in MeOH (2 mL) was added K₂CO₃ (0.015 g, 0.109 mmol). After stirring at rt for 1 day, the mixture was evaporated and dissolved in CH₂Cl₂. The solution was washed with water (5 mL) and the aqueous layer was extracted with CH₂Cl₂ (3x10 mL). The combined CH₂Cl₂ extracts were washed with brine, dried (Na₂CO₃) and evaporated. The residue was purified by FCC (50:50 EtOAc/petrol to 100% EtOAc) to give **30** as a yellow oil (36 mg, 55%). R_f 0.08 (30:70 EtOAc/petrol).

 $[\alpha]_{D}^{23}$ +53 (*c* 2.8, CHCl₃).

MS (ESI +ve) m/z 500 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_{28}H_{42}NO_5Si$ (M+H⁺) 500.2832, found 500.2836. IR v_{max} (cm⁻¹): 3362, 2930, 1449, 1250, 1100.

¹H NMR (500 MHz, CDCl₃) δ 7.33-7.25 (m, 10H, Ar), 4.86 (d, 1H, *J* 11.0 Hz, C*H*HPh), 4.71 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.62 (d, 1H, *J* 11.0 Hz, C*H*HPh), 4.57 (d, 1H, *J* 11.0 Hz, C*H*HPh), 3.81 (brs, 3H, H-2', H-3' and H-4'), 3.73 (dd, *J* 9.5, 3.5 Hz, 1H, H-4'), 3.67 (d, 1H, *J* 2.5 Hz, H-3 or H-4), 3.55 (dd, 1H, *J* 9.5, 2.0 Hz, H-1') 3.42 (d, 1H, *J* 9.5 Hz, H-2), 3.39 (d, 1H, *J* 2.5 Hz, H-3 or H-4), 3.02 (d, 1H, *J* 13.5 Hz, H-5), 2.70 (d, 1H, *J* 13.0 Hz, H-5), 0.91 (s, 9H, *t*-Bu), 0.08 (s, 6H, 2xCH₃).

¹³C NMR (125 MHz, CDCl₃) δ 138.3 (C), 138.2 (C), 128.4 (CH), 128.3 (CH), 128.22 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 127.8 (CH), 127.7 (CH), 79.4 (C-2'), 78.5 (C-1'), 74.52 (CH₂), 74.5 (CH₂), 71.7 (C-3'), 64.4 (C-4'), 59.9 (C-2), 58.0 (C-3 or C-4), 55.8 (C-3 or C-4), 46.9 (C-5), 25.9 (C(*CH*₃)₃), 18.3 (C), -5.28 (CH₃), -5.3 (CH₃).

(1a*R*,4*S*,5*R*,6*R*,6b*S*)-5,6-Bis(benzyloxy)-4-((*tert*butyldimethylsilyloxy)methyl)hexahydro-1a*H*-oxireno[2,3-a]pyrrolizine (31) and (1a*R*,5*R*,6*S*,7*R*,7a*S*,7b*S*)-6,7-bis(benzyloxy)-5-(*tert*butyldimethylsilyloxy)octahydrooxireno[2,3-a]indolizine (32).

To a solution of **30** (0.500 g, 1.002 mmol) in toluene (10 mL) was added triphenylphosphine (0.657 g, 2.505 mmol). The mixture was cooled to 0 $^{\circ}$ C and diisopropyl azodicarboxylate (0.49 mL, 2.505 mmol) was added. The mixture was heated and stirred at 80 $^{\circ}$ C for 12 h. The volatiles were removed in *vacuo* then satd. CuSO₄ solution (20 mL) was added. The reaction mixture was extracted with CH₂Cl₂ (3 x 25 mL). The combined CH₂Cl₂ extracts were washed with water (20 mL), dried (Na₂CO₃), filtered and then evaporated. The residue was purified by FCC (50:50 EtOAc/petrol to 100% EtOAc) to give to give **31** as a yellow oil (0.337 g, 70%) and **32** as a yellow oil (0.02 g, 4%).

31: R_f 0.26 (70:30 EtOAc/petrol).

 $[\alpha]_{D}^{25}$ +43 (c 1.6, CHCl₃).

MS (ESI +ve) m/z 482 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_{28}H_{40}NO_4Si$ (M+H⁺) 482.2727, found 482.2717. IR v_{max} (cm⁻¹): 2952, 2930, 2850, 1447, 1250, 1095.

¹H NMR (500 MHz, CDCl₃) δ 7.38-7.25 (m, 10H, Ar), 4.55 (d, 1H, *J* 12.0 Hz, *CH*HPh), 4.53 (d, 1H, *J* 12.0 Hz, *CH*HPh), 4.51 (d, 1H, *J* 11.5 Hz, *CH*HPh), 4.48 (d, 1H, *J* 12.0 Hz, *CH*HPh), 4.09 (d, 1H, *J* 4.0 Hz, H-2), 3.99 (app. t, 1H, *J* 9.3 Hz, H-8), 3.91 (dd, 1H, *J* 10.0, 5.0 Hz, H-8), 3.80 (d, 1H, *J* 4.5 Hz, H-1), 3.68-3.66 (m, 2H, H-6 or H-7 and H-7a), 3.60 (d, 1H, *J* 2.0 Hz, H-6 or H-7), 3.39 (app. dt, 1H, *J* 8.5, 4.3 Hz, H-3), 3.19 (d, 1H, *J* 10.5 Hz, H-5), 3.03 (d, 1H, *J* 11.5 Hz, H-5), 0.09 (s, 9H, *t*-Bu), 0.06 (s, 6H, 2xCH₃).

¹³C NMR (125 MHz, CDCl₃) δ 138.3 (C), 137.6 (C), 128.5 (CH), 128.3 (CH), 127.9 (CH), 127.6 (CH), 127.5 (CH), 127.3 (CH), 86.9 (C-2), 85.3 (C-1), 72.2 (CH₂), 71.9 (C-7a), 71.7 (CH₂), 65.7 (C-3), 58.5 (C-8), 57.6 (C-6 or C-7), 57.3 (C-6 or C-7), 48.1 (C-5), 25.9 (C(*CH*₃)₃), 18.2 (C), -5.4 (CH₃), -5.5 (CH₃).

32: R_f 0.25 (70:30 EtOAc/petrol).

¹H NMR (500 MHz, CDCl₃) δ 7.78-7.26 (m, 10H, Ar), 4.97 (d, 1H, *J* 11.5 Hz, *CH*HPh), 4.73 (d, 1H, *J* 11.5 Hz, *CH*HPh), 4.65 (d, 2H, *J* 11.5 Hz, 2x*CH*HPh), 4.15 (m, 1H, H-6), 3.63 (app. t, 1H, *J* 7.8 Hz, H-8), 3.55 (d, 1H, *J* 3.0 Hz, H-1 or H-2), 3.52 (d, 1H, *J* 10.5 Hz, H-3), 3.45 (d, 1H, *J* 3.0 Hz, H-1 or H-2), 3.38 (dd, 1H, *J* 10.0, 3.0 Hz, H-7), 3.20 (d, 1H, *J* 10.5 Hz, H-3), 3.15 (d, 1H, *J* 9.5 Hz, H-8a), 2.96 (dd, 1H, *J* 15.0, 1.5 Hz, H-5), 2.86 (brd, 1H, *J* 15.0 Hz, H-5), 0.91 (s, 9H, *t*-Bu), 0.10 (s, 3H, CH₃), 0.07 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ 138.5 (C), 138.3 (C), 133.2 (CH), 133.0 (CH), 128.6 (CH), 128.4 (CH), 128.2 (CH), 127.8 (CH), 127.6 (CH), 127.5 (CH), 84.1 (C-7), 75.0 (CH₂), 72.7 (C-8), 72.2 (CH₂), 71.3 (C-6), 61.8 (C-8a), 57.8 (C-1 or C-2), 54.7 (C-1 or C-2), 52.0 (C-3), 50.3 (C-5), 28.6 (C(*CH*₃)₃), 18.2 (C), -4.6 (CH₃), -4.7 (CH₃).

(1*R*,5*S*,6*R*,7*R*,7a*R*)-6,7-Bis(benzyloxy)-5-((*tert*butyldimethylsilyloxy)methyl)hexahydro-1*H*-pyrrolizin-1-ol (33) and (2*S*,5*S*,6*R*,7*R*,7a*R*)-6,7-bis(benzyloxy)-5-((*tert*butyldimethylsilyloxy)methyl)hexahydro-1*H*-pyrrolizin-2-ol (34).

To a solution of crude **31** (0.037 mg, 0.098 mmol) in anhydrous THF (2 mL) was added dropwise a solution of lithium aluminium hydride (1M in THF, 0.1 mL, 0.1 mmol). The mixture was stirred at rt for 12 h. The solvent was evaporated and the mixture was chromatographed on silica gel by FCC (80:20 EtOAc/petrol to 10:90 MeOH/EtOAc) to give **33** as a pale yellow oil (15.3 mg, 41%) and **34** (3.3 mg, 9%) as a pale yellow oil.

33: R_f 0.31 (5:95 MeOH/EtOAc).

 $[\alpha]_{D}^{22}$ -4 (*c* 1.4, CHCl₃).

MS (ESI +ve) m/z 484 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_{28}H_{42}NO_4Si$ (M+H⁺) 484.2883, found 484.2868. IR v_{max} (cm⁻¹): 3390, 2923, 2858, 1260, 1095. ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.25 (m, 10H, Ar), 4.59 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.57 (d, 1H, *J* 10.5 Hz, C*H*HPh), 4.52 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.48 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.16 (app. dt, 1H, *J* 6.5, 5.5 Hz, H-7), 4.04 (dd, 1H, *J* 4.5, 2.0 Hz, H-2), 3.95 (dd, 1H, *J* 10.0, 7.3 Hz, H-8), 3.89-3.86 (m, 2H, H-1 and H-8), 3.35 (app. dt, 1H, *J* 6.5, 4.8 Hz, H-3), 3.30 (app. t, 1H, *J* 4.5 Hz, H-7a), 3.09 (ddd, 1H, *J* 9.3, 7.0, 6.5 Hz, H-5), 2.91-2.87 (m, 1H, H-5), 2.19-2.13 (m, 1H, H-6), 1.84-1.78 (m, 1H, H-6), 0.88 (s, 9H, *t*-Bu), 0.40 (s, 6H, 2xCH₃).

¹³C NMR (125 MHz, CDCl₃) δ 138.4 (C), 138.1 (C), 128.4 (CH), 128.3 (CH), 127.7 (CH), 127.6 (CH), 127.5 (CH), 127.3 (CH), 85.9 (C-1), 85.6 (C-2), 77.7 (C-7a), 75.6 (C-7), 72.1 (CH₂), 71.4 (CH₂), 65.3 (C-3), 58.8 (C-8), 46.1 (C-5), 35.6 (C-6), 25.9 (C(CH_3)₃), 18.3 (C), -5.4 (CH₃), -5.5 (CH₃).

34: R_f 0.11 (5:95 MeOH/EtOAc).

 $[\alpha]_{D}^{25}$ +10.3 (*c* 1.1, CHCl₃).

MS (ESI +ve) m/z 484 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_{28}H_{42}NO_4Si$ (M+H⁺) 484.2883, found 484.2863. IR v_{max} (cm⁻¹): 3236, 2952, 2923, 1250, 1096.

¹H NMR (500 MHz, CDCl₃) δ 7.36-7.24 (m, 10H, Ar), 4.56 (d, 1H, *J* 12.0 Hz, *CH*HPh), 4.53 (d, 1H, *J* 12.0 Hz, *CH*HPh), 4.48 (d, 1H, *J* 12.0 Hz, *CH*HPh), 4.45 (d, 1H, *J* 12.0 Hz, *CH*HPh), 4.43 (brt, 1H, *J* 4.0 Hz, H-6), 4.10 (dd, 1H, *J* 4.5, 2.0 Hz, H-2), 3.91 (d, 2H, *J* 6.0 Hz, 2xH-8), 3.88-3.83 (m, 2H, H-1 and H-7a), 3.54 (app. dt, 1H, *J* 6.0, 5.0 Hz, H-3), 3.23 (dd, 1H, *J* 10.0, 3.5 Hz, H-5), 2.96 (d, 1H, *J* 10.0 Hz, H-5), 2.18 (dd, 1H, *J* 13.0, 7.3 Hz, H-7), 1.86-1.81 (m, 1H, H-7), 0.89 (s, 9H, *t*-Bu), 0.05 (s, 6H, 2xCH₃).

¹³C NMR (125 MHz, CDCl₃) δ 138.0 (C), 137.9 (C), 128.5 (CH), 128.4 (CH), 127.8 (CH), 127.7 (CH), 127.6 (CH), 127.4 (CH), 86.8 (C-1), 85.7 (C-2), 73.7 (C-6), 72.4 (CH₂), 71.5 (CH₂), 68.7 (C-7a), 64.5 (C-3), 58.5 (C-8), 56.2 (C-5), 39.5 (C-7), 25.9 (C(CH_3)₃), 18.3 (C), -5.4 (CH₃), -5.5 (CH₃).

(1*S*,5*S*,6*R*,7*R*,7a*R*)-6,7-Bis(benzyloxy)-5-((*tert*-butyldimethylsilyloxy)methyl)hexahydro-1*H*-pyrrolizin-1-ol (35).

To a solution of **33** (0.040 g, 0.083 mmol) in toluene (2 mL) was added triphenylphosphine (0.055 g, 0.021 mmol) and *para*-nitrobenzoic acid (0.035 g, 0.021 mmol). The mixture was stirred at 0 °C and diisopropyl azodicarboxylate (41.1 μ L, 0.021 mmol) was added. The mixture was stirred at rt for 8 h. The volatiles were removed in *vacuo* then satd. CuSO₄ solution (20 mL) was added. The reaction mixture was extracted with CH₂Cl₂ (3 x 10 mL). The combined CH₂Cl₂ extracts were washed with water (5 mL), dried (Na₂CO₃), filtered and then evaporated to give **35a** as a brown oil that was used in the next step without further purification.

(1*S*,5*S*,6*R*,7*R*,7a*R*)-6,7-Bis(benzyloxy)-5-((*tert*-butyldimethylsilyloxy)methyl)hexahydro-1*H*-pyrrolizin-1-yl 4-nitrobenzoate (35a).

35a: R_f 0.39 (50:50 EtOAc/petrol).

 $[\alpha]_{D}^{26}$ +31 (*c* 3.0, CHCl₃).

MS (ESI +ve) m/z 633 (M + H⁺, 70%).

HRMS (ESI +ve) calculated for $C_{35}H_{45}N_2O_7Si$ (M+H⁺) 633.2996, found 633.2986.

IR v_{max} (cm⁻¹): 2926, 2853, 1726, 1528, 1272, 1096.

¹H NMR (500 MHz, CDCl₃) δ 7.95 (s, 4H, Ar), 7.37-7.12 (m, 10H, Ar), 5.63 (app. t, 1H, *J* 5.8 Hz, H-7), 4.56 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.51 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.49 (d, 1H, *J* 13.0 Hz, C*H*HPh), 4.47 (d, 1H, *J* 13.5 Hz, C*H*HPh), 4.13 (dd, 1H, *J* 4.5, 1.5 Hz, H-2), 4.07 (dd, 1H, *J* 10.3, 7.3 Hz, H-8), 4.05 (dd, 1H, *J* 4.3, 2.3 Hz, H-1), 4.00 (dd, 1H, *J* 10.3, 6.8 Hz, H-8), 3.68 (app. t, 1H, *J* 4.8 Hz, H-7a), 3.40 (app. dt, 1H, *J* 6.0, 5.0 Hz, H-3), 3.30-3.25 (m, 1H, H-5), 2.81 (app. brt, 1H, *J* 6.5 Hz, H-5), 2.30-

2.23 (m, 1H, H-6), 2.05 (brd, 1H, J 12.0 Hz, H-6), 0.90 (s, 9H, t-Bu), 0.08 (s, 3H, CH₃), 0.07 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ 163.8 (CO), 150.4 (C), 138.3 (C), 137.7 (C), 135.2 (C),130.6 (CH), 128.4 (CH), 128.3 (CH), 127.6 (CH), 127.5 (CH), 126.9 (CH), 123.3 (CH), 86.9 (C-2), 81.7 (C-1), 74.3 (C-7), 73.7 (C-7a), 72.3 (CH₂), 71.7 (CH₂), 65.4 (C-3), 59.9 (C-8), 46.2 (C-5), 34.7 (C-6), 25.9 (C(*CH₃*)₃), 18.3 (C), -5.3 (CH₃), -5.4 (CH₃).

To a solution of crude **35a** (0.083 mmol) in MeOH (2 mL) was added K_2CO_3 (0.023 g, 0.1669 mmol). After stirring at rt for 4 h, the mixture was evaporated and dissolved in CH₂Cl₂ then washed with water. The aqueous layer was extracted with CH₂Cl₂ and the combined CH₂Cl₂ extracts were washed with brine, dried (Na₂CO₃) and evaporated. The residue was purified by FCC (80:20 EtOAc/petrol to 10:90 MeOH/EtOAc) to give **35** as a pale yellow oil (26 mg, 64%). R_f 0.19 (10:90 MeOH/EtOAc).

 $[\alpha]_{D}^{24}$ -5.3 (*c* 1.2, CHCl₃).

MS (ESI +ve) m/z 484 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_{28}H_{42}NO_4Si$ (M+H⁺) 484.2883, found 484.2882. IR v_{max} (cm⁻¹): 3418, 2930, 2850, 1673, 1250, 1089.

¹H NMR (500 MHz, CDCl₃) δ 7.36-7.26 (m, 10H, Ar), 4.68 (d, 1H, *J* 11.5 Hz,

C*H*HPh), 4.62 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.57 (d, 1H, *J* 11.5 Hz, C*H*HPh), 4.56 (d, 1H, *J* 12.0 Hz, C*H*HPh), 4.25 (app. t, 1H, *J* 5.0 Hz, H-1), 4.23 (app. t, 1H, *J* 5.0 Hz, H-2), 4.12 (app. brt, 1H, *J* 2.5 Hz, H-7), 3.97 (dd, 1H, *J* 10.8, 5.3 Hz, H-8), 3.82 (dd, 1H, *J* 10.8, 5.3 Hz, H-8), 3.49 (app. t, 1H, *J* 4.3 Hz, H-7a), 3.31 (app. dt, 1H, *J* 4.8, 4.0 Hz, H-3), 3.04-2.99 (m, 1H, H-5), 2.81 (brt, 1H, *J* 7.8 Hz, H-5), 1.96-1.94 (m, 2H, 2xH-6), 0.88 (s, 9H, *t*-Bu), 0.05 (s, 3H, CH₃), 0.04 (s, 3H, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ 138.4 (C), 137.9 (C), 128.4 (CH), 128.3 (CH), 128.0 (CH), 127.8 (CH), 127.6 (CH), 127.5 (CH), 85.5 (C-2), 79.5 (C-1), 73.2 (C-7a), 73.0 CH₂), 71.9 (CH₂), 71.2 (C-7), 62.5 (C-3), 59.3 (C-8), 43.9 (C-5), 36.9 (C-6), 26.0 (C(*CH*₃)₃), 18.6 (C), -5.3 (CH₃), -5.8 (CH₃).

(1*R*,2*R*,3*S*,7*S*,7a*R*)-3-(Hydroxymethyl)hexahydro-1*H*-pyrrolizine-1,2,7-triol (3-*epi*-australine) (4).

To a solution of **35** (21 mg, 0.045 mmol) in MeOH (1 mL) was added PdCl₂ (12 mg, 0.065 mmol). The mixture was stirred at rt under an atmosphere of H₂ (balloon) for 3 h, follow by the dropwise addition of conc. HCl (5 drops). Stirring at rt was continued for 21 h. The mixture was filtered through a celite pad and the solids were washed with MeOH. The combined filtrates were evaporated *in vacuo* and the residue was dissolved in water (1 mL) and applied to a column of Amberlyst (OH⁻) A-26 resin (3 cm). Elution with water followed by evaporation *in vacuo* gave 3-*epi*-australine **4** as a brown viscous oil (7.2 mg, 88%).

 $[\alpha]_{D}^{23}$ -10.5 (*c* 0.7, H₂O).

MS (ESI +ve) m/z 190 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_8H_{16}NO_4$ (M+H ⁺) 190.1079, found 190.1086.

IR v_{max} (cm⁻¹): 3279, 2924, 2888, 1429, 1357, 1058.

¹H NMR (500 MHz, D₂O) δ 4.41 (brt, 1H, $J_{6,7} = J_{7,7a} = 4.0$ Hz, H-7), 4.30 (t, 1H, $J_{1,2} = J_{1,7a} = 3.3$ Hz, H-1), 4.15 (t, 1H, $J_{1,2} = J_{2,3} = 4.0$ Hz, H-2), 4.01 (dd, 1H, $J_{8,8'} = 11.8$ Hz, $J_{3,8} = 5.8$ Hz, H-8), 3.92 (dd, 1H, $J_{8,8'} = 11.8$ Hz, $J_{3,8'} = 6.3$ Hz, H-8'), 3.38 (t, 1H, $J_{1,7a} = J_{7,7a} = 4.3$ Hz, H-7a), 3.30 (dt, 1H, $J_{3,8'} = 5.3$ Hz, $J_{2,3} = J_{3,8} = 4.5$ Hz, H-3), 3.15-3.10 (m, 1H, H-5α), 2.88 (t, 1H, $J_{5,5} = J_{5,6} = 8.0$ Hz, H-5β), 2.00-1.87 (m, 2H, 2xH-6).

¹³C NMR (125 MHz, D₂O) δ 79.3 (C-2), 75.2 (C-7a), 74.7 (C-1), 70.4 (C-7), 63.9 (C-3), 57.8 (C-8), 45.3 (C-5), 35.6 (C-6).

4•**HCl salt:** $[\alpha]_{D}^{23}$ -37 (*c* 0.7, H₂O). [Lit.¹⁰; $[\alpha]_{D}^{20}$ -3.5 ° (*c* 1.35, H₂O).

¹H NMR (500 MHz, D_2O) δ 4.77-4.73 (m, 1H, H-7), 4.65 (s, 1H, H-1), 4.34 (d, 1H, J = 3.5 Hz, H-2), 4.29 (d, 1H, J = 5.5 Hz, H-7a), 4.16 (dd, 1H, J = 12.0, 4.5 Hz, H-8), 4.13-4.04 (m, 2H, H-8 and H-3), 3.74 (dd, 1H, J = 11.3, 5.3 Hz, H-5), 3.71-3.65 (m, 1H, H-5), 2.28 (dd, 1H, J = 14.0, 5.0 Hz, H-6), 2.21-2.13 (m, 1H, H-6).

¹³C NMR (125 MHz, D₂O) δ 79.3 (C-7a), 77.4 (C-2), 74.2 (C-1), 69.3 (C-7), 67.1 (C-3), 56.1 (C-8), 48.4 (C-5), 35.0 (C-6).

^{10.} Nash, R. J.; Fellows, L. E.; Dring, J. V.; Fleet, G. W. J.; Derome, A. E.; Hamor, T. A.; Scofield, A. M.; Watkin, D. J., *Tetrahedron Lett.* **1988**, *29*, 2487-2490.

	3- <i>Epi</i> -australine ¹⁰	Syntheti	c 4
Physical	oil	brown viscous oil	
Appearance			
Optical Rotation	$[\alpha]_{D}^{20}$ -3.5 ° (<i>c</i> 1.35, H ₂ O), HCl	$[\alpha]_{D}^{23}$ -37 (c 0.7, H	₂ O), HCl
	salt.	salt	
¹ H NMR	500 MHz, D ₂ O	500 MHz, D ₂ O	
	4.24 (dt, 1H, J = 4.5, 2.0 Hz, H-7)	4.41 (brt, 1H, <i>J</i> _{6,7} Hz, H-7)	$= J_{7,7a} = 4.0$
	4.12 (t, 1H, $J = 3.5$ Hz, H-1)	4.30 (t, 1H, $J_{1,2} = J_{1,7a} = 3.3$ Hz, H-1) 4.15 (t, 1H, $J_{1,2} = J_{2,3} = 4.0$ Hz, H-2) 4.01 (dd, 1H, $J_{8,8'} = 11.8$ Hz, $J_{3,8} = 5.8$ Hz, H-8) 3.92 (dd, 1H, $J_{8,8'} = 11.8$ Hz, $J_{3,8'} = 6.3$ Hz, H-8') - 3.38 (t, 1H, $J_{1,7a} = J_{7,7a} = 4.3$ Hz, H-7a) 3.30 (dt 1H, $J_{2,8'} = 5.3$ Hz, $J_{2,2}$	
	3.96 (dd, 1H, <i>J</i> = 4.5, 3.5 Hz, H-2)		
	3.80-3.70 (2H, AB part of ABX,		
	CH ₂ OH)		
	3.25 (dd, 1H, J = 4.5, 4.0 Hz, H-7a)		
	3.16 (dt, 1H, J = 6.0, 4.5 Hz, H-3)		
	2.96 (ddd, 1H, <i>J</i> = 11.5, 9.0, 6.0 Hz, H-5)		
	2.74 (m, 1H, H-5)		
	1.82 (m, 2H, 2xH-6)		
¹³ C NMR	125 MHz, D ₂ O	125 MHz, D ₂ O (ref MeCN	$\Delta\delta$ (ppm)
C INIVIK	(ref not given)	δ 1.47)	
	78.5 (C-2)	79.3 (C-2)	0.8
	74.8 (C-7a)	75.2 (C-7a)	0.4
	74.0 (C-1)	74.7 (C-1)	0.7
	69.6 (C-7)	70.4 (C-7)	0.8
	63.5 (C-3)	63.9 (C-3)	0.4
	56.9 (C-8)	57.8 (C-8)	0.9
	44.9 (C-5)	45.3 (C-5)	0.4
	34.8 (C-6)	35.6 (C-6)	0.8

Table 4 Physical and spectral Data for (-)-3-*Epi*-australine¹⁰ and **4**.

10. Nash, R. J.; Fellows, L. E.; Dring, J. V.; Fleet, G. W. J.; Derome, A. E.; Hamor, T. A.; Scofield, A. M.; Watkin, D. J., *Tetrahedron Lett.* **1988**, *29*, 2487-2490.

(1*R*,2*R*,3*S*,7*R*,7a*R*)-3-(Hydroxymethyl)hexahydro-1H-pyrrolizine-1,2,7-triol (3,7-Diepi-australine) (36).

To a solution of **33** (20 mg, 0.041 mmol) in MeOH (1 mL) was added PdCl₂ (11 mg, 0.062 mmol). The mixture was stirred at rt under an atmosphere of H₂ (balloon) for 3 h, follow by the dropwise addition of conc. HCl (5 drops) at rt for 15 h. The mixture was filtered through a celite pad and the solids were washed with MeOH. The combined filtrates were evaporated *in vacuo* and the residue was dissolved in water (1 mL) and applied to a column of Amberlyst (OH) A-26 resin (3 cm). Elution with water followed by evaporation *in vacuo* gave 3,7-di*epi*-australine **36** as a white solid (7.0 mg, 90%).

 $[\alpha]_{D}^{24}$ -9.3 (*c* 1.1, H₂O).

MS (ESI +ve) m/z 190 (M + H⁺, 100%).

HRMS (ESI +ve) calculated for $C_8H_{16}NO_4$ (M+H⁺) 190.1079, found 190.1074.

IR v_{max} (cm⁻¹): 3370, 3309, 2509, 1454, 1202, 1060.

¹H NMR (500 MHz, D₂O) δ 4.30 (dt, 1H, $J_{6,7} = J_{7,7a} = 6.5$ Hz, $J_{6,7} = 6.0$ Hz, H-7), 4.16 (brd, 1H, $J_{2,3} = 3.5$ Hz, H-2), 4.13 (s, 1H, H-1), 3.97 (dd, 1H, $J_{8,8'} = 11.8$ Hz, $J_{3,8} = 7.0$ Hz, H-8), 3.92 (dd, 1H, $J_{8,8'} = 12.0$ Hz, $J_{3,8'} = 7.0$ Hz, H-8'), 3.28 (ddd, 1H, $J_{2,3} = 9.0$, $J_{3,8} = 7.0$, $J_{2,3} = 4.0$ Hz, H-3), 3.11 (ddd, 1H, $J_{5,5} = 10.0$, $J_{5,6} = 10.0$, $J_{5,6} = 6.0$ Hz, H-5α), 3.06 (dd, 1H, $J_{7,7a} = 2.0$, $J_{1,7a} = 5.5$ Hz, H-7a), 2.98 (t, 1H, $J_{5,5} = J_{5,6} = 8.5$ Hz, H-5β), 2.23-2.18 (m, 1H, H-6α), 1.80-1.72 (m, 1H, H-6β).

¹³C NMR (125 MHz, D₂O) δ 80.5 (C-1), 79.8 (C-2), 78.2 (C-7a), 75.1 (C-7), 64.9 (C-3), 57.6 (C-8), 46.4 (C-5), 34.5 (C-6).

36•HCl salt: $[\alpha]_D^{21}$ -21 (*c* 0.63, H₂O), HCl salt. [Lit.¹¹ for *ent*-**36**•HCl; $[\alpha]_D^{20}$ +33° (*c* 0.1, H₂O).

¹H NMR (500 MHz, D₂O) δ 4.63 (dt, 1H, $J_{6,7} = 8.0$ Hz, $J_{6,7} = J_{7,7a} = 6.0$ Hz, H-7), 4.41 (brs, 1H, H-1), 4.35 (d, 1H, $J_{1,2} = 2.5$ Hz H-2), 4.13 (dd, 1H, $J_{8,8'} = 12.5$ Hz, $J_{3,8} = 5.0$ Hz, H-8), 4.10 (d, 1H, $J_{8,8'} = 9.0$ Hz, H-8), 4.06-4.02 (m, 1H, H-3), 3.84 (d, 1H, $J_{7,7a} = 6.5$ Hz, H-7a), 3.75 (dd, 1H, $J_{5,5} = 11.3$ Hz, $J_{5,6} = 6.3$ Hz, H-5), 3.73 (dd, 1H, $J_{5,5} = 10.8$ Hz, $J_{5,6} = 6.3$ Hz, H-5), 2.54-2.48 (m, 1H, H-6), 2.07-1.99 (m, 1H, H-6). ¹³C NMR (125 MHz, D₂O) δ 80.1 (C-7a), 77.6 (C-1), 77.1 (C-2), 73.1 (C-7), 67.7 (C-3), 55.8 (C-8), 48.6 (C-5), 33.1 (C-6).

11. Chikkanna, D.; Singh, O. V.; Kong, S. B.; Han, H.,. Tetrahedron Lett. 2005, 46, 8865-8868.

30 HCI sait [3,7	-diepi-australine HCl salt].	1				
	1,2-Di <i>epi</i> -alexine·HCl salt ¹¹	Synthetic 36 ·HCl salt				
Physical Appearance	Not reported	Pale yellow viscous oil				
Optical Rotation	$[\alpha]_{D}^{20}$ +33° (<i>c</i> 0.1, H ₂ O), HCl salt	$[\alpha]_D^{21}$ -21 (<i>c</i> 0.63, H ₂ O), HCl sa				
¹ H NMR	500 MHz, D ₂ O	500 MHz, D ₂ O				
	4.62-4.58 (m, 1H)	4.63 (dt, 1H, $J_{6,7} = 8.0$ Hz, $J_{6,7}$				
	4.37 (brs, 1H)	$J_{7,7a} = 6.0 \text{ Hz, H-7})$ 4.41 (brs, 1H, H-1)				
	4.32 (brs, 1H)	4.35 (d, 1H, $J_{1,2} = 2$.				
	4.12-3.98 (m, 3H)	4.13 (dd, 1H, $J_{8,8'} = 12.5$ Hz, $J_{3,8'} = 5.0$ Hz, H-8) 4.10 (d, 1H, $J_{8,8'} = 9.0$ Hz, H-8)				
	3.80 (d, 1H, <i>J</i> = 5.8 Hz)	$\begin{array}{c} 4.06\text{-}4.02 \ (\text{m}, 1\text{H}, \text{H}\text{-}3) \\ \hline 3.84 \ (\text{d}, 1\text{H}, J_{7,7a} = 6.5 \ \text{Hz}, \text{H}\text{-} \\ \hline 7a) \end{array}$				
	3.75-3.60 (m, 2H)	3.75 (dd, 1H, $J_{5,5}$ = 11.3 Hz, $J_{5,6}$ = 6.3 Hz, H-5 α) 3.73 (dd, 1H, $J_{5,5}$ = 10.8 Hz, $J_{5,6}$ = 6.3 Hz, H-5 β)				
	2.51-2.44 (m, 1H) 2.54-2.48 (m, 1H, H-6)					
	2.04-1.96 (m, 1H)	2.07-1.99 (m, 1H, H-6)				
	75 MHz, D ₂ O	125 MHz, D ₂ O				
¹³ C NMR	(ref not given)	(ref MeCN δ 1.47)	Δδ (ppm)			
	81.8	80.1 (C-7a)	1.7			
	79.4	77.6 (C-1)	1.8			
	78.9	77.1 (C-2)	1.8			
	74.8	73.1 (C-7)	1.7			
	69.8	67.7 (C-3)	2.1			
	57.6	55.8 (C-8)	1.8			
	50.3	48.6 (C-5)	1.7			
	34.9	33.1 (C-6)	1.8			

Table 5 Physical and spectral Data for (+)-1,2-Di*epi*-alexine•HCl salt [ent-**36**]¹¹ and **36**•HCl salt [3,7-di*epi*-australine•HCl salt].

11. Chikkanna, D.; Singh, O. V.; Kong, S. B.; Han, H.,. Tetrahedron Lett. 2005, 46, 8865-8868.

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

SI- 45 -

¹³C NMR (125 MHz, CDCl₃)

SI- 47 -

SI- 50 -

tr080821_Uniflroine_A_13C

exp4 s2pu1

	SAMPLE DO		SPE	CIAL	
date	Aug 21 2008	temp)		25.0
solven		gair		not	used
file /	nmrdata/pyne-			not	usec
	Archive/bup_*				0.008
	/thunwadee/t)	1	15.600
	1_Uniflroine^		1		6.600
	A 13C.fid		FL	AGS	
ACQ	UISITION	i 1			r
sw	31421.8	in			r
at	1.300	dp			У
np	81726	hs			nr
fb	17000		PROC	ESSIN	IG
bs	64	lb			0.50
d1	1.000	fn		not	used
nt	776		DIS	PLAY	
ct	320	sp		5	5779.7
TRA	NSMITTER	wp		5	5026.7
tn	C13	rf1		ş	1423.4
sfra	125.716	rfp		7	269.4
tof	1884.0	rp			-176.6
tpwr	63	lp			-187.8
pw	7.800		P	LOT	
DE	COUPLER	WC			250
dn	H1	SC			0
dof	0	VS			622
dm	УУУ	th			13
dmm	Ŵ	ai	cdc	ph	
dpwr	37				
	12500				

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

* EtOAc

* EtOAc

¹³C NMR (125 MHz, CDCl₃)

* Impurity

SI- 57 -

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CD₃OD)

¹³C NMR (125 MHz, D₂O)

tr090210_Rtr086_casuarine_acetone13C

exp3 s2pul

S	AMPLE			SPE	CIAL	
date	Feb 10	2009	temp	1		25.0
solvent		D20	gair	1	not	used
file /n	mrdata,	/pyne~	spir	1	not	used
/fids/A	rchive	/bup_~	hst			0.008
090318/	thunwa	dee/t~	pw90)	1	5.800
r090210	Rtr08	6 cas~	alfa	i.		6.600
uarine	aceton	e13C.~		FL	AGS	
		fid	i 1			n
ACQU	ISITIO	N	in			n
SW	31	421.8	dp			У
at		1.300	hs			nn
np	1	81726		PROC	ESSIN	IG
fb		17000	1b			0.50
bs		64	fn		not	used
d1		1.000		DIS	PLAY	
nt		14028	sp			294.7
ct	1	14028	wp		6	1647.0
TRAN	SMITTER	R	rf1		5	708.5
tn		C13	rfp		3	3883.0
sfra	12	5.717	rp		-	174.6
tof	18	884.1	1p			250.1
tpwr		63		P	LOT	
pW		7.900	WC			250
DEC	OUPLER		SC			0
dn		H1	VS			634
dof		0	th			3
dm		УУУ	ai	cdc	ph	
dmm		W				
dpwr		37				
dmf		12821				

tr090321_Rtr107

SI- 69 -

tr090327_Rtr107-13C-ACN

ехрЗ	s2pu1						
	SAMPLE	Dia.		SPF	CIAL		
date		27 2009	temp		0 21112		25.0
solve		CDC13	gair		nc		ised
		a/pyne~	spir		nc		ised
		/e/bup_~	hst				.008
		adee/t~	pw90	1			.800
		07-13C~	alfa				. 600
		CN.fid			AGS		
AC	OUISITI		i 1				r
sw	3	31421.8	in				r
at		1.300	dp				S
np		81726	hs				nr
fb		17000	121010	PROC	ESSI	NG	10.00
bs		64	1b				1.00
d1		1.000	fn		no		ised
nt		1556		DIS	PLAY	6 C C	
ct		1462	sp			245	90.1
TR	ANSMITT	ER	wp			884	11.4
tn		C13	rf1			233	35.0
sfrq	1	25.716	rfp			18	34.8
tof		1884.0	rp			16	57.7
tpwr		63	1p			-21	15.0
pw		7.900	-	P	LOT		
D	ECOUPLE	R	WC				250
dn		H1	SC				0
dof		0	VS				519
dm		YYY	th				8
dmm		Ŵ	ai	cdc	ph		
dpwr		37					
dmf		12821					

Archive directory: /export/home/pyne/vnmrsys/data Sample directory:

Pulse Sequence: gCOSY

Solvent: D20 Temp. 25.0 C / 298.1 K File: tr090321_Rtr107-gCOSY INOVA-500 "wuthrich"

Relax. delay 1.000 sec Acq. time 0.128 sec Width 7998.4 Hz 2D Width 7998.4 Hz 32 repetitions 256 increments DBSERVE H1, 499.9119776 MHz DATA PROCESSING Line broadening 3.0 Hz Sq. sine bell 0.064 sec F1 DATA PROCESSING Line broadening 3.0 Hz Sq. sine bell 0.016 sec FT size 2048 x 1024 Total time 2 hr, 38 min, 16 sec

COSY (500 MHz, D₂O) SI- 71 - tr090321_Rtr107-gHSQC

HSQC (500 MHz, D₂O) SI- 72 -

Archive directory: /export/home/pyne/vnmrsys/data Sample directory:

HMBC (500 MHz, D₂O) SI- 73 -

¹³C NMR (125 MHz, D₂O)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, D₂O)

tr090522_Rtr137

tr090522_Rtr137-13C

exp1 s2pul

	and the second se						
	SPECIAL						
date	temp 25.						
solven	May 22 2009 t CDC-13	gain		nc			
	nmrdata/pyne~	spin		nc			
	hst	0.008					
/fids/Archive/bup_~ 090617/thunwadee/t~		pw90	e	15.800			
r090522_Rtr137-130							
1 0 3 0 3 2	2_K(1137-130.	ana		ACS	0.000		
000	FLAGS il						
SW	UISITION 31421.8	in			r		
at	1.300	dp			3		
	81726	hs			ע חר		
np fb	17000	115	PROC	FOOT			
bs	64	1b	FRUG	1991	0.50		
d1	1.000	fn		nc			
nt	12468	ER	DTS	PLAY			
	12468		DIS	PLAT	2433.0		
ct TDA	sp			8794.4			
	NSMITTER C13	wp rfl			6619.5		
tn							
sfrq	125.716	rfp			4469.7		
tof	1884.0	rp			150.4		
tpwr	63	٦p	D	IOT	-169.3		
pw 7.900			PLOT				
	COUPLER	wc			250		
dn	H1	sc			1050		
dof	0	VS			1359		
dm	УУУ	th			13		
dmm	W	ai	cdc	ph			
dpwr	37						
dmf	12821						

¹³C NMR (125 MHz, D₂O)

¹³C NMR (125 MHz, D₂O)

tr090523_Rtr139

exp1 s2pul

SI- 88 -

tr090523_Rtr139-13C

exp1 s2pul

	SAMPLE	Poo		SPE	CIAL			
date	May 23	2009	temp	1 1 1 1 1 1 1 1		25	. 0	
solve		CDC13	gair		not	us	ed	
	/nmrdata		spir		not	us	ed	
	/Archive		hst			0.0	80	
090617/thunwadee/t~			pw90	15.800				
	23_Rtr13		alfa			6.6	00	
	17 C	.fid		FL	AGS			
AC	OUISITIO	N	i1				n	
SW	31	421.8	in				n	
at		1.300	dp				У	
np		81726	hs				nn	
fb		17000		PROC	ESSIN	G		
bs		64	1b			0.	50	
d1		1.000	fn		not	us	ed	
nt		11688		DIS	PLAY			
ct		11688	sp		2	432	.5	
TRANSMITTER			wp		9	001	.0	
tn		C13	rf1		6	486	.7	
sfrq	12	5.716	rfp		4	336	.5	
tof		884.0	rp			160	.5	
tpwr		63	1p		1	199	. 6	
pw		7.900	•	PLOT				
	ECOUPLER		WC			2	50	
dn		H1	SC				0	
dof		0	vs			8	46	
dm		УУУ	th				8	
dmm		Ŵ	ai	cdc	ph			
dpwr		37			10			
dmf		12821						

¹³C NMR (125 MHz, D₂O)

Figure Structure of $C_{28}H_{39}NO_4Si$ **21** with labelling of selected atoms. Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Crystal/refinement data have been deposited with the Cambridge Crystallographic Data Centre (CCDC 752850).