Supporting information

Given below are NMR characterization data for the compounds used in the study "Behaviour of asphaltene model compounds at W/O interfaces". The structures can be found in Figure 1. ¹H NMR spectra were recorded on a Bruker Advance DPX 300 MHz spectrometer. An appropriate amount was dissolved in CDCl₃ (99.8 atom % D) containing 0.05% (v/v) tetrametylsilane (TMS) as an internal standard and the peak of TMS was calibrated to 0.00 ppm. For PAP, 1 drop of *d*₆-DMSO (99.9 atom % D) was added to increase solubilisation.

C5Pe: δ 8.58 (2H, *s*, br., arom.), δ 8.52 (2H, *d*, arom., ${}^{3}J_{ortho} = 8.1$ Hz), δ 8.45 (2H, *d*, arom., ${}^{3}J_{ortho} = 8.1$ Hz), δ 8.40 (2H, *d*, arom., ${}^{3}J_{ortho} = 8.1$ Hz), δ 5.18 (1H, *m*, NCHCH₂), δ 4.18 (2H, *t*, NCH₂), δ 2.25 (2H, *m*, NCH(CH₂)_a), δ 2.0 – 1.0 (26H, *m*, alkyl+ NCH(CH₂)_b), δ 0.86 (6H, *t*, ${}^{3}J_{H-H} = 6.9$ Hz).

PAP: δ 8.46 (2H, *s*, br., arom.), δ 8.30 (2H, *d*, arom., ${}^{3}J_{ortho} = 8.1$ Hz), δ 8.27 (2H, *d*, arom., ${}^{3}J_{ortho} = 8.1$ Hz), δ 8.27 (2H, *d*, arom., ${}^{3}J_{ortho} = 8.1$ Hz), δ 7.08 (2H, *d*, Ph., ${}^{3}J_{ortho} = 6.9$ Hz), δ 7.01 (2H, *t*, Ph., ${}^{3}J_{ortho} = 7.2$ Hz), δ 6.92 (1H, *d*, Ph., ${}^{3}J_{ortho} = 7.2$ Hz), δ 5.91 (H, *dd*, PhCH₂*CH*N, ${}^{3}J_{H-H} = 10.2$ Hz, 5.4 Hz), δ 5.05 (1H, *m*, NCH-alkyl), δ 3.60 (1H, *dd*, Ph-CH_{2a}, ${}^{2}J_{H-H} = 14.4$ Hz, ${}^{3}J_{H-H} = 5.4$ Hz), δ 3.45 (1H, *dd*, Ph-CH_{2b}, ${}^{2}J_{H-H} = 14.4$ Hz, ${}^{3}J_{H-H} = 10.2$ Hz), δ 3.45 (1H, *dd*, Ph-CH_{2b}, ${}^{2}J_{H-H} = 14.4$ Hz, ${}^{3}J_{H-H} = 10.2$ Hz), δ 3.45 (1H, *dd*, Ph-CH_{2b}, ${}^{2}J_{H-H} = 14.4$ Hz, ${}^{3}J_{H-H} = 10.2$ Hz), δ 3.45 (1H, *dd*, Ph-CH_{2b}, ${}^{2}J_{H-H} = 14.4$ Hz, ${}^{3}J_{H-H} = 10.2$ Hz), δ 3.45 (1H, *dd*, Ph-CH_{2b}, ${}^{2}J_{H-H} = 14.4$ Hz, ${}^{3}J_{H-H} = 10.2$ Hz), δ 3.45 (1H, *dd*, Ph-CH_{2b}, ${}^{2}J_{H-H} = 14.4$ Hz, ${}^{3}J_{H-H} = 10.2$ Hz), δ 3.45 (1H, *dd*, Ph-CH_{2b}, ${}^{2}J_{H-H} = 14.4$ Hz, ${}^{3}J_{H-H} = 10.2$ Hz), δ 3.45 (1H, *dd*, Ph-CH_{2b}, ${}^{2}J_{H-H} = 14.4$ Hz, ${}^{3}J_{H-H} = 10.2$ Hz), δ 3.45 (2H, *m*, CH₂-alkyl), δ 1.3 – 1.0 (16H, *m*, alkyl), δ 0.72 (6H, *t*, ${}^{3}J_{H-H} = 6.9$ Hz).

BisA: 8.70 – 8.56 (8H, br., arom.), δ 5.18 (2H, *m*, NCHCH₂), δ 2.25 (4H, *m*, NCH(CH₂)_a), δ 1.87 (4H, *m*, NCH(CH₂)_b), δ 1.4 – 1.1 (32H, *m*, alkyl), δ 0.83 (12H, *t*, ³*J*_{*H*-*H*} = 6.9 Hz).