
SUPPLEMENTARY MATERIALS

Table 1s. Spectroscopic properties of Fast-FT, blue precursors, and mutants.

Protein		Absorbance peak, nm	Excitation peak, nm	Emission peak, nm	Extinction coefficient, M ⁻¹ cm ^{-1*}	Quantum yield**
Fast-FT	Blue form	403	403	466	18,400	0.30
	Red form	583	583	606	19,100	0.09
Fast-FT/ S217C	Blue form	403	403	466	22,110	0.33
	Red form	580	581	611	57,500	0.10
Fast-FT/ S146A	Blue form	403	402	471	16,600	0.27
	Red form	586	587	609	2,300	0.06
Fast-FT/ R70K	Blue form	403	407	466	5,700	0.31
	Red form	582	582	604	88,600	0.07
Fast-FT/ S217A	Blue form	403	402	466	14,600	0.36
	Red form	581	581	604	81,600	0.07
Fast-FT/ W83L	Blue form	410	408	468	4,400	0.21
	Red form	585	585	609	3,400	0.07
Blue 124/ I146S	Blue form	403	403	461	22,300	0.10
	Red form	581	583	604	95,500	0.07
Blue 102	Blue form	403	403	454	11,400	0.90
	Red form					
Blue 124	Blue form	403	402	463	19,000	0.10
	Red form					

^{*}Extinction coefficients of the chromophore absorbance peaks were calculated using the absorbance at 280 nm determined for the respective proteins as described³⁷. **Quantum yields were determined with 403 and 580 nm excitation for blue and red forms, respectively; parental FastFT was used as the reference with quantum yields for blue and red forms equal to 0.30 and 0.09, respectively¹¹.

