Enantioselective Total Synthesis of (+)-Conicol via Cascade Three-Component Organocatalysis.

Bor-Cherng Hong,* Prakash Kotame, Chih-Wei Tsai, and Ju-Hsiou Liao
Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, 6, Taiwan, R.O.C.

chebch@ccu.edu.tw

SUPPORTING INFORMATION:

Contents: (1) Experimental procedures and characterization data for compounds 4-21. Page 1-17
(2) Spectra data for compounds 4-21.

Page 18-110
(3) Ee analysis by HPLC with chiral column.

General Procedure. All solvents were reagent grade. L-proline (99+\%) was purchased from Bachem. Other chemicals were purchased from Aldrich or Acros Chemical Co. Reactions were normally carried out under argon atmosphere in flame-dried glassware. Merck silica gel 60 (particle size $0.04-0.063 \mathrm{~mm}$) was employed for flash chromatography. Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were obtained in CDCl_{3} unless otherwise noted at 400 MHz (Bruker DPX-400) or 500 MHz (Varian-Unity INOVA-500). ${ }^{13} \mathrm{C}$ NMR spectra were obtained at 100 MHz or 125 MHz . E.e. values were measured by HPLC on a chiral column (chiralpak IA or chiralcel OD-H, 0.46 cm ID x 25 cm , particle size 5μ) by elution with IPA-hexane or THF-hexane. The flow rate of the indicated elution solvent is maintained at $1 \mathrm{~mL} / \mathrm{min}$, and the retention time of a compound is recorded accordingly. HPLC was equipped with the ultraviolet and refractive index detectors. The melting point was recorded on a melting point apparatus (MPA100 - Automated melting point system, Stanford Research Systems, Inc.) and is uncorrected. The optical rotation values were recorded with a Jasco-P-2000 digital polarimeter

Preparation of 4.

To a solution of 3-methylbut-2-enal ($696 \mathrm{mg}, 8.28 \mathrm{mmol}$), ((S)-diphenyl-prolinol-O-TMS-ether ($358 \mathrm{mg}, 1.10 \mathrm{mmol}$) and acetic acid ($60 \mathrm{mg}, 1.10 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(25 \mathrm{~mL})$ was added 2-((E)-2-nitrovinyl)benzene-1,4-diol ($1.00 \mathrm{~g}, 5.52 \mathrm{mmol})$. The resulting solution was stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h , and diluted with EtOAc (50 mL). The solution was washed with brine (20 mL), dried over MgSO_{4}, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 20% EtOAc-Hexane ($R_{f}=0.33$ for 4 in 30% EtOAc-hexane) to give 4 as yellow solid ($1100 \mathrm{mg}, 76 \%$ yield): mp $96-98^{\circ} \mathrm{C}$. Selected spectroscopic data for $4:[\alpha]_{\mathrm{D}}{ }^{26}+31.2$ (c $1 \mathrm{CHCl}_{3}$); IR (neat): $3420,2980,1718,1552,1375,1150,927 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$): $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 6.73-6.64(\mathrm{~m}, 3 \mathrm{H}), 4.70-4.59(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{dt}, J=4.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 200.3(\mathrm{CH}), 149.9(\mathrm{C})$, $146.6(\mathrm{C}), 119.7(\mathrm{C}), 119.2(\mathrm{CH}), 116.5(\mathrm{CH}), 113.0(\mathrm{CH}), 77.8\left(\mathrm{CH}_{2}\right), 74.3(\mathrm{C}), 57.5(\mathrm{CH}), 31.3$ $(\mathrm{CH}), 28.4\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right)$; MS (m / z, relative intensity): $265\left(\mathrm{M}^{+}, 100\right), 218(46), 203(28), 175$ (95), 147 (42), 136 (47); exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right): 265.0950$; found 265.0949.

Preparation of 5

To a solution of 4 ($59 \mathrm{mg}, 0.22 \mathrm{mmol}$), (S)-diphenyl-prolinol- O-TMS-ether ($15 \mathrm{mg}, 0.046$ mmol) and acetic acid ($2.8 \mathrm{mg}, 0.046 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(3.0 \mathrm{~mL})$ was added crotonaldehyde (16 mg , $0.23 \mathrm{mmol})$. The resulting solution was stirred at ambient temperature for 12 h , and added another crotonaldehyde ($16 \mathrm{mg}, 0.23 \mathrm{mmol}$). The resulting mixture was stirred at ambient temperature for 12 h and diluted with EtOAc (10 mL). The solution was washed with brine (2 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 30% EtOAc-hexane ($R_{f}=0.35$ in 30% EtOAc-hexane) to give 5 (white solid, $52 \mathrm{mg}, 74 \%$ yield); mp. $75-78^{\circ} \mathrm{C}$. Selected data for $5:[\alpha]_{\mathrm{D}}{ }^{22}-107.6$ (c $2.95 \mathrm{CHCl}_{3}$); IR (neat): 3381, 2976, 2931, 1682, 1549, 1492, 1455, $1372 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 9.47(\mathrm{~s}, 1 \mathrm{H}), 6.77$
(d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ (dd, $J=2.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (br. s., 1 H), 6.23 (br. s., 1 H), 4.92 (dd, $J=$ $5.7,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.07$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 191.5(\mathrm{CH}), 150.2(\mathrm{C}), 147.2(\mathrm{C}), 145.3(\mathrm{CH})$, $143.4(\mathrm{C}), 129.5(\mathrm{C}), 119.0(\mathrm{CH}), 114.9(\mathrm{CH}), 109.3(\mathrm{CH}), 85.3(\mathrm{CH}), 78.9(\mathrm{C}), 50.8(\mathrm{CH}), 31.5$ $(\mathrm{CH}), 30.8(\mathrm{CH}), 28.2\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right), 15.6\left(\mathrm{CH}_{3}\right)$; MS (m / z, relative intensity): $317\left(\mathrm{M}^{+}, 53\right), 270$ (18), 255 (100), 241 (48), 227 (14), 105 (12), 91 (11); exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}$ $\left(\mathrm{M}^{+}\right): 317.1263$; found 317.1265.

One-pot procedure for the preparation of 5.

(Method A)

To a solution of 2-((E)-2-nitrovinyl)benzene-1,4-diol (41.7 $\quad \mathrm{mg}, \quad 0.23 \mathrm{mmol})$ (S)-diphenyl-prolinol- O-TMS-ether ($15 \mathrm{mg}, 0.046 \mathrm{mmol}$) and acetic acid ($2.8 \mathrm{mg}, 0.046 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(2.5 \mathrm{~mL})$ was added 3-methylbut-2-enal ($19.3 \mathrm{mg}, 0.23 \mathrm{mmol}$). The resulting solution was stirred at $25{ }^{\circ} \mathrm{C}$ for 1.2 h , followed by the addition of crotonaldehyde ($16.1 \mathrm{mg}, 0.23 \mathrm{mmol}$) and stirred for additional 12 h at ambient temperature. To this solution was added crotonaldehyde (16.1 $\mathrm{mg}, 0.23 \mathrm{mmol}$), the mixture was stirred at ambient temperature for additional 12 h . The solution was diluted with EtOAc (10 mL), washed with brine (2 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 30 \% EtOAc-hexane ($R f=0.35$ in 30% EtOAc-hexane) to give 5 (white solid, $48 \mathrm{mg}, 66 \%$ yield.

(Method B)

To a solution of 2-((E)-2-nitrovinyl)benzene-1,4-diol (41.7 $\mathrm{mg}, \quad 0.23 \mathrm{mmol})$ (S)-diphenyl-prolinol- O-TMS-ether ($15 \mathrm{mg}, 0.046 \mathrm{mmol}$) and acetic acid ($2.8 \mathrm{mg}, 0.046 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(2.5 \mathrm{~mL})$ was added 3-methylbut-2-enal ($19.3 \mathrm{mg}, 0.23 \mathrm{mmol}$). The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 5 min , followed by the addition of crotonaldehyde ($16.1 \mathrm{mg}, 0.23 \mathrm{mmol}$) and stirred for additional 12 h at ambient temperature. To this solution was added crotonaldehyde (16.1 $\mathrm{mg}, 0.23 \mathrm{mmol}$), the mixture was stirred at ambient temperature for additional 12 h . The solution was diluted with EtOAc (10 mL), washed with brine (2 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 30 \% EtOAc-hexane ($R f=0.35$ in 30% EtOAc-hexane) to give 5 (white solid, $23 \mathrm{mg}, 32 \%$ yield.

Preparation of 7

To a solution of $5(50.0 \mathrm{mg}, 0.158 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}\left(44 \mathrm{mg}, 0.32 \mathrm{mmol}\right.$ and $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ in $\mathrm{MeOH}-\mathrm{THF}(1: 1,1 \mathrm{~mL})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$ a solution of $30-35 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.03 \mathrm{~mL}, 0.31$ mmol). The resulting mixture was stirred at ambient temperature for 3.5 h and diluted with EtOAc $(10 \mathrm{~mL})$. The solution was washed with brine (2 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the crude product. The residue was directly used for the next-step reaction without further purification.

To a solution of crude epoxide product in dry THF (4 ml) was added $\mathrm{LiAlH}_{4}(24 \mathrm{mg}, 0.63$ mmol). The solution was heated to reflux under nitrogen for 2 h , and the reaction was quenched by the addition of EtOAc $(20 \mathrm{~mL})$ and aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The solution was washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the crude product. A solution of the crude diol product in THF (0.3 mL) was added to a stirred solution of $\mathrm{NaIO}_{4}(34 \mathrm{mg}, 0.16 \mathrm{mmol})$, $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and THF $(0.5 \mathrm{~mL})$ at room temperature. The resulting mixture was stirred at ambient temperature for 0.5 h and diluted with EtOAc (20 mL). The solution was washed with brine (2 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 40% EtOAc-hexane ($R_{f}=0.31$ in 50% EtOAc-hexane) to give 7 (yellow solid, $14 \mathrm{mg}, 35 \%$ overall yield from 5): mp. $135-137{ }^{\circ} \mathrm{C}$. Selected data for 7: IR (neat): 3381, 2976, 2931, 1682, 1549, 1492, 1455, 1372, $1281 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.36(\mathrm{~s}$, $1 \mathrm{H}), 6.80(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=1.5,10.0 \mathrm{~Hz}, 1$
 $149.2(\mathrm{C}), 144.4(\mathrm{CH}), 143.2(\mathrm{C}), 128.2(\mathrm{CH}), 127.3(\mathrm{CH}), 124.2(\mathrm{C}), 119.2(\mathrm{C}), 116.6(\mathrm{CH}), 111.3$ $(\mathrm{CH}), 87.7(\mathrm{C}), 76.1(\mathrm{C}), 33.8\left(\mathrm{CH}_{3}\right), 31.7\left(\mathrm{CH}_{3}\right), 15.6\left(\mathrm{CH}_{3}\right)$; MS (m / z, relative intensity): $272\left(\mathrm{M}^{+}\right.$, 62), 257 (58), 241 (100), 215 (60), 175 (51), 147 (29), 115 (16); exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 272.1049; found 272.1050 .

To a solution of (E)-4,4-dimethoxybut-2-enal (982 mg, 7.54 mmol$)$, (S)-diphenyl-prolinol- O-TMS-ether ($245 \mathrm{mg}, 0.75 \mathrm{mmol}$) and acetic acid ($45 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(25 \mathrm{~mL})$ was added compound $\mathbf{4}(1000 \mathrm{mg}, 3.77 \mathrm{mmol})$. The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 35 h , and diluted with EtOAc (50 mL). The solution was washed with brine (20 mL), dried over MgSO_{4}, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 25% EtOAc-Hexane ($R_{f}=0.22$ for 3 in 30% EtOAc-hexane) to give 3 as yellow solid ($990 \mathrm{mg}, 69 \%$ yield): mp $56-59{ }^{\circ} \mathrm{C}$. Selected spectroscopic data for 3 : $[\alpha]_{\mathrm{D}}{ }^{25}-159.3$ (c $1.4 \mathrm{CHCl}_{3}$); IR (neat): $3413,2974,2838,1687,1647,1553,1371,755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 500 MHz): $\delta 9.52$ (s, 1 H), 6.77 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.68 (br. s., 1 H), 6.63 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.24 (br. s., 1 H), 4.91 (dd, $J=6.0,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.86 (br. s., 1 H), 3.39 (s, 3 H), 3.35 (s, 3 H), 2.25 (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.46 ($\mathrm{s}, 3 \mathrm{H}$), 1.36 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 190.8(\mathrm{CH}), 150.1(\mathrm{C}), 147.1$ (C), $146.4(\mathrm{CH}), 137.6$ (C), 130.0 (C), $118.9(\mathrm{CH}), 114.6(\mathrm{CH}), 109.3(\mathrm{CH}), 104.6(\mathrm{CH}), 83.5(\mathrm{CH}), 79.0(\mathrm{C}), 56.4\left(\mathrm{CH}_{3}\right), 56.2\left(\mathrm{CH}_{3}\right), 50.7$ $(\mathrm{CH}), 38.0(\mathrm{CH}), 33.5(\mathrm{CH}), 28.4\left(\mathrm{CH}_{3}\right)$, $23.8\left(\mathrm{CH}_{3}\right)$; MS (m / z, relative intensity): $377\left(\mathrm{M}^{+}, 6\right), 265$ (6), 227 (4), 175 (5), 147 (4), 75 (100); exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{7}\left(\mathrm{M}^{+}\right)$: 377.1475; found 377.1475 .

One-pot procedure for the preparation of 8.

To a solution of 3-methylbut-2-enal ($24 \mathrm{mg}, 0.29 \mathrm{mmol}$), ($(S$)-diphenyl-prolinol- O-TMS-ether $(13 \mathrm{mg}, 0.03 \mathrm{mmol})$ and acetic acid ($2 \mathrm{mg}, 0.03 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$ was added 2-((E)-2-nitrovinyl)benzene-1,4-diol ($35 \mathrm{mg}, 0.19 \mathrm{mmol}$). The resulting solution was stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h , followed by the addition of (E)-4,4-dimethoxybut-2-enal ($50 \mathrm{mg}, 0.39 \mathrm{mmol}$) and stirred for additional 35 h at ambient temperature. The solution was diluted with EtOAc (15 mL), washed with brine (5 mL), dried over MgSO_{4} and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 25% EtOAc-Hexane ($R_{f}=0.22$ for 8 in 30% EtOAc-hexane) to give $\mathbf{8}$ as yellow solid ($40 \mathrm{mg}, 55 \%$ overall yield).

Preparation of 9

To a solution of $\mathbf{8}(600 \mathrm{mg}, 1.59 \mathrm{mmol})$ in toluene (15 mL) was added Wilkinson's catalyst $(1.42 \mathrm{~g}, 1.59 \mathrm{mmol})$. The resulting solution was heated to reflux for 4 h , followed by the dilution with EtOAc (30 mL). The solution was filtered through celite, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 20% EtOAc-hexane ($R_{f}=0.40$ for $\mathbf{9}$ in 30% EtOAc-hexane) to give $\mathbf{9}$ as a pale yellow solid ($300 \mathrm{mg}, 54 \%$ yield): mp 206-209 ${ }^{\circ} \mathrm{C}$. Selected spectroscopic data for 9: $[\alpha]_{\mathrm{D}}{ }^{25}-92.4$ (c $0.5 \mathrm{CHCl}_{3}$); IR (neat): 3395, 2977, 2838, 1591, 1372, 1219, 1067, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.70-6.62(\mathrm{~m}, 3 \mathrm{H})$, 6.03-5.87 (m, 2 H), $5.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62$ (br. s., 1 H$), 4.28(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.23-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 2.11(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}$, $3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 149.4$ (C), 146.9 (C), 129.3 (CH), $126.0(\mathrm{CH}), 125.3$ (C), $118.5(\mathrm{CH}), 115.4(\mathrm{CH}), 111.8(\mathrm{CH}), 104.1(\mathrm{CH}), 87.9(\mathrm{CH}), 77.4(\mathrm{C}), 56.0\left(\mathrm{CH}_{3}\right), 54.0\left(\mathrm{CH}_{3}\right), 45.1$ $(\mathrm{CH}), 41.9(\mathrm{CH}), 38.5(\mathrm{CH}), 28.3\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, relative intensity): $349\left(\mathrm{M}^{+}, 15\right), 325$ (57), 269 (10), 227 (14), 115 (6), 77 (5), 75 (100); exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{6}\left(\mathrm{M}^{+}\right): 349.1525$; found 349.1525 .

Preparation of 10

A suspension of $9(300 \mathrm{mg}, 0.85 \mathrm{mmol})$ and $\mathrm{Pd}-\mathrm{C}(150 \mathrm{mg}, 10 \%)$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was stirred at room temperature under hydrogen (1 atm) for 1 h . The mixture was filtered through Celite, and the filtrate was concentrated in vacuo to give the crude product. The crude residue was purified by silica gel flash column chromatography with 20% EtOAc-hexane ($R_{f}=0.40$ for 10 in 30% EtOAc-hexane) to give $\mathbf{1 0}$ as a white solid ($215 \mathrm{mg}, 72 \%$ yield): mp $142-145^{\circ} \mathrm{C}$. Selected spectroscopic data for $\mathbf{1 0}$: $[\alpha]_{\mathrm{D}}{ }^{25}+50.1$ (c $0.8 \mathrm{CHCl}_{3}$); IR (neat): 3373, 2936, 1548, 1370, 1218, 1060, $768 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.66(\mathrm{~s}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.01-4.96(\mathrm{~m}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s} 1 \mathrm{H}), 4.20$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 6 \mathrm{H}), 2.50-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.04(\mathrm{~m}, J=12.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{td}, J=4.9,12.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 149.3(\mathrm{C}), 146.8(\mathrm{C}), 124.7(\mathrm{C}), 118.4(\mathrm{CH}), 115.6(\mathrm{CH}), 111.8$ $(\mathrm{CH}), 104.2(\mathrm{CH}), 89.4(\mathrm{CH}), 77.5(\mathrm{C}), 55.7\left(\mathrm{CH}_{3}\right), 53.6\left(\mathrm{CH}_{3}\right), 41.2(\mathrm{CH}), 39.7(\mathrm{CH}), 36.3(\mathrm{CH})$, $27.9\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{2}\right) 19.9\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, relative intensity): $351\left(\mathrm{M}^{+}, 21\right), 325(53)$, 279 (23), 239 (34), 219 (29), 191 (65), 107 (67), 95 (39), 77 (41), 75 (92), 57 (64); exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{6}\left(\mathrm{M}^{+}\right)$: 351.1682 ; found 351.1683.

Preparation of 11

To a solution of $\mathbf{1 0}(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(1: 1,6 \mathrm{~mL})$ was added Amberlyst 15 $(50 \mathrm{mg})$. The resulting solution was heated to $80^{\circ} \mathrm{C}$ and stirred at the same temperature for 5 h . After cooling to room temperature, the solution was diluted with EtOAc (15 mL), washed with brine (5 mL), dried over MgSO_{4}, and concentrated in vacuo to give the crude product. To the crude residue CHCl_{3} was added $(0.5 \mathrm{~mL})$, followed by the addition of hexane $(2 \mathrm{~mL})$, and lead to the formation of solid precipitation. After decanting the solvent, the precipitate was dried under vacuo ($R_{f}=0.28$ for $\mathbf{1 1}$ in 30% EtOAc-hexane) to give pure $\mathbf{1 1}$ as a pale yellow solid along with the recovery of 20 mg of pure $\mathbf{1 0}$ in solvent layer ($48 \mathrm{mg}, 69 \%$ yield, based on the recovered $\mathbf{1 0}$): $\mathrm{mp} 191-193{ }^{\circ} \mathrm{C}$. Due to the instability of $\mathbf{1 1}$ in solution (decomposition), the above procedure, the incomplete transformation as well as the precipitation of product, was adapted for the routine preparation and purification. Purification of $\mathbf{1 1}$ by silica gel chromatography led to the decomposition of product. However, $\mathbf{1 1}$ was stable in solid form for months as long as it is not in solution or in silica gel condition. Selected spectroscopic data for 11: $[\alpha]_{D}{ }^{25}-15.4$ (c 0.15 EtOAc); IR (neat): 3377, 2930, 1698, 1547, 1370, 1226, 1138, $768 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}$): $\delta 9.85(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 2 \mathrm{H}), 6.28$ (s, $1 \mathrm{H}), 5.07$ (dd, $J=5.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.80$ (m, 1 H), 1.78-1.72 (m, 1 H), $1.64(\mathrm{td}, J=3.7,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$, 1.20-1.18 (m, 1 H$), 1.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}, 125 \mathrm{MHz}\right): \delta 202.3(\mathrm{CH}), 151.4(\mathrm{C}), 147.5(\mathrm{C})$, $125.3(\mathrm{C}), 119.3(\mathrm{CH}), 116.4(\mathrm{CH}), 112.3(\mathrm{CH}), 89.1(\mathrm{CH}), 78.1(\mathrm{C}), 50.3(\mathrm{CH}), 46.2(\mathrm{CH}), 36.3$ $(\mathrm{CH}), 28.5\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{2}\right), 21.2\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}\left(\mathrm{m} / \mathrm{z}\right.$, relative intensity): $305\left(\mathrm{M}^{+}, 52\right)$, 258 (62), 229 (100), 215 (31), 187 (26), 161 (28), 107 (6), 105 (6), 77 (10); exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right)$: 305.1263 ; found 305.1260.

Preparation of 12

To a solution of Acetone- $\mathrm{HCl}(1: 1,4 \mathrm{~mL})$, compound $9(50 \mathrm{mg}, 0.14 \mathrm{mmol})$ was added portion-wise at room temperature. The resulting solution was stirred for 20 min , diluted with EtOAc $(20 \mathrm{~mL})$, and the organic layer was washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, followed by brine (10 mL), and dried over anhydrous MgSO_{4}, concentrated in vacuo to give crude product. The residue was purified by column chromatography with 15% EtOAc-hexane ($R_{f}=0.38$ for $\mathbf{1 2}$ in 20% EtOAc-hexane) to give 12 as a yellow oil ($25 \mathrm{mg}, 69 \%$ yield). Selected spectroscopic data for 12: IR (neat): 3387, 2925, 1689, 1496, 1213, $770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 10.03$ ($\mathrm{s}, 1 \mathrm{H}$), $8.15(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=1.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J$ $=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 1 \mathrm{H}) 6.82-6.78(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ 192.2 (CH), 150.7 (C), 146.4 (C), 146.1 (C), 135.7 (C), 129.8 (C), $129.7(\mathrm{CH}), 124.1(\mathrm{CH}), 123.2$ $(\mathrm{CH}), 122.0(\mathrm{C}), 119.0(\mathrm{CH}), 117.5(\mathrm{CH}), 109.5(\mathrm{CH}), 77.3(\mathrm{C}), 27.1$ (two $\left.\mathrm{CH}_{3}\right)$; MS (m/z, relative intensity): $254\left(\mathrm{M}^{+}, 45\right), 239$ (100), 210 (9), 185 (45), 180 (28), 179 (100), 112 (5), 90 (5), 55 (4); exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right): 254.0943$; found 254.0935.

Preparation of 13

To a solution of $12(15 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{KOH}(10 \mathrm{mg}, 0.7 \mathrm{mmol})$ in diethylene glycol (1 $\mathrm{mL})$ was added dropwise a solution of aqueous hydrazine hydrate $(0.3 \mathrm{~mL}$ of hydrazine hydrate in 0.5 mL diethylene glycol). The solution was stirred for 20 min at room temperature and then $130^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was cooled to room temperature and diluted with EtOAc (15 mL). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, followed by brine (5 mL), dried over MgSO_{4}, and concentrated in vacuo to give crude product. The residue was purified by flash column chromatography with 5% EtOAc-Hexane ($R_{f}=0.51$ for 12 in 20% EtOAc-Hexane) to give 12 as a
yellow oil. ($9 \mathrm{mg}, 63 \%$ yield). Selected spectroscopic data for 13: IR (neat): 3395, 2976, 2927, 1614, $1569,1321,1210,1040,941,869,765 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.43$ (br.s, 1 H), $7.18(\mathrm{~d}$, $J=3.0 \mathrm{~Hz} ., 1 \mathrm{H}$), 7.10 (br.s., 2 H), $6.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (s, $3 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 150.0(\mathrm{C}), 146.8(\mathrm{C}), 137.2(\mathrm{C}), 137.1(\mathrm{C}), 128.9$ $(\mathrm{CH}), 128.2(\mathrm{C}), 123.4(\mathrm{C}), 123.1(\mathrm{CH}), 122.9(\mathrm{CH}), 118.7(\mathrm{CH}), 116.2(\mathrm{CH}), 109.3(\mathrm{CH}), 77.3(\mathrm{C})$, 27.4 (two $\left.\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right)$; MS (m / z, relative intensity): $240\left(\mathrm{M}^{+}, 41\right), 226(34), 225(100), 120(6)$, 112 (20), 76 (4); exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 240.1150$; found 240.1145.
${ }^{1}$ H NMR Data for didehydroconicol

Lit. ${ }^{a}{ }^{1}{ }^{1}$		Obs.	
δ	mult, $J(\mathrm{~Hz})$	δ	mult, $J(\mathrm{~Hz}), \mathrm{H}$
7.43	$(\mathrm{bs}), 1 \mathrm{H}$	7.43	$(\mathrm{bs}), 1 \mathrm{H}$
7.18	$\mathrm{~d}(2.0), 1 \mathrm{H}$	7.18	$\mathrm{~d}(3.0), 1 \mathrm{H}$
7.11	$(\mathrm{AB}), 1 \mathrm{H}$	7.10	$($ br. s., 2 H$)$,
7.09	$(\mathrm{AB}), 1 \mathrm{H}$		
6.80	$\mathrm{~d}(8.0), 1 \mathrm{H}$	6.80	$(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$,
6.68	$\mathrm{dd}(8.0 ; 2.0), 1 \mathrm{H}$	6.68	$\mathrm{dd}(8.5 ; 3.0,1 \mathrm{H})$,
2.37	$\mathrm{~s}, 3 \mathrm{H}$	2.37	$(\mathrm{~s}, 3 \mathrm{H})$,
1.58	$\mathrm{~s}, 3 \mathrm{H}$	1.58	$(\mathrm{~s}, 3 \mathrm{H}) ;$
1.58	$\mathrm{~s}, 3 \mathrm{H}$	1.58	$(\mathrm{~s}, 3 \mathrm{H}) ;$

${ }^{a}$ Spectrum recorded at 400 MHz (JEOL EX 400) in CDCl_{3}.
${ }^{b}$ Spectrum recorded at 500 MHz (Varian Unity INOVA 500) in CDCl_{3}.
${ }^{13} \mathrm{C}$ NMR Data for didehydroconicol

Litt ${ }^{a, 1}$	Obs. $^{b}{ }^{b}$	
δ	δ	Type
150.2	150.0	C
146.8	146.8	C
137.3	137.2	C
137.2	137.1	C
129.0	128.9	CH
128.3	128.2	C
123.5	123.4	C
123.2	123.1	CH
123.0	122.9	CH
118.8	118.7	CH
116.2	116.2	CH
109.4	109.3	CH
77.4	77.3	C
27.5	27.4	CH_{3}
27.5	27.4	CH_{3}
21.3	21.3	CH_{3}

${ }^{a}$ Spectrum recorded at 100 MHz in $\mathrm{CDCl}_{3} .{ }^{b}$ Spectrum recorded at 125 MHz in CDCl_{3}

[^0]
Preparation of 14

To a solution of $\mathbf{1 1}(45 \mathrm{mg}, 0.15 \mathrm{mmole})$ in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ was added DABCO ($24 \mathrm{mg}, 0.22$ mmol) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min and warmed up to room temperature over 2 h until the completion of reaction, monitored by ${ }^{1} \mathrm{H} \operatorname{NMR}\left(R_{f}=0.28\right.$ for 14 in 30% EtOAc-hexane). The solution was diluted with EtOAc (15 mL), washed with brine (10 mL) dried over anhydrous MgSO_{4} and concentrated in vacuo to give 14 as a yellow oil ($30 \mathrm{mg}, 79 \%$ yield). The product obtained was pure enough for NMR analysis and for the next step reaction without further purification. Moreover, due to the instability of 14 in solution (decomposition), for routine preparation, $\mathbf{1 4}$ was directly subjected to the next step reaction without further purification. For the purpose of spectra analysis, a pure sample was obtained by fast passing through a silica gel column with CHCl_{3}. Selected spectroscopic data for 14: $[\alpha]_{\mathrm{D}}{ }^{25}+89.8$ (c $0.9 \mathrm{CHCl}_{3}$); IR (neat): 3394, 2930, 1671, 1550, 1370, 1154, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 9.52$ (s, 1 H), 7.17 (br. s. , 1 H), 6.86 (br. s., 1 H$), 6.70-6.67(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55(\mathrm{dd}, J=5.1,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{dd}, J=6.6,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1$ H), $1.43(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{dd}, J=6.2,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ $194.0(\mathrm{CH}), 150.4(\mathrm{CH}), 148.9(\mathrm{C}), 147.3(\mathrm{C}), 141.4(\mathrm{C}), 122.4(\mathrm{C}), 118.4(\mathrm{CH}), 115.3(\mathrm{CH}), 111.6$, $(\mathrm{CH}), 77.3(\mathrm{C}), 44.1(\mathrm{CH}), 36.1(\mathrm{CH}), 27.8\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{3}\right)$; MS $(\mathrm{m} / \mathrm{z}$, relative intensity): $258\left(\mathrm{M}^{+}, 33\right), 245(40), 244(43), 241$ (37), 239 (100), 229 (77), 201 (30), 77 (23); exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 258.1256 ; found 258.1254 .

Preparation of 15

To a solution of $\mathbf{1 4}(30 \mathrm{mg}, 0.11 \mathrm{mmol})$ in THF (5 mL) was added DIBAL-H $(0.34 \mathrm{~mL}, 1 \mathrm{M}$ in toluene, 0.34 mmol) at $-78^{\circ} \mathrm{C}$, and the resulting solution was stirred for 1 h at the same temperature. The reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$, followed by EtOAc (15 mL), and allowed to warm up at room temperature. Then filter over celite, and organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo to give the crude product. The residue was purified by flash column chromatography with 35% EtOAc-hexane ($R_{f}=0.25$ for 15 in 40% EtOAc-hexane) to give 15 as a yellow oil ($22 \mathrm{mg}, 73 \%$ yield). Selected spectroscopic data for 15 : $[\alpha]_{\mathrm{D}}{ }^{25}+78.3$ (c $0.4 \mathrm{CHCl}_{3}$); IR (neat): $3429,2927,1641,1489,1375,1257,1021,803 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right): \delta 7.03$ (br. s., 1 H), $6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17$ (br. s., 1 H), 6.14 (s, 1 H), $3.92(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 2 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{dd}, J=6.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 125 \mathrm{MHz}\right): \delta 150.0(\mathrm{C})$, $147.6(\mathrm{C}), 138.1(\mathrm{C}), 125.4(\mathrm{C}), 122.8(\mathrm{CH}), 118.3(\mathrm{CH}), 115.0(\mathrm{CH}), 112.5(\mathrm{CH}), 77.1(\mathrm{C}), 66.7$ $\left(\mathrm{CH}_{2}\right), 45.0(\mathrm{CH}), 34.5(\mathrm{CH}), 28.0\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{3}\right)$; MS (m / z, relative intensity): 259 ($\mathrm{M}^{+}-1,24$), 245 (35), 244 (42), 241 (57), 229 (100), 201 (31), 187 (26), 149 (38), 137 (34); exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 260.1412; found 260.1412.

Preparation of 16

To a solution of $15(25 \mathrm{mg}, 0.096 \mathrm{mmol})$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added DMAP ($47 \mathrm{mg}, 0.38$ mmol), followed by triethyl amine ($30 \mathrm{mg}, 0.28 \mathrm{mmol}$) and acetyl chloride ($15 \mathrm{mg}, 0.19 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$, and allowed to warm at room temperature for 1 h . Then diluted with EtOAc (15 mL) and washed by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, followed by brine $(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated in vacuo to give
the crude product. The residue was purified by flash column chromatography with 10% EtOAc-hexane ($R_{f}=0.35$ for 16 in 20% EtOAc-hexane) to give 16 as a colorless oil ($25 \mathrm{mg}, 76 \%$ yield). Selected spectroscopic data for 16: $[\alpha]_{\mathrm{D}}{ }^{25}+72$ (c $0.5 \mathrm{CHCl}_{3}$); IR (neat): 2924, 1744, 1640, 1485, 1372, 1210, 1020, $929 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 1 \mathrm{H})$, 6.76-6.74 (m, 1 H) 6.16 (br. s. 1 H), $4.55-4.44$ (m, 2 H), 3.23 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ (s, 3 H), $2.21(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J=6.1,12.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.64-1.59 (m, 1 H$), 1.46-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ 170.9 (C), 170.1 (C), 151.0 (C), 143.4 (C), 134.0 (C), $126.4(\mathrm{CH}), 124.3(\mathrm{C}), 120.5(\mathrm{CH}), 118.7$ $(\mathrm{CH}), 117.8(\mathrm{CH}), 77.9(\mathrm{C}), 68.2\left(\mathrm{CH}_{2}\right), 43.8(\mathrm{CH}), 34.1(\mathrm{CH}), 27.9\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right)$, $21.1\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right)$; MS (m/z, relative intensity): $344\left(\mathrm{M}^{+}, 23\right), 343(100), 334(46)$, 327 (41), 316 (24), 177 (41), 149 (37), 77 (13), 57 (45); exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$: 344.1624; found 344.1624

Preparation of 17

The acetate $16(25 \mathrm{mg}, 0.07 \mathrm{mmol})$ in THF (5 mL) was added to a solution of lithium (6 mg , 0.87 mmol) in liquid ammonia (5 mL) at $-78{ }^{\circ} \mathrm{C}$ and stirred for 0.5 h . an aqueous saturated ammonium chloride solution (3 mL) was carefully added and the ammonia allowed to evaporate. The residue was diluted with EtOAc (20 mL), and washed by $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ followed by brine (10 mL) and organic layer was dried over anhydrous MgSO_{4} and concentrated in vacuo to give crude product. The crude was purified by flash column chromatography with $10 \% \mathrm{EtOAc}$-Hexane, ($R_{f}=$ 0.38 for $\mathbf{1 7}$ in 20% EtOAc-hexane) to give $\mathbf{1 7}$ as colorless oil ($13 \mathrm{mg}, 73 \%$ yield). Selected spectroscopic data for 17: $[\alpha]_{D}{ }^{25}+51.8\left(\mathrm{c}_{2} \mathrm{CHCl}_{3}\right) ;{ }^{2,3}$ IR (neat): $3390,2930,1617,1490,1375$, 1213, 1130, $928,759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.78(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.5$ Hz, 1 H), 6.60-6.54 (m, 1 H), 5.83 (br. s., 1 H), 4.47 (br. s., 1 H), 3.13 (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.08 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{dt}, J=2.4,12.5, \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{dd}, J=12.0,12.0 \mathrm{~Hz}, 1 \mathrm{H})$,

[^1]1.44-1.34 (m, 1 H$), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 148.6(\mathrm{C}), 147.2(\mathrm{C})$, $135.2(\mathrm{C}), 125.8(\mathrm{C}), 121.6(\mathrm{CH}), 111.7(\mathrm{CH}), 114.2(\mathrm{CH}), 112.0(\mathrm{CH}), 77.5(\mathrm{C}), 44.5(\mathrm{CH}), 34.2$ $(\mathrm{CH}), 30.8\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}$, relative intensity): 244 $\left(\mathrm{M}^{+}, 34\right), 225(29), 201(23), 161(28), 111(38), 97(56), 83(63), 69(71), 57(100)$; exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 244.1463$; found 244.1459.
${ }^{1}$ H NMR Data for (+)-Conicol

Lit. ${ }^{\text {a }}$, ${ }^{\text {a }}$		Obs.	
δ	mult, J (Hz)	δ	mult, $J(\mathrm{~Hz}), \mathrm{H}$
6.80	br d (2.8)	6.78	d (1.7), 1 H
6.66	d (8.7)	6.65	d (8.5), 1H
6.59	br dd (8.7, 3.0)	6.60-6.54	m, 1H
5.84	br s	5.83	br s, 1H
4.45	br s	4.47	br s, 1H
3.15	br d (11.4)	3.13	d (10.7), 1H
2.10	m	2.08	d (5.9), 2H
1.87	dddd (12.5, 5.2, 2.8, 2.3)	1.85	dt (12.5, 2.4), 1H
1.73	d (0.9)	1.71	s, 3H
1.56	ddd (12.3, 11.4, 2.2)	1.54	dd (12.0, 12.0), 1H
1.41	S	1.39	s, 3 H
1.39	m	1.34-1.44	m, 1H
1.15	S	1.13	s, 3 H

${ }^{a}$ Spectrum recorded at 400 MHz (Varian Unity 400) in CDCl_{3}.
${ }^{b}$ Spectrum recorded at 500 MHz (Varian Unity INOVA 500) in CDCl_{3}.

Lit. ${ }^{a, 4}$		Obs. ${ }^{\text {b }}$	
δ	mult	δ	Type
148.6	S	148.6	C
147.3	S	147.3	C
135.2	S	135.2	C
125.9	S	125.8	C
121.7	d	121.6	CH
117.7	d	117.7	CH
114.2	d	114.2	CH
112.0	d	112.0	CH
77.5	S	77.5	C
44.6	d	44.5	CH
34.3	d	34.2	CH
30.8	t	30.8	CH_{2}
28.0	q	28.0	CH_{3}
24.6	t	24.6	CH_{2}
23.5	q	23.5	CH_{3}
20.7	q	20.7	CH_{3}

[^2][^3]
Preparation of 20.

To a solution of (E)-3-(4-bromophenyl)acrylaldehyde (191.6 $\mathrm{mg}, 0.9 \mathrm{mmol}$), (S)-diphenyl-prolinol-O-TMS-ether ($19.70 \mathrm{mg}, 0.06 \mathrm{mmol}$) and acetic acid ($3.63 \mathrm{mg}, 0.06 \mathrm{mmol}$) in toluene (5 mL) was added trans-2-Hydroxy- β-nitrostyrene ($50 \mathrm{mg}, 0.3 \mathrm{mmol}$). The resulting solution was stirred for 10 h at $25^{\circ} \mathrm{C}$, and the reaction mixture was directly loaded on to a column and purified by silica gel chromatography with 4% EtOAc-Hexane ($R_{f}=0.75$ for 20 in 20% EtOAc-hexane) to give 20 as white solid (94 mg , 55% yields): mp 219-221 ${ }^{\circ} \mathrm{C}$. Selected spectroscopic data for 20: $[\alpha]_{\mathrm{D}}{ }^{25}+29.3$ (c $1.2 \mathrm{CHCl}_{3}$); IR (neat): 2924, 1690, 1549, 1487, 1364, 1232, $1009,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.92(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H})$, $3.50-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 191.1(\mathrm{CH}), 154.4(\mathrm{C})$, 146.8 (CH), 139.9 (C), 137.4 (C), 136.4 (C), 132.5 (two CH), 132.4 (two CH), 129.4 (CH), 129.3 (two CH), 129.2 (two CH), 124.5 (CH), 123.6 (C), 122.4 (C), 121.1 (CH) 118.4 (C), 117.3 (CH), $84.8(\mathrm{CH}) 81.29(\mathrm{CH}), 42.4(\mathrm{CH}), 39.5(\mathrm{CH}), 35.8(\mathrm{CH})$; MS (m / z, relative intensity): $569\left(\mathrm{M}^{+}+2\right.$, 13), $567\left(\mathrm{M}^{+}, 7\right), 522(6), 443$ (3), 369 (5), 295 (5), 221 (9), 171 (21), 169 (22), 43 (100); exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$: 566.9681 ; found 566.9680 .

Figure S1. ORTEP and stereo plots for X-ray crystal structures of (+)-20.

CCDC 751181 contains the supplementary crystallographic data for $(+)-20$. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Crystallographic data for (+)-20: $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{NO}_{4}, \mathrm{M}=569.24$, orthorhombic, space group P 2121 21, $\mathrm{T}=298(2) \mathrm{K}, a=10.7996(6), b=11.8516(7), c=17.5643(10)$ $\AA, \beta=90.00^{\circ}, V=2248.1(2) \AA^{3}, Z=4, D=1.682 \mathrm{~g} / \mathrm{cm}^{3}, \lambda\left(\mathrm{Mo}-K_{\alpha}\right)=0.71073 \AA, 26471$ reflections collected, 5456 unique reflections, 298 parameters refined on $F^{2}, R=0.0656, w R 2\left[F^{2}\right]=0.1029$ [3703 data with $F^{2}>2 \sigma\left(F^{2}\right)$].

Preparation of 21.

21

To a solution of 3-methylbut-2-enal ($15.2 \mathrm{mg}, 0.18 \mathrm{mmol}$), ((S)-diphenyl-prolinol-O-TMS-ether $(9.83 \mathrm{mg}, 0.03 \mathrm{mmol})$, and acetic acid ($1.81 \mathrm{mg}, 0.03 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ was added trans-2-Hydroxy- β-nitrostyrene ($25 \mathrm{mg}, 0.15 \mathrm{mmol}$). The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 0.5 h , followed by the addition of (E)-3-(4-bromophenyl)acrylaldehyde ($38.2 \mathrm{mg}, 0.18 \mathrm{mmol}$), and stirred at room temperature for 24 h . The reaction mixture was diluted with EtOAc (15 mL), washed with brine (5 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo to give crude product. The residue was purified by flash column chromatography with 12% EtOAc-hexane, ($R_{f}=0.62$ for 21 in 20% EtOAc-hexane) to give 21 as a white solid ($35 \mathrm{mg}, 52 \%$ yield): mp $187-190^{\circ} \mathrm{C}$. Selected spectroscopic data for 21: $[\alpha]_{\mathrm{D}}{ }^{25}-60\left(\mathrm{c} 0.75 \mathrm{CHCl}_{3}\right.$); IR (neat): 2968, 1690, 1547, 1510, 1366, 1255, $1019,759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}$, $2 \mathrm{H}), 7.09$ (d, $J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.43$ (br. s., 1 H$), 4.59(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.04(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ $191.6(\mathrm{CH}), 153.6(\mathrm{C}), 148.6(\mathrm{CH}), 140.2(\mathrm{C}), 137.9(\mathrm{C}), 132.8(\mathrm{CH}), 129.8(\mathrm{two} \mathrm{CH}), 129.3$ (two $\mathrm{CH}), 124.9(\mathrm{CH}), 122.6(\mathrm{C}), 120.6(\mathrm{CH}), 118.0(\mathrm{CH}), 117.6(\mathrm{C}), 85.6(\mathrm{CH}), 77.5(\mathrm{C}), 42.6(\mathrm{CH})$, $42.5(\mathrm{CH}), 32.0(\mathrm{CH}), 28.2\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right)$; MS (m / z, relative intensity): $442\left(\mathrm{M}^{+}+1,100\right), 440$ $\left(\mathrm{M}^{+}-1,87\right), 395$ (49), 379 (43), 381 (82), 379 (94), 273 (32), 246 (33), 202 (56), 115 (65), 77 (40); exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}\right)$: 441.0576; found 441.0574..

Figure S2. ORTEP and stereo plots for X-ray crystal structures of (-)-21.

CCDC 751182 contains the supplementary crystallographic data for (-)-21. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Crystallographic data for (-)-21: $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrNO}_{4}, \mathrm{M}=442.30$, Hexagonal, space group $\mathrm{P} 61, \mathrm{~T}=295(2) \mathrm{K}, a=18.5358(18), b=18.5358(18), c=10.8967(15) \AA$, $\beta=90.00^{\circ}, V=3242.3(6) \AA^{3}, Z=6, D=1.359 \mathrm{~g} / \mathrm{cm}^{3}, \lambda\left(\mathrm{Mo}-K_{\alpha}\right)=0.71073 \AA, 23088$ reflections collected, 3693 unique reflections, 275 parameters refined on $F^{2}, R=0.0528, w R 2\left[F^{2}\right]=0.1005$ [2291 data with $F^{2}>2 \sigma\left(F^{2}\right)$].

Fig S18. 1H NMR of compound 4 ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S19. 13C NMR of compound 4 ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S20. DEPT of compound 4 (CDCI3).
PMK-01-203
exp2 DEPT

Fig S22. COSY of compound 4 (CDCl3).

Fig S23. NOESY of compound 4 (CDCl3).

Fig S24. 1H NMR of compound 5 ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

tcw-6-6	~
exp21 s2pul	$\stackrel{-7}{-7}$
SAMPLE	DEC. \& VT
date Sep 262009	dfrq 499.836
solvent cdcl3	dn H1
file exp	dpwr 39
ACQUISITION	dof 0
sfrq 125.698	dm yyy
tn C13	dmm ${ }^{\text {d }}$
at 1.000	dmf 11905
$\mathrm{np} \quad 62894$	dseq
sw 31446.5	dres 1.0
fb 17000	homo
bs 16	PROCESSING
ss 2	1 lb 1.00
tpwr 54	wtfile
pw 4.0	proc ft
d1 1.000	fn not used
tof 2512.2	math f
nt 10000	
ct 10000	werr react
alock y	wexp procplot
gain flags ${ }^{\text {not used }}$	wbs wnt
il n	
in -n	
dp ${ }_{\text {dp }}$	
hs display nn	
sp \quad-1256.9	
wp 27650.1	
vs 50	
sc 0^{0}	
wc 210	
hzmm 131.67	
is 500.00	
rfi 10981.5	
rfp 9677.6	
th 5	
ins 100.000	
nm cdc ph	

Fig S25. 13C NMR of compound 5 ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S26. DEPT of compound 5 (CDCl3).

tcw-6-6

exp23 DEPT

Fig S27. COSY of compound 5 (CDCI3).

Fig S28. HMQC of compound 5 (CDCl3).
tcw-6-6
exp27 gHMQC

\qquad

phase	arrayed
TRANSMITTER	
tn	H1
sfrq	499.836
tof	249.8
tpwr	57

DECOUPLER 13.000
$\begin{array}{rr}n \\ \text { dof } & \text { C13 } \\ & -2515.1\end{array}$

$\begin{array}{lr}\text { j1xh } \\ \text { nullfig } & 140.0 \\ \text { nul }\end{array}$
140.0
y
$\begin{array}{lr}\text { F1 } & \text { PROCESSING } \\ \text { gfis } & \text { not } \\ \text { gfoci } & \text { not }\end{array}$

 1 dISPLAY \begin{tabular}{l}
 ING

0.006

\hline
\end{tabular} DISPLAY

cdc ph

Fig S29. NOESY of compound 5 (CDCI3).

Fig S30. 1 H NMR of compound 7 ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S31. 13C NMR of compound 7 ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S32. DEPT of compound 7 (CDCl3).

Fig S33. COSY of compound 7 (CDCl3).

 sample undefin sw
at
$n p$
f
s
d
n

Fig S34. HSQC of compound 7 (CDCl3).

Fig S35. NOESY of compound 7 (CDCl3).

Fig S36. 1H NMR of compound 8 ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S37. 13C NMR of compound 8 ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

56.399
-56.162
$\stackrel{m}{\infty} \underset{\sim}{\infty} \underset{\sim}{\sim}$

Fig S38. DEPT of compound 8 (CDCI3).

PMK-01-204

exp21 DEPT

Fig S39. HSQC of compound 8 (CDCl3).
exp18 gHSQC

Fig S40. COSY of compound 8 (CDCI3).

Fig S41. NOESY of compound 8 (CDCl3).

Fig S42. 1H NMR of compound 9 ($500 \mathrm{MHz}, \mathrm{CDCl} 3)$.

PMK-01-206

ph

Fig S43. 13C NMR of compound 9 (125 MHz, CDCI3).
exp12 s2pul
 date
solvent
file
 ACQUISITION sfrquISITI
tn

sfrq	125.698	dm	yyy
tn	C13	dmm	
at	1.000	dmf	11905
np	62894	dseq	
sw	31446.5	dres	1.0
fb	17000	homo	
bs	16	PRO	SSING
ss	2	1b	1.00
tpwr	54	wtfile	
pw	4.0	proc	$f t$
d1	1.000	f_{n}	not used
tof	2512.2	math	
nt	20000		
ct	2560	wer r	react
alock gain	not used	wexp wbs	procplot
	FLAGS	wnt	
11	n		
in	n		
dp	y		
hs	display nn		
sp	-1256.9		
wp	27650.1		
vs	562		
sc	0		
wc	210		
hzmm	131.67		
is	500.00		
$r f 1$	10979.6		
rfp	9677.6		
th	8		
ins	100.000		

Fig S44. 13C NMR of compound 9 (125 MHz, CDCl3), expanded.

Fig S45. DEPT of compound 9 (CDCl3).

exp32 DEPT

SAMPLE		DEPT	ACQUISITITON	ARRAYS
date May 12009	j1×h	140.0	array	mult
solvent cdcl3	mult	arrayed	arraydim	3
sample undefined	temp	SPECIAL not used		mult
sw 31446.5	gain	- 20	1	0.5
at 1.000	spin	0	2	
np 62894		PROCESSING	3	1.5
bs 16	1b	1.00		
Ss -4	fn	not used		
d1 1.000		SRECIRUM		
nt 3000	wp	2513.4		
ct 3000	sp	8168.7		
TRANSMITTER	rp	-66.6		
tn C13	1p	60.3		
tof 2512.2	ai	cdic ph		
tpwr 54		REFERENCE		
pw 9.400	rfi	1269.7		
DECOUPLER	rfp	0		
dn H1		PLOT		
dop 0	wc	210		
dpwr 39	sc	0		
dm nny	vs	82344		
dmm dmf 19005	hzmm	11.97		
$\begin{array}{lr}\text { dimflvi } \\ \text { pplvi } & 11905 \\ 49\end{array}$	th	68		
pp 29.400				

date SAMPL
solvent
sample
sample undefined PFGfla
sw ACQUISITION

ARRAYS
phase
256
y array

IV1
SPECIAL
not $\begin{array}{cc}\text { y } \\ 1026 & \text { i } \\ \text { used } & 1\end{array}$
.146 temp not use
2000
32 spin GRADIENTS
$\begin{array}{lll}1.000 & \text { gzlvili } & 1026 \\ 16 & \text { gtt } & 0.001000\end{array}$ $\begin{array}{lrlr}\text { sw1 } & 21367.5 & \text { gzl } & \text { gtl } \\ \text { ni } & 0.001000\end{array}$

Fig S49. NOESY of compound 9 (CDG|3).

PMK-01-206

exp16 NOESY
 solvent
sample sample undefined sw ACQUISITION
3498.

Fig S50. 1 H NMR of compound 10 ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S51. 13C NMR of compound 10 ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S52. 13C NMR of compound 10 ($125 \mathrm{MHz}, \mathrm{CDCI} 3$), expanded.

Fig S53. DEPT of compound 10 (CDCl3).

Fig S54. DEPT of compound 10 (CDCl3), expanded.
exp33 DEPT

SAMPLE	DEPT		ACQUISITION array	ARRAYS mult
date Apr 82009	j1xh	140.0		
Solvent cdcl3	mult	arrayed	arraydim	3
sample undefined	temp	SPECIAL	i	mult
sw 31446.5	gain	54	1	0.5
at 1.000	spin	0	2	1
np 62894		PROCESSING	3	1.5
bs 16	1b	1.00		
ss -4	fп	not used		
d1 1.000		SPECTRUM		
nt 1000	wp	2513.4		
ct 1000	sp	8168.7		
TRANSMITTER	rp	-52.5		
tn C13	1p	36.5		
tof 2512.2 towr 54	ai	$\begin{aligned} & \text { cde ph } \\ & \text { REFERENCE } \end{aligned}$		
pw 9.400	rfi	1269.7		
DECOUPLER	rfp	0		
dn H1		PLOT		
dof 0	wc	210		
dpwr 39	sc	0		
dim nny	vs	230		
dmm ccw	hzmm	11.97		
dmf 11905	th	68		
pplul 49				
pp 29.400				

exp33 gHMQC

Fig S56. COSY of compound 10 (CDCl3).

PMK-01-207

exp41 gCosy
 solvent
sample $\begin{aligned} & \text { cdclu }\end{aligned}$ sspul
hsglvi sample undefin sw ACQUISITION 3748 temp SPECIAL 21 $\begin{array}{lrl}\text { sw } & 3748.8 & \text { temp } \\ \text { at } & 0.137 & \text { gain } \\ \text { np } & 1024 & \text { spin } \\ \text { fb } & 2000 & \text { F2 PROCESSING }\end{array}$

${ }_{\text {SW1 }}^{2 D}$ ACQUISITION
TRANSMITTER

$$
\begin{aligned}
& \text { tn } \\
& \text { sfrq }
\end{aligned}
$$

$d n$
$d m$

\qquad

1 not -0.034

$$
\begin{array}{lr}
\text { TRANSMITTER } \\
\text { tn } & \text { H1 } \\
\text { sfrq } & 499.835 \\
\text { tof } & -375.0
\end{array}
$$

1 dISPLAY

$$
\begin{array}{lr}
\text { sfrq } & 499.835 \\
\text { tof } & -375.0 \\
\text { tpwr } & 527
\end{array}
$$

DISPLAY 245

$$
{ }_{\text {pw }}^{\text {tpwr }} \underset{\text { GRADIENTS }}{13.0}
$$

$$
\begin{array}{lr}
\text { pW } & \text { GRADIENTS } \\
\text { gzivil } & 13.000 \\
\text { gt1 } & 0.001000
\end{array}
$$

$$
\begin{array}{lr}
\text { gzlvil } & 0.001026 \\
\text { gt1 } & 0.001000 \\
\text { gstab } & 0.0005000
\end{array}
$$

gstab

Pp1 PLot
 cdc av
 3741.5
247.8
3741.5
3380.5
 18.8
155.0
155.0
10.0
453
4

Fig S57. NOESY of compound 10 (CDCI3).

Fig S58. 1H NMR of compound 11 ($500 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{CN}$).

PMK-01-255			
exp33			
	s2pul		
	SAMPLE	DEC. : VT	
date	Sep 152009	dfrq	125.696
solvent	nt ch3cn	dn	C13
file	exp	dpwr	30
ACQUISITION		dof	0
sfrq	499.839	dm	nnn
$t \mathrm{n}$	H1	dmm	c
at	3.000	dmf	200
np	48000	dseq	
sw	8000.0	dres	1.0
fb	4000	homo	
bs	4	P	SSING
tpwr	57	wtfil	
pw	4.8	proc	$f t$
d1	1.000	fn	not used
tof	499.7	math	f
nt	4		
ct	4	werr	
alock gain	not used	wexp	
	FLAGS		wft
11	n		
in	n		
dp	y		
hs	nn		
	DISPLAY		
sp	-250.0		
wp	5498.0		
vs	873		
sc	0		
wc	210		
hzmm	26.18		
is	230.40		
rff	1982.7		
rfp	969.7		
th	7		
ins	100.000		
$\mathrm{nm} \quad \mathrm{p}$	ph		

Fig S60. DEPT of compound 11 (CD3CN).

Fig S61. 1H NMR of compound 12 ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

PMK-01-222	
exp40 s2pul	$\stackrel{0}{0}$
SAMPLE	DEC. \& VT ${ }^{\circ}$
date Jul 292009	dfrq 125.695
solvent cdcl3	dn C13
file exp	dpwr 30
ACQUISITION	dof 0
sfrq 499.836	dm
tn H1	dmm ${ }^{\text {c }}$
at 3.000	dmf 200
np 48000	dseq
sw 80000	dres 1.0
fb 4000	homo n
bs 4	PROCESSING
tpwr 57	wtfile
pw 4.8	proc ft
d1 1.000	fn not used
tof 499.7	math f
nt	
ct 16	werr react
alock not y	wexp procplot
gain flags ${ }^{\text {not used }}$	wbs wnt wft
il n	
in n	
$\mathrm{dp} \quad \mathrm{y}$	
hs display nn	
DISPLAY	
wp 5748.0	
vs 100	
sc 0	
wC 210	
hzmm 27.37	
is 42.72	
rfi 4631.3	
rfp 3628.8	
th 3	
ins 100.000	
nm cdc ph	

Fig S62. 13C NMR of compound 12 ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

	PMK-01-222	
exp41 s2pul		
SAMPLE	DEC.	\& VT
date Jul 292009	dfrq	499.836
solvent cdcl3	dn	H1
file ${ }^{\text {exp }}$	dpwr	39
ACQUISITION		0
sfrq 125.698	dm	yyy
$t \mathrm{n}$	dmm	${ }_{5}^{W}$
at 1.000	dmf	11905
np 62894	dseq	
Sw 31446.5	dres	1.0
fb 17000	homo	n
bs 16	PROC	SSING
ss 2	1b	1.00
tpwr 54	wtfile	
pw 4.0	proc	$f t$
di tof	fn math	not used
nt 1000		
ct 80	werr	react
alock y	wexp	procplot
$\text { gain flaGS }{ }^{\text {not used }}$	wbs wnt	testsn
il n		
in		
dp ${ }^{\text {y }}$		
hs display nn		
sp -1256.9		
wp 28906.3		
vs 100		
sc		
wc 210		
hzmm 137.65		
is 500.00		
rff 10980.6		
rfp 9677.6		
$\begin{array}{ll}\text { th } \\ \text { ins } & 100.000\end{array}$		
$\mathrm{nm}_{\text {nn }} \mathrm{cdc} \mathrm{ph}^{100.000}$		

-27.055

Fig S63. 13C NMR of compound 12 (125 MHz, CDCl3), expanded.

Fig S64. DEPT of compound 12 (CDCI3).

PMK-01-222

exp41 s2pul

Fig S65. 1H NMR of compound 13 (500 MHz, CDCI3).

Fig S66. 13C NMR of compound 13 ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S67. DEPT of compound 13 (CDCl3).

PMK-1-233
exp43 s2pul

836
$H 1$
39
0
$y y y$
w
1905

ROCESSING 1.00
$\begin{array}{lr}\text { Sp } & 2 \\ \text { tpwr } & 54 \\ \text { pw } & 4.0 \\ \text { d1 } & 1.000 \\ \text { tof } & 2512.2 \\ \text { nt } & 10000 \\ \text { ct } & 10000\end{array}$
$\begin{array}{lrl} & 10000 & \text { mat } \\ \text { ct } & 10000 & \text { wer } \\ \text { alock } & y & \text { wex }\end{array}$
$\begin{array}{lll} \\ \text { alock } \\ \text { gain } & \text { not used } & \text { wer } \\ \text { wex } \\ \text { wbs } \\ \text { wnt }\end{array}$
$\begin{array}{rr}\text { oc } & \text { ft } \\ \text { not used } \\ \text { f } & f \\ \text { react } \\ \text { procplot }\end{array}$

procplot
testsn

DISPLAY
-1256.9
8906.3
100

210
137.65
137.65
500.00
500.00
10980.6
10980.6
9677.6
2
100.000

Fig S68. HSQC of compound 13 (CDCI3).

PMK-01-233
exp16 gHSQC

Fig S69. COSY of compound 13 (CDCI3).

Fig S70. 1H NMR of compound 14 ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S71. 13C NMR of compound 14 (125 MHz, CDCI3).

Fig S72. 13C NMR of compound 14 ($125 \mathrm{MHz}, \mathrm{CDCl} 3$), expanded.

Fig S73. DEPT of compound 14 (CDCI3).

exp32 DEPT

$\text { date } \begin{aligned} & \text { SAMPLE } \\ & \text { May } 202009 \end{aligned}$	j1×h	DEPT 140.0	ACQUISITION array	ARRAYS mult
Solvent cdil3	mult	arrayed	arraydim	3
sample undefined		SPECIAL		
ACQUISITION	temp	not used	1	mult
sw 31446.5	gain	20	1	0.5
at 1.000	spin	0	2	1
np 62894		PROCESSING	3	1.5
bs 16	1b	1.00		
ss -4	fn	not used		
d1 1.000		SPECTRUM		
nt 1000	wp	3142.0		
ct 1000	sp	7540.1		
TRANSMITTER	rp	33.5		
tn C13	1p	52.4		
tof 2512.2	ai	ph		
tpwr 54		REFERENCE		
pw 9.400	rff	1269.7		
DECOUPLER	rfp	0		
dn H1		PLOT		
dof 0	wc	210		
dpwr 39	sc	0		
dm nny	vs	256		
dmm ccw	hzmm	14.96		
dmf 11905	th	68		
pplvi 49				
pp 29.400				

Fig S75. HMQC of compound 14 (CDCI3).
PMK-01-209
exp35 gHMQC SAMPLE $\begin{aligned} & \text { SAy } 202009 \text { FLAGS }\end{aligned}$ olvent cdcl3
 ample undefined ACQUISITION sw
at

pw DECOUPLER
$\begin{array}{ll}\text { dn } & \\ \text { dof } & \\ \text { dm } & \\ \text { dmm } & \\ \text { dmf } & \\ \text { dpwr } \\ \text { pwxivi } \\ \text { pwx } & \\ \text { j1 } 1 \times h \quad \text { HMQC }\end{array}$
j1xh
nulfig

ACQUISITION	ARRAYS
array	phase
arraydim	256
i	phase
i	1
1	2

Fig S76. COSY of compound 14 (CDCI3).

Fig S77. NOESY of compound 14 (CDCI3).

Fig S78. NOESY of compound 14 (CDCI3).
PMK-01-209

Fig S79. 1H NMR of compound 15 ($400 \mathrm{MHz}, \mathrm{C} 6 \mathrm{D} 6$).

Fig S80. 1H NMR of compound 15 ($500 \mathrm{MHz}, \mathrm{C} 6 \mathrm{D} 6$).

Fig S81. 1H NMR of compound 15 ($125 \mathrm{MHz}, \mathrm{C} \beta \mathrm{D} 6$).

PMK-01-262			
expl1 s2pul			
SAMPLE		DEC. \& VT	
date	Nov 182009	dfrq	499.829
solvent	$t \quad \mathrm{cdcl3}$	dn	${ }^{\text {H1 }}$
file	IStion \exp	dpwr	39
ACQUISITION		dof	0
sfrq	125.696	dm	yyy
tn	C13	dimm	
at	1.000	dmf	11905
np	62894	dseq	
sw	31446.5	dres	1.0
fb	not used	homo	n
bs	16	PROCESSING	
ss	2		1.00
tpwr	54	wtfile	
pw	4.0	proc	$f t$
d1	1.000	fn	not used
tof	2512.2	math	f
nt	6000		
ct	3056	werr	react
alock	not used	wexp	procplot
gain flags not used		wbs wnt	
门	- n		
in	n		
dp	y		
hs	nn		
DISPLAY			
sp	-1256.9		
wp	27649.1		
vs	1123		
sc	0		
wc	210		
hzmm	131.67		
is	500.00		
rfi	17355.7		
rfp	16087.2		
th	5		
ins	100.000		
$\mathrm{nm} \quad \mathrm{p}$	ph		

299.99
$661 . \angle L \square$

Fig S82. DEPT of compound 15(C6D6).

PMK-01-262

explo DEPT

20

Fig S84. HSQC of compound 15 (C6D6).

STANDARD PROTON PARAMETERS

Fig S85. NOESY of compound 15 (500 $\mathrm{MHz}, \mathrm{C} 6 \mathrm{D} 6)$.

date SAMPLE $\operatorname{Nov} 192009$ date NOV 192009
solvent sample benzene ACQUISITION

 gain
spin
F2 PROCESSING $\begin{array}{lr}\text { F2 } & \text { PROCESSING } \\ \text { gf } & 0.105 \\ \text { gfs } & \text { not used } \\ \text { fn } & 2048\end{array}$ $\begin{array}{lr}\text { gf } & 0.105 \\ \text { gfs } & \text { not used } \\ \text { fn } & 2048 \\ \text { Fi } & \text { PROCESSING } \\ \text { gfi } & 0.041\end{array}$
 n
y
y
3
 proc1
fn1
dISPLAY $\begin{array}{ll}9 & \\ 8 p \\ 0 & w p \\ & \text { sp } \\ & \\ & \end{array}$

--241
4486
-241
4486

245 | 245. |
| :--- |
| 155 |
| 15. |

 F2 PLOT $\begin{array}{lllr}\text { DECOUPLER } & & \text { wc } & \\ & \text { C13 } & \text { sc } & 155.0 \\ & \text { nnn } & \text { wc2 } & \\ & & \text { sc2 } & 155.0 \\ & & \text { vs } & 0 \\ & & \text { th } & 157 \\ & & \text { ai } & \text { ph } \\ & & & 1\end{array}$ $\begin{array}{lllr}\text { DECOUPLER } & & \text { wc } & \\ & \text { C13 } & \text { sc } & 155.0 \\ & \text { nnn } & \text { wc2 } & \\ & & \text { sc2 } & 155.0 \\ & & \text { vs } & 0 \\ & & \text { th } & 157 \\ & & \text { ai } & \text { ph } \\ & & & 1\end{array}$

Fig S86. 1H NMR of compound 16 ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S87. 13C NMR of compound 16 (125 MHz, CDCI3).

Fig S88. DEPT of compound 16 (CDCI3).

Fig S89. COSY of compound 16 (CDCI3).
PMK-01-269

Fig S90. NOESY of compound 16 (CDCI3).
PMK-01-269
 date SAM

Fig S91. HMQC of compound 16 ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

expl7 gHMQC

Fig S92. 1H NMR of compound 17 ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

PMK-01-271-3rd
exp12 s2pul

DISPLAY

Fig S93. 13C NMR of compound 17 ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S94. 13C NMR of compound 17 ($125 \mathrm{MHz}, \mathrm{CDCI} 3$), expanded.

PMK-01-271-3rd
exp14 DEPT

Fig S97. COSY of compound 17 (CDCI3).

Fig S98. NOESY of compound 17 (CDCl3).
PMK-01-271-3rd
exp2 NOESY

solvent cdcl3
sample undefin
ACQUISITION

Fig S99. 1H NMR of compound 20 (500 MHz, CDCI3).

Fig S100. 13C NMR of compound 20 ($125 \mathrm{MHz}, \mathrm{CDCl} 3)$.

Fig S101. DEPT of compound 20 (CDCl3).

Fig S102. HMQC of compound 20 (CDCI3).

pmk-01-72

exp29 gHMQC
date SAMPLE 2008 hags solvent $\begin{array}{lll}\text { solvent } \\ \text { sample } & \text { cdcl3 } & \text { hs } \\ \text { sspul }\end{array}$ ACOUISITION Unded PFGflg
$\begin{array}{lrl} & \\ \text { sw } & \text { ACQUISITION } & \text { hsglvi } \\ \text { at } & 3501.4 & \text { SPECIAL }\end{array}$

 $\begin{array}{llll} & \\ \text { sw1 } & \text { ACQUISITION } & \text { gzlvil } & 0.00100 \\ \text { ni } & 21367.5 & \text { gt3 } & 0.00100\end{array}$ phase
TRANSMITTER
arrayed
F2
F2
 $\begin{array}{lrl}\text { sfrq } & 499.836 & \text { fn } \\ \text { tof } & 749.7 & \text { F1 PROCESSING } \\ \text { towr } & 57 & \text { gf1 }\end{array}$ tpwr pw decoupler

HMQC
j1×h
nullfig
j1×h
nullfig

1006
$\begin{array}{llr}06 & \text { i } & \text { phase } \\ \text { ed } & 1 & 1 \\ 54 & 2 & 2\end{array}$

F 2

sed
1 p
048

Fig S103. COSY of compound 20 (CDCI3).

Fig S104. NOESY of compound 20 (CDCI3).

Fig S105. 1H NMR of compound 21 ($500 \mathrm{MHz}, \mathrm{CDCI} 3$).

Fig S106. 13C NMR of compound 21 (125 MHz, CDCI3).

PMK-01-166			$\underset{\substack{\underset{~ c}{c} \\ \hline}}{ }$
exp12	s2pul		$\overrightarrow{-}$
	SAMPLE	DEC	\& VT
date	Dec 112008	dfrq	499.836
solvent	nt cdcl3	dn	H1
file	exp	dpwr	39
ACQUISITION		dof	0
sfrq	125.698	dm	yyy
$t \mathrm{n}$	C13	dmm	w
at	1.000	dmf	11905
np	62894	dseq	
sw	31446.5	dres	1.0
fb	17000	homo	n
bs	16	PROC	SSING
ss	2	1b	1.00
tpwr	54	wtfile	
pw	4.0	proc	$f t$
d1	1.000	fn	not used
tof	2512.2	math	
nt	10000		
ct	6496	werr	react
alock	y	wexp	procplot
gain FL	flags	wbs wnt	testsn
11	n		
in	n		
dp	y		
hs	nn		
DISPLAY			
sp	-1257.2		
wp	27650.1		
vs	112		
sc	0		
wc	210		
hzmm	131.67		
is	500.00		
rff	1269.7		
rfp	-		
th	6		
ins	100.000		
$\mathrm{nm} \quad \mathrm{ph}$	ph		

Fig S107. DEPT of compound 21 (CDCl3).
expl3 DEPT

Fig S108. HMQC of compound 21 (CDCI3).
exp15 gHMQC

Fig S109. COSY of compound 21 (CDCI3).
PMK-01-166
expl4 gCosy
SAMPLE FLAGS date Dec $11 \begin{array}{ll}2008 & \text { hs } \\ \text { solvent } & \text { cdcl3 } \\ \text { sspul }\end{array}$ solvent uncla sspul
sample undefined hsglvi
ACQUISITION sw ACQUISITION

sw	4
at	
np	
fb	
ss	
d1	
nt	

 ${ }^{\mathrm{SWi}}$ TRANSMITTER

 F 2
(ppm

 pw GRADIENTS 13 gzlv
gt1

ENTS^{13}

gzlvl1
0.001026 gstab 0.000
DECOUPLER
dn
dm
 $\begin{array}{lr} & 493.2 \\ \text { sp1 } & 4494.0 \\ \text { wp1 } & 504.2 \\ \text { rf } & 4494.0 \\ \text { ff } & 2227.8\end{array}$

Fig S110. NOESY of compound 21 (CDCI3).
standard proton parameters

Fig S111. HPLC analysis of racemic compound 4. (For comparison)

Peak Report

pmk-01-203-racemate-colmn-IA-20\%ipa-hexane
Report produced on 2009/11/7 at 下午 04:18:24 by Put your name here

Peak \#	Begin	End	Peak Area	Maximum	Time	Area \%	Begins as
1	9.11	10.12	1992	104.50	9.43	49.4	Baseline
2	10.76	11.83	2041	100.67	11.17	50.6	Baseline

Chromatogram Report

pmk－01－203－chiral－colmn－IA－20\％ipa－hexane
Report produced on 2009／11／30 at 下午 03：26：00 by Put your name here

2009／11／7 aUxE 02：23：03 Flow set to 1.00 at 0.00 minutes
2009／11／7 aUaẼ 03：02：01 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as
1	8.65	10.17	3094	100.0	142.84	9.02	Baseline

Fig S113. HPLC analysis of the mixture of racemic and chiral compound 4 obtained.

Peak Report

pmk-01-203-chiral+racemate-colmn-IA-20\%ipa-hexane
Report produced on 2009/11/7 at 下午 04:25:30 by Put your name here

Peak \#	Begin	End	Peak Area	Maximum	Time	Area \%	Begins as
1	8.43	9.66	2604	122.63	8.94	67.8	Baseline
2	10.06	11.35	1235	71.20	10.58	32.2	Baseline

Fig S114. HPLC analysis of racemic compound 8. (For comparison)

Peak Report

PMK-01-204
Report produced on 2009/9/30 at 下午 06:32:00 by Put your name here

Peak \#	Begin	End	Peak Area	Maximum	Time	Area \%	Begins as
1	15.04	17.34	6883	157.01	16.06	48.9	Baseline
2	22.46	31.70	7204	73.93	23.99	51.1	Baseline

Chromatogram Report

PMK－01－204－Chiral－20\％ipa／hex／colm－od

Report produced on 2009／11／30 at 下午 03：40：39 by Put your name here

2009／9／30 aUaÈ 02：20：05 Flow set to 1.00 at 0.00 minutes
2009／9／30 aUaÈ 04：01：12 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	22.30	28.78	11950	100.0	76.93	23.35	Baseline

Fig S116．HPLC analysis of the mixture of racemic and chiral compound 8 obtained． （For comparison）

Chromatogram Report

PMK－01－204－racemate＋chiral－\％ipa／hex－colm OD

Report produced on 2009／11／30 at 下午 04：20：35 by Put your name here

2009／9／30 aUaÈ 04：58：46 Flow set to 1.00 at 0.00 minutes
2009／9／30 aUaÈ 06：10：03 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as
1	15.00	17.80	6676	37.1	86.84	15.77	Baseline
2	22.02	28.06	11332	62.9	49.98	23.03	Baseline

Fig S117. HPLC analysis of racemic compound 20. (For comparison)

Peak Report

PMK-01-72-CO-colm-IA-8\%-THF-Hex
Report produced on 2008/10/11 at 下午 04:24:49 by Put your name here

Peak \#	Begin	End	Peak Area	Maximum	Time	Area \%	Begins as
1	28.63	31.39	3844	79.25	29.29	49.3	Baseline
2	32.03	37.52	3957	31.27	33.86	50.7	Baseline

Fig S118．HPLC analysis of compound 20 obtained．

Chromatogram Report

PMK－01－72－chiral－colm－IA－8\％－THF－Hex

Report produced on 2008／10／11 at 下午 01：08：24 by Put your name here

2008／10／11 aUaÈ 12：14：49 Flow set to 1.00 at 0.00 minutes
2008／10／11 םUםÈ 01：06：01 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as
1	26.58	27.83	59	98.8	3.47	27.43	Baseline

Fig S119. HPLC analysis of the mixture of racemic and chiral compound 20 obtained.
(For comparison)

Peak Report

PMK-01-72-CO-colm-IA-8\%-THF-Hex
Report produced on 2008/10/11 at 下午 02:20:16 by Put your name here

Peak \#	Begin	End	Peak Area	Maximum	Time	Area \%	Begins as
1	29.17	31.65	8393	154.39	29.84	69.2	Baseline
2	33.34	37.24	3727	34.05	34.80	30.8	Baseline

Chromatogram Report

PMK－－01－166－racemate－15\％ipa／hex／colm／OD

Report produced on 2009／11／30 at 下午 04：13：01 by Put your name here

2009／10／15 aUaĖ 02：21：07 Flow set to 1.00 at 0.00 minutes
2009／10／15 aUaĖ 03：12：28 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as	name
1	13.62	15.96	6548	47.3	148.18	14.59	Baseline	
2	17.93	21.74	7285	52.7	130.95	18.74	Baseline	

Fig S121. HPLC analysis of compound 21 obtained.

Peak Report

PMK-01-166
Report produced on 2009/10/15 at 下午 04:00:49 by Put your name here

Peak \#	Begin	End	Peak Area	Maximum	Time	Area \%	Begins as
1	13.75	16.87	20019	374.94	14.45	100.0	Baseline

Fig S122. HPLC analysis of the mixture of racemic and chiral compound 21 obtained.

Peak Report

PMK-01-166
Report produced on 2009/10/15 at 下午 05:21:10 by Put your name here

Peak \#	Begin	End	Peak Area	Maximum	Time	Area \%	Begins as
1	14.11	16.52	10961	227.10	14.80	72.0	Baseline
2	18.61	21.13	4271	98.99	19.28	28.0	Baseline

[^0]: ${ }^{1}$ Simon-Levert, A.; Arrault, A.; Bontemps-Subielos, N. Canal, C.; Banaigs, B. J. Nat. Prod. 2005, 68, 1412-1415.

[^1]: ${ }^{2}$ Garrido, L.; Zuba,E.; Ortega, M. J.; Salv, J. J. Nat. Prod., 2002, 65, 1328-1331. Lit. [$\left.\alpha\right]^{27}{ }_{\mathrm{D}}=+1.0\left(\mathrm{C} 0.4, \mathrm{CHCl}_{3}\right)$. The optical rotation value is somewhat different from those reported for the natural product and raises earlier suspicions that the natural products have an enantiomeric excess in the opposite sense, and were not isolated as pure single enantiomers. Or, this lack of optical purity in the natural products may be due to their facile racemization and/or decomposition. In fact, storage of our enantiopure 17 in neat at $25^{\circ} \mathrm{C}$ for a week gave some decomposition products. Moreover, the compound was completely decomposed in CHCl_{3} and gave a complex mixture after standing in CHCl_{3} for 24 h at ambient temperature. Refer to the above reference on page 1330 and the note 6, 7 and 13 in that paper for the discussion of the low optical value.
 ${ }^{3}$ However, Alcohol 15 and acetate 16 were the stable compounds.

[^2]: ${ }^{a}$ Spectrum recorded at 100 MHz in $\mathrm{CDCl}_{3} .{ }^{b}$ Spectrum recorded at 125 MHz in CDCl_{3}

[^3]: ${ }^{4}$ Garrido, L.; Zuba,E.; Ortega, M. J.; Salv, J. J. Nat. Prod., 2002, 65, 1328-1331.

