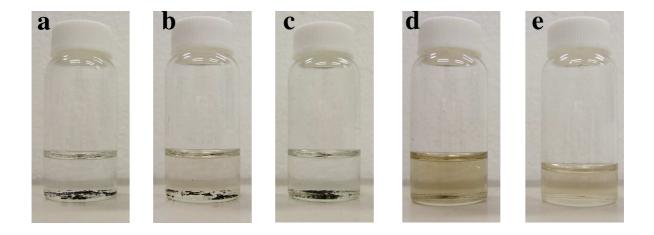
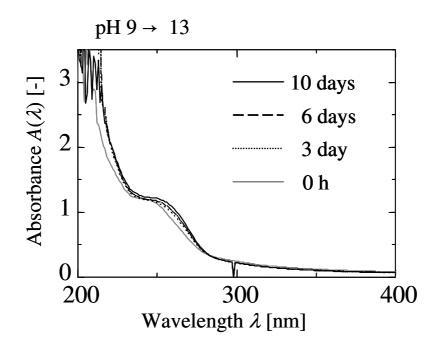
Supporting Information for:


Coordination and Reduction Processes in the Synthesis of Dendrimer-Encapsulated Pt Nanoparticles

Daigo Yamamoto, Satoshi Watanabe, and Minoru T. Miyahara*


Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan

miyahara@cheme.kyoto-u.ac.jp

* Corresponding author

Figure S1. Images of suspensions in G4.5-COO⁻ (pH 2) after NaBH₄ reduction for coordination times of (a) 0 h ($\alpha = 0.0$), (b) 3 h ($\alpha = 0.0$), (c) 2 days ($\alpha = 0.1$), (d) 5 days ($\alpha = 0.5$), and (e) 6 days ($\alpha = 0.6$).

Figure S2. Time-dependent UV-vis spectroscopic data obtained after mixing NaOH with G4.5-COO⁻–Pt²⁺ solution in which Pt²⁺ coordination occurred at pH 9 for 10 days. The pH was shifted to pH 13 which is not ideal for the coordination. The result showed that the coordination ratio ($\alpha = 0.4$) was unchanged after 10 days from the moment of the pH shift, indicating that Pt²⁺–tertiary amine bond is quite strong.