Supporting Information

Transport Effects in the Electrooxidation of Methanol Studied on Nanostructured Pt/Glassy Carbon Electrodes

Y.E. Seidel¹, A. Schneider¹, Z. Jusys¹, B. Wickman², B. Kasemo², and R.J. Behm¹*

¹Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany

²Departement of Applied Physics, Chalmers University of Technology, S-41296 Gothenburg,

Sweden

Table S1 CO₂ current efficiencies on polycrystalline Pt bulk electrodes (geom. surface area 0.283 cm^2) after one minute after the potential was stepped from E_{int} to E_{fin}. c concentration of CH₃OH in $0.5 \text{ M H}_2\text{SO}_4$; v electrolyte flow rate.

$\mathrm{E}_{\mathrm{int}}$	$\mathrm{E}_{\mathrm{fin}}$	c	υ	A_{CO_2}
[V]	[V]	[mol L ⁻¹]	$[\mu L \ s^{\text{-}1}]$	[%]
0.05	0.65	0.001	10	55*
0.05	0.75	0.01	1.1	49*
0.05	0.60	0.1	1.9	18*
0.05	0.60	0.1	8.3	16*
0.06	0.66	0.1	1	32
0.06	0.66	0.1	10	30
0.06	0.76	0.1	1	35
0.06	0.76	0.1	10	32

^{*} These values are taken from Wang et al., *J. Appl. Electrochem.* **2001,** *31,* 759.

Figure S1 Continuous potentiostatic electrooxidation of methanol in 0.1 M CH₃OH containing 0.5 M H₂SO₄ at 10 μ L s⁻¹ on *pc Pt* (black squares) and on HCL-prepared *HCL-17* (red circles) and *HCL-04* (blue triangles) electrodes. Top panel: Faradaic currents; bottom panel: mass spectrometric currents at m/z = 60 for detection of methylformate. The potential was stepped from 0.06 V (t_{init} = 30 s) to 0.76 V (t_{fin} = 300 s).

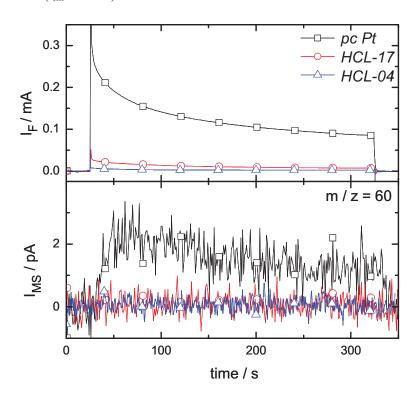
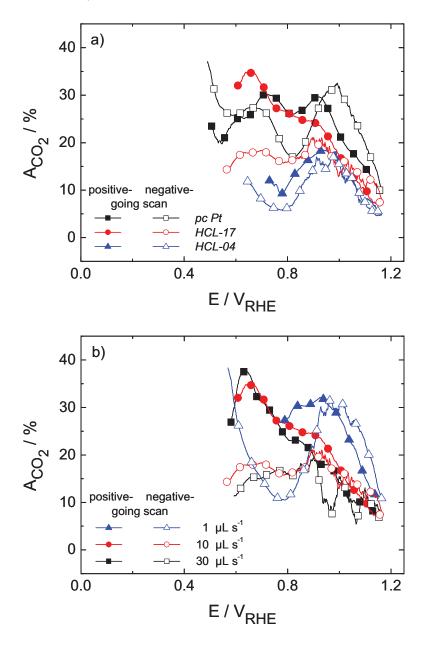



Figure S2 CO₂ current efficiency during continuous potentiodynamic electrooxidation of methanol in 0.1 M CH₃OH containing 0.5 M H₂SO₄ on (a) *pc Pt* (black squares) and HCL-prepared electrodes, namely *HCL-17* (red circles) and *HCL-04* (blue triangles) at 10 μL s⁻¹ electrolyte flow rate; (b) on a nanostructured *HCL-17* electrode at different flow rates (1 μL s⁻¹ – blue, triangles; 10 μL s⁻¹ – red, circles; 30 μL s⁻¹ – black, squares). Positive-going scan – filled symbols, negative-going scan – blank symbols.

