Supporting Information: ## Phase Behavior and Crystalline Phases of Ionic Liquid-Lithium Salt Mixtures with 1-Alkyl-3-methylimidazolium Salts Qian Zhou, Kendall Fitzgerald, Paul D. Boyle, and Wesley A. Henderson* Ionic Liquid & Electrolytes for Energy Technologies (ILEET) Laboratory, Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 ## **Experimental Details:** **NMR Measurements.** All NMR spectra were measured at room temperature on a Varian Gemini 200 MHz spectrometer. Deuterated acetonitrile (CD₃CN, 99.8 atom% D, containing 1% v/v TMS) was used as the solvent (Fig. S-1). ¹H NMR data for the clear, colorless IM_{10R}TFSI (Table S-1 and Fig. S-2) salts indicate that the ILs are all of high purity (>99%). **IL-LiX Crystal Structures.** Fig. S-3 shows two views of a portion of the polymeric ionic chains formed in the 1/1 (x = 0.50) $IM_{101}CF_3SO_3/LiCF_3SO_3$ crystalline phase by the Li^+ cations and $CF_3SO_3^-$ anions. Each anion coordinates two Li^+ cations. The third anion oxygen atom forms a single hydrogen bond with one of the neighboring IM_{102}^+ cations. The Li^+ cations are coordinated by a total of four anion oxygen atoms (one each from four anions). The IM_{102}^+ cations reside between the polymeric ionic chains. Fig. S-4 shows two views of a portion of the ionic planar sheets formed in the 1/2 (x = 0.67) $IM_{102}TFSI/LiTFSI$ crystalline phase by the Li^+ cations and $TFSI^-$ anions. Each anion coordinates either two or three Li^+ cations. The anions have either C_2 or C_1 symmetry³⁻⁷ with twice as many of the latter present. The anions with C_1 symmetry are the ones coordinated to three Li^+ cations. The Li^+ cations are coordinated by five anion oxygens. The IM_{102}^+ cations reside in cavities formed by these sheets. The Li^+ cation coordination to the anions in this structure is shown in Fig. S-5. - (1) Burba, C. M.; Rocher, N. M.; Frech, R.; Powell, D. R. J. Phys. Chem. B 2008, 112, 2991. - (2) Matsumoto, K.; Hagiwara, R.; Tamada, O. Solid State Sciences 2006, 8, 1103. - (3) Foropoulos Jr., J.; DesMarteau, D. D. Inorg. Chem. 1984, 23, 3720. - (4) Arnaud, R.; Benrabah, D.; Sanchez, J.-Y. J. Phys. Chem. 1996, 100, 10882. - (5) Johansson, P.; Gejji, S. P.; Tegenfeldt, J.; Lindgren, J. Electrochim. Acta 1998, 43, 1375. - (6) Holbrey, J. D.; Reichert, W. M.; Rogers, R. D. Dalton Trans. 2004, 2267. - (7) Rey, I.; Johansson, P.; Lindgren, J.; Lassègues, J. C.; Servant, L. J. Phys. Chem. A 1998, 102, 3249. **Figure S-1.** ¹H NMR spectrum for CD₃CN. **Table S-1.** ¹H NMR data for IM_{10R}TFSI (R = 1, 2 or 4), $\delta_{\rm H}$ (200 MHz, CD₃CN). | IM ₁₀₁ TFSI | 8.37 (s, 1H), 7.32 (d, 2H), 3.82 (s, 6H) | |------------------------|---| | IM ₁₀₂ TFSI | 8.40 (s, 1H), 7.38 (s, 1H), 7.32 (s, 1H), 4.16 (q, 2H), 3.81 (s, 3H), 1.45 (t, 3H) | | IM ₁₀₄ TFSI | 8.42 (s, 1H), 7.38 (t, 1H), 7.34 (t, 1H), 4.13 (t, 2H), 3.83 (s, 3H), 1.79 (qnt, 2H), 1.32 (sext, 2H), 0.94 (t, 3H) | **Figure S-3.** Portion of the crystal structure of the 1/1 (x = 0.50) $IM_{101}CF_3SO_3/LiCF_3SO_3$ crystalline phase (two views-rotated 90°). The C and N atoms of the IM_{102}^+ cations are colored black for clarity (Li-purple, O-red, S-yellow, F-green). **Figure S-4.** Portion of the crystal structure of the 1/2 (x=0.67) $IM_{102}TFSI/LiTFSI$ crystalline phase (two views-rotated 90°). The C and N atoms of the IM_{102}^{+} cations are colored black and the two cations have been removed from the left cavity for clarity (Li-purple, O-red, S-yellow, F-green). **Figure S-5.** Li^+ ...TFSI⁻ coordination in the 1/2 (x = 0.67) IM_{102} TFSI/LiTFSI crystalline phase. The asymmetric unit contains two anions each with this coordination (6 total) (Li-purple, O-red, S-yellow, F-green).