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I. DETERMINATION OF THE POSITION OF
BUMPS IN STRESSED GRAPHENE AREAS

Fig. 1a) shows a three dimensional representation of a
graphene surface consisting of a lifted valley surrounded
by stable hills (tunneling parameters: U = 0.4 V, I =
2 nA). Analyzing the atomically resolved STM image in
detail, we find a hexagonal arrangement of the carbon
atoms at the hills, as expected for monolayer graphene
(see blue hexagon in Fig. 1b). In contrast, within the
stressed area we observe a triangular appearance of bright
bumps at every second atom. By following up the line
in Fig. 1b) one clearly sees that the bumps within the
stressed area do not appear in the center of the hexagons
but at one of the atomic sites providing a symmetry
breaking between A and B lattice. The ball model pre-
sented in Fig. 1a) illustrates a possible atomic arrange-
ment explaining the broken symmetry induced by the
compressive stress. To reduce the stress a zig-zag like
arrangement of the carbon atoms is favoured.

FIG. 1: a) Atomically resolved STM image of a graphene sur-
face consisting of relaxed (hills) and a stressed area (lifted
valley). The ball model explains the broken symmetry be-
tween A (blue balls) and B (orange balls) lattice of graphene
due to compressive stress. b) Magnification of the dotted
area marked in a). The changing atomic arrangement from
relaxed (hexagons) to stressed (triangles) graphene areas can
be identified.

II. DETERMINATION OF THE INITIAL
TIP/GRAPHENE DISTANCE z

0
tg AND THE

DECAY CONSTANT κ(U)

The absolute distance between tip and graphene ob-
tained after stabilization, z0

tg, could be determined, in
principle, by decreasing the distance between tip and
sample until the conductance reaches the conductance
quantum G0 = 2e2/h [1]. Unfortunately, this does not
work for graphene, because the graphene is lifted during
the tip approach, even on the hills (reference positions) as
indicated from significantly too large decay constants κ
extracted from I(z)-spectra, which have been measured
systematically on the graphene surface. The only way
to reasonably estimate z0

tg is to calculate κ = 23.3 nm−1

with the help of equation 2 (below) and, then, to extrapo-
late the exponential behaviour of the conductance with
respect to the distance by using the stabilization param-
eters Us = −0.6 V and Is = 200 pA:
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= 0.56 nm. (1)

To determine the decay constant κ(U), we use a planar
tunnelling junction with a correction factor ξ [3]:
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The effective work function φeff = (φgr +φt)/2 = 4.89 eV
has been calculated using the known graphene work func-
tion of φgr = 4.66 eV [2] and a tip work function of
φt = 5.11 eV derived from the measured contact poten-
tial as displayed in Fig. 3a of the main text. The correc-
tion factor ξ = 1.06 has been determined by fitting I(z)-
curves measured with the same microtip on Au(111) by
equation 2 (work function: φAu = 5.31 eV [4]).

III. CALCULATION OF THE INTERACTION
POTENTIALS ACTING ON THE

NANO-MEMBRANE

In order to describe the observed behaviour of the
nano-membrane, the involved interaction potentials are
analysed in detail. Besides the electrostatic potential Φel

induced by the tip, the Casimir/van-der-Waals potentials
ΦvdW induced by the tip and the SiO2-substrate as well
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as the elastic restoring force of the membrane itself Φmem

are considered.

A. Casimir/van-der-Waals potential induced by
the tip

The description of the van-der-Waals and Casimir po-
tential ΦvdW per unit area A between two materials is
given by [5]:
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where rgr and rw denote the frequency dependent reflec-
tion coefficients of graphene and tungsten, respectively,
k⊥ is the wave number parallel to the surface, ztg is the
variable distance between graphene and the tip apex and
ω is the frequency (~: Planck’s constant). The reflection
coefficient of graphene can be calculated by [5]:

rgr =
c2qΩ

c2qΩ + ω2
, (4)

with Ω = 6.75 × 105m−1, c = 3 · 108 m/s and
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To determine the reflection coefficient of the tungsten
tip, the frequency dependent dielectric constant ε(ω) has
to be used:
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The dielectric function can be approximated knowing
the plasma frequency of tungsten ωp,W = 9.74 × 1015 Hz
[7]:

ε(ω) = 1 +
ω2

p,W

ω2
. (8)

The total interaction potential ΦvdW(z) is determined by
an integration of equation 3 over the circular area of the
nano-membrane:

ΦvdW(ztg(r
′ = 0)) = 2π

∫ r

0

ΦvdW

A
(ztg(r

′))r′dr′, (9)

where ztg(r
′) denotes the vertical distance between tip

and graphene at a lateral distance r′ measured from the
centre of the membrane and ztg(r

′ = 0) indicates that
we use the tip-graphene distance in the centre of the

FIG. 2: Definition of distances used in the calculation of the
interaction potentials.

membrane as the variable for ΦvdW. Assuming a circu-
lar membrane with the measured radius of r = 2.58 nm
and a 2D-cosine shaped corrugation (see Fig. 2), as well
as a parabolic tip with central radius R, ztg(r

′) can be
described as:
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)
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The vertical distance between tip apex and the hills
surrounding the membrane zhill

tg is determined by analys-
ing the measured valley depth with respect to the sur-
rounding hills. For the tip radius R we can only give
an upper limit of R = 2.3 nm determined by analysing
STM images of atomically resolved valleys, which would
not have been resolved by larger tips due to convolution
effects. The smallest possible tip radius of R = 0.3 nm is
given by a tetraedric alignment of the first four atoms.
For the calculation, we use a value of R = 0.7 nm, deter-
mined as described below.

B. Casimir/van-der-Waals potential induced by
the SiO2-substrate

The interaction potential between graphene and the
amorphous SiO2-subtrate ΦvdW(sg) is calculated similarly
using equation 3−7 and 9, but replacing ztg(r

′) by the
distance between graphene and the SiO2 substrate zsg(r

′)
as well as rw by the reflection coefficient of SiO2 rSiO2.
In case of an insulating material like SiO2, ε(ω) is given
by another expression [5]:

ε(ω) = 1 +
ε(0) − 1

1 + ω2

ω2
e

, (11)
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where ωe = 1.05 × 1016 s−1 is the main electronic ab-
sorption frequency being within the ultra violet region
[8, 9]. For amorphous SiO2, we use the known dielectric
constant at zero frequency of ε(0) = 3.9 [6]. To describe
zsg(r

′), assuming a plane substrate (SiO2 shows a corru-
gation with a preferential distance between hills of 50 nm,
thus the assumption of a plane substrate is safe on the
range of 5 nm.) and again a 2D-cosine shaped membrane
as sketched in Fig. 2, we use

zsg(r
′) = zhill

sg −
[

zhill
sg − zsg(0)

]

cos2
(

πr′

2r

)

(12)

with zhill
sg being the distance between substrate and the

borders of the membrane (surrounding hills) and zsg(0)
being the distance between the substrate and the lowest
point of the membrane. The value of zsg(0) can vary with
the applied voltage U or with the tip-substrate distance.
However, the change of zsg(0) with U or tip-substrate dis-
tance can be measured via the tunnelling current. Only
the offset of the initial tip-substrate distance, z0

sg, with-
out electric field has to be taken as a fit parameter.

C. Elastic membrane potential

In order to determine the elastic potential Φmem of the
nano-membrane, we assume a cubic force dependence of
the deflection z+ as given by the classical clamped mem-
brane theory according to Komaragiri et al. [11][10]. The
nanomembrane gets laterally compressed if lifted until
the centre of the membrane is at the same height as the
surrounding hills (see Fig. 1c of the main text). If lifted
further the membrane gets relaxed again up to a second
stable position above the surrounding hills. In order to
model this behaviour, we compose the membrane poten-
tial Φmem of two parts Φ+(zsg(0)) and Φ−(zsg(0)) with
minima vertically symmetric with respect to the position
of largest compression leading to:

Φ+(zsg) = −0.265E2D
(zsg − zhill

sg + d
2 )4

r2
, if zsg < zhill

sg ,

Φ−(zsg) = −0.265E2D
(zsg − zhill

sg − d
2 )4

r2
, if zsg > zhill

sg ,

where E2D denotes the two dimensional Young’s mod-
ulus due to compressing or stretching of the atomic
bonds, which has been measured previously to be E2D =
340 N/m [10]. The distance between the two potential
minima d is the second free parameter of our model, only
limited to about twice the valley depth. We found that
d = 0.12 nm is able to reproduce the behaviour of the
membranes displayed in Fig. 1 and 2 of the main text.
This number is lower than the valley depth appearing in
the STM images implying that the van-der-Waals force
of the SiO2 substrate increases the corrugation strength
within the graphene flake.

D. Electrostatic potential induced by the tip

The electrostatic potential Φel induced by the tip is
given by

Φel =
1

2
CmU2

eff , (13)

with the capacitance Cm and the effective gap voltage
Ueff to be determined. We approximate the tip-sample
system by a capacitor consisting of a sphere with radius
R above a circular plate of radius r corresponding to
tip and membrane, respectively. The capacitance C for
r = ∞ can be calculated analytically resulting in [14]:
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with the distance between the tip apex and the infinite
plate ztg = ztg(0). The capacitance determined by equa-
tion 14 has to be modified because of the finite area of
the nano-membrane below the tip. Therefore, we assume
a Gaussian shape of the total charge density of the infi-
nite plate with a maximum at r′ = 0 to be determined
below and calculate the capacitance of the finite mem-
brane by integration only over the circular area of the
nano-membrane. We end up with a capacitance Cm of

Cm = C

[

1 − exp

(

−
πεε0r

2

Cztg

)]

. (15)

Because of the finite charge carrier concentration of
graphene, the effective voltage Ueff between the tip and
graphene is smaller than the applied bias-voltage U . The
remaining voltage leads to a considerable Fermi level shift
within the graphene until the charge carrier density is
high enough to screen the electric field. As a consequence,
there is a potential drop between the graphene just below
the STM tip and the gold electrode connected to the ex-
ternal power supply. Due to the linear dispersion relation
of graphene the two dimensional charge carrier density n
can be written as [12]:

n =
e2(Ũ − Ueff)2

π~2v2
F

, (16)

where Ũ := U −UC with UC being the contact potential
determined in Fig. 3a of the main text, vF = 1.1×106 m/s
is the Fermi-velocity of graphene and e is the electron’s
charge. In equilibrium, the electrons screen the electric
field E and the resulting 2D charge density can be most
easily approximated by a plate capacitor leading to:

ne = εε0E(Ueff) = εε0
Ueff

z+
tg

. (17)

Thereby, z+
tg denotes the distance between the plate and

the centre of mass of the lower half sphere approximating
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the tip, which has been chosen to map the model of two
parallel plates to the model of a sphere and a plate. With
the help of equations 16 and 17, the effective voltage drop
between tip and graphene becomes:

Ueff = Ũ +
α

2z+
tg

−

√

α2

4(z+
tg)

2
+

αŨ

z+
tg

, (18)

α =
εε0π~

2v2
F

e3
.

The value of the dielectric constant for graphene on
SiO2 has been calculated previously using the image po-
tential method and amounts to ε = 2.5 [13]. The result-
ing n calculated straightforwardly by inserting Ueff into
equation 16 has been used self-consistently as the maxi-
mum of the Gaussian charge density required to calculate
Cm.

IV. EXCITATION OF THE NANO-MEMBRANE
BY AC-VOLTAGE

We applied an ac-voltage U(t) = Udc + U0 cos(2πνt)
with a varying amplitude U0, at a dc-offset Udc and a fre-
quency of ν = 1.4 kHz. In addition, we define the voltage
U c(t) = Udc + U0 cos(2πνt) − Uc including the contact
potential Uc determined from Fig. 3a of the main text.
The time dependent tunnelling currents I0(t), measured
at the stable reference position and I(t) measured above
the nano-membrane can be described using the linear
graphene density of states as:

I0(t) ∝
U(t)3

|U(t)|
exp

{

−2κ(U(t))z0
tg

}

(19)

and

I(t) ∝
U(t)3

|U(t)|
exp

{

−2κ(U(t))
[

z0
tg − z+(Ueff(t))

]}

,

(20)

where z+(Ueff) denotes the deflection of the nano-mem-
brane with respect to its position in the absence of elec-
tric field and Ueff(t) is the part of the corrected volt-
age U c(t) dropping between membrane and tip. Note,
that the expression for z+ is assumed not to be present
on the reference position. The quadratic dependence of
the tunnelling current with respect to the bias voltage
is derived from the linear dispersion relation of graphene
and has been checked by according fits to the measured
I(U)-spectra. In Fig. 3d of the main text, we display the
lock-in ratio:

rLI =

∫ t+T

t
I(t) cos(2πνt) dt

∫ t+T

t
I0(t) cos(2πνt) dt

, (21)

which can be directly used to determine the deflection
amplitude ∆z numerically as displayed on the right of
Fig. 3d of the main text. Accordingly, the upper scale
of Fig. 3d of the main text shows the electric field am-
plitude E0 given by E0 = Ueff,max/ztg,min with ztg,min

being the minimal distance between graphene and tip
and Ueff,maxbeing the maximal effective voltage during
the oscillation.

Finally, we describe our estimate of the tip radius
R. Therefore, we use the simplified clamped membrane
model for the force-deflection curve, consisting of a lin-
ear term caused by so-called pretension and a cubic term
describing the compression of the atomic bonds given by
E2D [10]. The equilibrium between the electrostatic force
and the elastic membrane force is then given by:

1

2

∂Cm

∂ztg
(Ueff(t))2 = −σ2D

0 πz+ − E2D1.06
z3
+

r2
, (22)

where σ2D
0 denotes the two dimensional pretension. After

solving towards z+(Ueff) numerically, we fitted the mea-
sured rLI taking σ2D

0 and the tip radius R as the only
free parameters. The excellent fit displayed in Fig. 3d of
the main text results in a tip radius of R = 0.7 nm and a
pretension of σ2D

0 = 0.62 N/m.
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