
Poisson-Gap Sampling and FM Reconstruction for Enhancing Resolution and
Sensitivity of Protein NMR Data

Supplemental information

Sven G. Hyberts, Koh Takeuchi and Gerhard Wagner*

Comparison of Signal to Peak Noise Ratio
We also explored whether NUS and FM reconstruction affects signal to peak noise. This addresses the
question of false positives. We selected ten areas that do not contain peaks (Fig. S1A) and measured the
signal-to-peak noise for average (Fig. S1B) and maximum (Fig. S1C) peak-noise values. The larger linear
coefficients for FM reconstructed spectra in the Fig. S1B and S1C clearly show the advantage of FM
reconstitution over linear sampling or linear prediction in detecting signals above noise. Signal-to average
peak-noise ratio for SPS combined with FM reconstruction is ~60% higher than uniform sampling (0.876 vs
0.546).

Fig. S1: Comparison of signal-to-
peak noise. A. Ten areas that do not
contain real peaks were selected for
measuring the signal-to-peak noise.
B. Plot of signal-to-average-peak
noise versus the same measure in
the four-times longer linear
experiment as shown in Fig.2 panel
A5. The linear coefficient measures
the signal-to-average peak noise
relative to the long linear experiment
with 8 scans per increment. As
expected, the coefficient for the short
linear experiment with 2 scans per
increment is around 0.5 as the S/N is
proportional to sqrt(n). C: Same as B
but the ratio of signal to maximum
noise is measured.

Effect of Order Parameters in Linear Prediction
We explored optimal parameters for processing time domain data with linear prediction. In particular, we
used different order parameters of the nmrPipe software1. Fig. S2A shows a comparison of the same

spectral region as in Fig. 2 of the main
manuscript. The panel at the right is the
same as in Fig. 1A, panel A5 of the main
manuscript and is used for comparison.
Clearly linear prediction looks best when
using an order parameter of 30. (Higher
order parameters than 30, however, are
no meaningful since there are never
more than 30 signals in a single trace).
Fig. S2 B and C compare the signal-to-
noise ratio with those of the linearly
sampled data. Here peaks were picked
as described in the main text, and the
noise is again the median of 10,000
randomly picked points in the spectrum
not including real peaks. The S/N of this
spectrum is used as horizontal axis in
Fig. S2B and C. Based on this
comparison we find that the order
parameter 30 yields the best S/N and is
used for comparison in the main
manuscript. However, small changes of
peak positions are evident.
The biggest drawback is that some weak
peaks get shifted. Here this is particularly
clear for the peak at 115.1 ppm, which is
marked with a broken line.

Figure S2: Comparison of spectral
quality and S/N of linear prediction
with different order parameters.
Large order parameter is needed to
obtain high S/N with linear
prediction, which is not commonly
used. However, linear prediction
can cause small changes of peak
positions, which are clearly seen for
the peak at the nitrogen position of
115.1 ppm (top dotted line) and
117.8 ppm (middle dotted line).

Comparison of Resolution between Linear Prediction and NUS/FM Reconstruction
Figure S3 shows a comparison of a section of an NCa experiment recorded linearly over 256 increments
and 8 scans per increment with spectra obtained from either the first 64 increments extended with linear
prediction routine of the nmrPipe program and an order parameter of 301. The bottom panels show the
same spectral regions from spectra obtained with sinusoidally modulated Poisson-gap sampling and
processed using FM reconstruction without (left) and with distillation.2 Linear prediction suffers from
significantly lower resolution, which matters for crowded spectral regions as indicated by arrowheads. The
distill process can remove artifact significantly.

Figure S3: Comparison of the resolution between linearly sampled data with 256 time points and 8 scans
per increment (top left), linear prediction using the first 64 data points with 32 scans per increment,
predicted to 256 points, and processed with an order parameter of 30 (top right), non-modulated Poisson
gap sampling of 64 increments followed by FM reconstruction2 without (bottom left) and with distillation
(bottom right).

Figure S4: Graphical representation of the sinusoidal Poisson-Gap sampling Schedule used in the
manuscript. Dark circles represent obtained data, unfilled circles non-obtained data. The gap in the middle
of the line is for visualization aid only and groups the circles in groups of 16.

C-program for calculating sinusoidal weighted Poisson-gap sampling schedules.

The sampling schedule for Poisson-gap sampling can be calculated with the following C-program.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

// generate random Poisson-distributed numbers as given

// by Donald E. Knuth (1969). Seminumerical Algorithms.

// The Art of Computer Programming, Volume 2. Addison Wesley

int poisson (double lmbd)

{

 double L = exp(-lmbd);

 int k = 0;

 double p = 1;

 do {

 double u = drand48();

 p *= u;

 k += 1;

 } while (p >= L);

 return(k-1);

}

int main (int argc, char** argv)

{

 float s = atof(argv[1]); // seed value e.g. 1.0

 int p = atoi(argv[2]); // sampled # of indices e.g 64

 int z = atoi(argv[3]); // total # of indices e.g. 256

int i; // Fourier grid index, e.g. 1 through 256

int k; // generated gap size

int n; // temporary # indices

 int *v; // temporary storage vector

 int j; // wrking variable

 float ld = (float) z / (float) p; // establish 1/fraction

 float adj = 2.0*(ld-1); // initial guess of adjustment

 srand48(s);

 v = (int*) malloc(z*sizeof(z));

 do {

 i = 0; n = 0;

 while (i < z) {

 v[n] = i;

 i += 1;

k =poisson(adj*sin((float)(i+0.5)/(float)(z+1)*1.5707963268));

 i += k;

n += 1;

 }

 if (n > p) adj *= 1.02; // too many pts created

 if (n < p) adj /= 1.02; // too few pts created

 } while (n != p); // if not at first, try, try again

 for (j = 0 ; j < p ; k++) printf("%d\n", v[j]);

}

References

(1) Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. J Biomol NMR 1995, 6, 277-93.
(2) Hyberts, S. G.; Frueh, D. P.; Arthanari, H.; Wagner, G. J Biomol NMR 2009.

