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  S1 

Derivation of the Negative Binomial Model 
 

If the number of observed particles (x) in a sample of volume (V) taken from a source with 

homogeneous concentration (c) and enumerated by a method with recovery constant (p) is  

Poisson-distributed with mean (cVp), and the recovery constant is gamma-distributed with parameters 

(α,β), then the joint distribution f(x,p) can be written as eq S1. 
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The marginal distribution for the number of observed particles (eq S2) can be derived as follows. 
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Summary of Model Components 
 

Table S1.  Summary of model components and sources of error 

 Beta-Poisson Model Negative Binomial Model

Representative Sampling Error N/A N/A 

Random Sampling Error* Poisson Poisson 

Analytical Error Binomial (implicit) Included in Poisson 

Nonconstant Analytical Recovery Beta Gamma 

Counting Errors  
(except false-positive) 

Included in beta if 
recovery <100% Included in gamma 

* Alternative models using negative binomial random sampling error are not addressed. 
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Analysis of Data with Different Recovery Parameters 
 

Equations 3-8, 10, and 13 assume that all samples regarded as replicates have the same recovery 

parameters (a,b or α,β). Modification of these equations to account for repeated samples that have 

different recovery parameters (e.g., due to variations in methodology or sample-specific recovery 

estimates) is very simple. In each of these equations, sample-specific recovery parameters can be 

provided (e.g., ai,bi). 

 

Petterson, et al. (S1) considered sample-specific recovery estimates, in which precisely known 

numbers of pre-stained oocysts were seeded into environmental samples to concurrently evaluate 

recovery and indigenous oocyst concentrations. Such detailed recovery information can easily be 

incorporated into the beta-Poisson model presented herein using the recovery parameters  

(ai,bi) = (xi
* + 1, ni

* – xi
* +1) where n* is the number of seeded particles and x* is the number of seeded 

particles that were observed. These parameter values are obtained using a binomial model and Bayes’ 

theorem (with uniform improper prior) as shown in Equation S3. 
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Calculating Posterior Distributions Using Numerical Integration 
 

Given the likelihood functions represented by eqs 3 and 4 and an improper uniform prior, the 

marginal posterior probability density functions for concentration for the beta-Poisson and negative 

binomial models can be written explicitly as eqs S4 and S5, respectively. 
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Negative binomial: 
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These integrals cannot be solved explicitly, but can be approximated numerically. For example, the 

following integral can often be accurately approximated using 1000 intervals. 
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To approximate the denominator in either eq S4 or eq S5, a similar discrete approximation of the 

integral can be employed. This numerical approximation is more complicated because the upper 

boundary is infinite and because an appropriate step-size must be used in the discretization of the 

integral. The upper boundary should be chosen so that truncation error is minimal, and two step-sizes 

should be used to confirm that the numerical integration is converging on the correct value (a narrower 

step-size is needed if the result depends on the step-size). Numerical integration has been observed to be 

efficient and robust except when near-zero recovery values are common: then, the upper tail of the 

likelihood function narrows very slowly because a method with near-zero recovery yields very little 

information about concentration.  
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Gibbs Sampling Code for Visual Basic 
 

The following code provides a framework for Gibbs sampling (from the beta-Poisson model) using 

the Visual Basic Editor in Microsoft Excel. The user must (1) modify the code to input data, (2) provide 

functions for random number generation, and (3) program data output and analysis (e.g., calculation of 

summary statistics such as the mean, mode, standard deviation, and 95% credible interval). 

 
‘ Declare input variables 
 Dim inR as Integer   ‘ Number of replicate enumeration data 
 Dim inX() as Integer  ‘ Array of sample counts (1 to inR) 
 Dim sgV() as Single  ‘ Array of sample volumes (1 to inR) 
 Dim sgA as Single   ‘ Beta distribution recovery parameter  
 Dim sgB as Single   ‘ Beta distribution recovery parameter 
 Dim lnNumBurn as Long  ‘ Number of burn-in iterations 
 Dim lnNumSave as Long  ‘ Number of iterations to save in posterior 
 
‘ Declare temporary/output variables 
 Dim inI as integer   ‘ Sample index 
 Dim inN() as Integer  ‘ Array of unknown true counts (1 to inR) 
 Dim sgP() as Single  ‘ Array of unknown recoveries (1 to inR) 
 Dim lnSumN as Long   ‘ Sum of unknown true counts 
 Dim sgSumV as Single  ‘ Sum of sample volumes 
 Dim sgC() as Single  ‘ Markov chain of posterior conc. values 
 Dim lnTrial as Long  ‘ Gibbs sampling iteration index 
 Dim sgCV as Single   ‘ Product of concentration and Sum(Volume) 
 Dim sgConc As Single     ‘ Temporary concentration value 
 Dim sgLamda as Single  ‘ Temporary Poisson parameter 
 
‘ Input data (code not shown) 
 
‘ Select initial values for parameters 
 ReDim inN(1 to inR) 
 ReDim sgP(1 to inR) 
 lnSumN = 0 
 sgSumV = 0 
 For inI = 1 to inR 
  inN(inI) = Round(inX(inI) * (sgA + sgB) / sgA) 
  lnSumN = lnSumN + inN(inI) 
  sgSumV = sgSumV + sgV(inI) 
 Next 
 
‘ Run Gibbs sampling 
 ReDim sgC(1 to lnNumSave) 
 For lnTrial = 1 to lnNumBurn + lnNumSave 
  sgCV = GAMMA(lnSumN + 1) 
  sgConc = sgCV / sgSumV 
  If lnTrial > lnNumBurn Then 
   sgC(lnTrial – lnNumBurn) = sgConc 
  End If 
  lnSumN = 0 
  For inI = 1 to inR 
   sgP(inI) = BETA(inX(inI) + sgA, inN(inI) – inX(inI) +sgB) 
   sgLamda = sgConc * sgV(ini) * (1 – sgP(inI)) 
   inN(inI) = POISSON(sgLamda) + inX(inI) 
   lnSumN = lnSumN + inN(inI) 
  Next    
 Next 
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Convergence and Mixing 
 

Convergence and mixing are important considerations when using Markov chains (S2). Gibbs 

sampling has converged upon the posterior distribution when it produces a sequence of values that are 

collectively representative of the posterior distribution and not influenced by the initial values of the 

Markov chain. An appropriate number of iterations must be discarded at the outset of Gibbs sampling 

(“burn-in”) to ensure that the first recorded value is essentially a random sample from the posterior 

distribution (i.e., it is unaffected by the supplied initial values). Mixing corresponds to the degree of 

serial correlation in a Markov chain; poorly mixing chains (i.e., with high serial correlation) will 

converge slowly. 

 

Figure S1a shows an example of Gibbs sampling output using the beta-Poisson model with the 

following input: x1 = 376, x2 = 388, V1 = 10 L, V2 = 10 L, a = 287.08, b = 94.76. Rather than using the 

initial values for {ni} that are proposed in Figure 1a (which ensure rapid convergence), each was set to 

750. Despite the highly improbable initial values, the Markov chain has converged in fewer than 50 

iterations. Figure S1a illustrates excellent mixing.  

 

Poorer mixing has been observed when near-zero recovery is common. Figure S1b shows an example of 

Gibbs sampling output using the beta-Poisson model with the following input: x1 = 3, V1 = 100 L,  

a = 4, b = 6. Once again, n = 750 was input to evaluate convergence. This figure shows slower 

convergence (a burn-in of approximately 500 iterations appears to be appropriate) and poor mixing.  

 

a b 

Figure S1. Convergence and mixing of Gibbs sampling algorithm 
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Sample Enumeration Data Used in Figure 2 

 

Table S2.  Sample enumeration data 

 Initial Final 

Volume (L) 10 10 50 50 50 50 

Count 376 388 16 16 19 29 
cI = 50 microorganisms/L, cF = 0.5 microorganisms/L, (a,b) = (287.08, 94.76) 
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