SUPPORTING INFORMATION

Binding of Higher Alcohols onto $\mathbf{M n}_{12}$ Single-Molecule Magnets: Access to the Highest Barrier Mn $\mathbf{1 2}^{\mathbf{S}} \mathbf{S M M}$

Christos Lampropoulos ${ }^{\dagger}$, Gage $_{\text {Redler }}{ }^{\ddagger}$, Saiti Data ${ }^{\ddagger}$, Khalil A. Abboud ${ }^{\dagger}$, Stephen O. Hill ${ }^{* \$ \$, ~}$ and George Christou *, ${ }^{\dagger}$

Department of Chemistry, University of Florida, Gainesville, Florida 32611; Department of Physics, University of Florida, Gainesville, Florida 32611; Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310.

Figure S1. Space-filling diagrams of complex $\mathbf{3}$ showing the water ligand O atoms (in green) and their degree of envelopment by the carboxylates: (top left) the most buried water molecule (O50), barely visible; (top right) more visible water molecule O40, but still too enveloped to form H-bonds with lattice ButOH molecules; and (bottom) most exposed water molecule O37, that can form two H-bonds with lattive ButOH molecules (se text): Mn violet; O red; C black; H white.

Figure S2. PovRay representation of the extended core of complex 3, emphasizing the static disorder (80:20) between the water molecule (O50), and a tert-butyl acetate ligand. The tert-butyl acetate groups which are not involved in the static disorder, as well as all hydrogen atoms have been omitted for clarity. The water oxygens are shown in yellow; the bonds of the $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}$ ligand are denoted in sky-blue for emphasis. Color code: $\mathrm{Mn}^{\mathrm{IV}}$ purple; $\mathrm{Mn}^{\text {III }}$ green; O red; C gray.

Figure S3. Packing diagram for complex 4, showing the two orientations of symmetry-related Mn_{12} complexes. Color code: $\mathrm{Mn}^{\mathrm{IV}}$ purple; $\mathrm{Mn}^{\text {III }}$ green; O red; C gray.

Table S1. BVS Calculations for the Mn^{a} atoms of complexes $\mathbf{3}$ and 4.

Atom	$\mathrm{Mn}^{\mathrm{II}}$	3 $\mathrm{Mn}^{\mathrm{III}}$	$\mathrm{Mn}^{\mathrm{IV}}$	$\mathrm{Mn}^{\mathrm{II}}$	$\mathbf{4}$ $\mathrm{Mn}^{\mathrm{III}}$	$\mathrm{Mn}^{\mathrm{IV}}$
Mn1	3.23	$\underline{2.96}$	3.10	3.28	$\underline{3.00}$	3.15
Mn 2	4.23	3.87	$\underline{4.06}$	4.16	3.80	$\underline{3.99}$
Mn3	4.19	3.83	$\underline{4.02}$	4.18	3.83	$\underline{4.02}$
Mn4	3.25	$\underline{2.97}$	3.12	3.27	$\underline{3.00}$	3.15
Mn5	3.24	$\underline{\underline{2.97}}$	3.12	3.24	$\underline{\underline{2.97}}$	3.12
Mn6	4.18	3.82	$\underline{4.01}$	4.26	3.89	$\underline{4.09}$
Mn7	4.15	3.80	$\underline{3.99}$	4.25	3.88	$\underline{4.08}$
Mn8	3.29	$\underline{3.01}$	3.16	3.24	$\underline{2.97}$	3.11
Mn9	3.24	$\underline{2.96}$	3.11	3.21	$\underline{2.93}$	3.08
Mn10	3.22	$\underline{2.95}$	3.09	3.23	$\underline{2.95}$	3.10
Mn11	3.25	$\underline{2.97}$	3.12	3.31	$\underline{3.03}$	3.18
Mn12	3.39	$\underline{3.10}$	3.25	3.24	$\underline{2.96}$	3.11

${ }^{a}$ The underlined value is the one closest to the charge for which it was calculated. The oxidation state is the whole number nearest to the underlined value.

