Silicon nanosheets and their self-assembled regular stacking structure

Hirotaka Okamoto^{1*}, Yoko Kumai¹, Yusuke Sugiyama¹, Takuya Mitsuoka¹, Koji Nakanishi², Toshiaki Ohta², Hiroshi Nozaki¹, Satoshi Yamaguchi¹, Soichi Shirai¹, and Hideyuki Nakano¹

¹Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan

²The SR Center, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

XANES spectra. XANSE spectroscopy provides information on local atomic and electronic structures

around an absorbing atom. The TEY mode is effectively used for monitoring the surface region. On the other hand, FY mode has detection sensitivity to a depth of approximately 100 nm. The Si-K edge absorption spectrum of C10-Si_n obtained using the FY mode in a He atmosphere is shown in Figure S1, with those of quartz and β -Si₃N₄ included for comparison. The large peak around 1844 eV for C10-Si_n is very close to that observed in β -Si₃N₄. The peak position is different from those of crystalline silicon (near 1840 eV), siloxene (near 1846 eV), or layered polysilane (near 1840 eV)^{S1}, which suggests that C10-Sin contains Si-N-Si linkages and no Si-O linkages. The spectra shown here are the same as those in Figure 3. C10-Si_n forms highly stacked structure on the HOPG plate, as revealed by XRD, and the chemical structure near the surface region is not different to that in the inner region. However, a small peak near 1846 eV appeared in C10-Si_n after long term exposure to air. The chemical stability against oxygen seems to be weaker than the amine-modified Si(100) surface of bulk, porous silicon or silicon nanoparticles^{S2, S3}.

S1. Dahn, J. R.; Way, B. M.; Fuller, E.; Tse, J. S. Phys. Rev B. 1993, 48, 17872-17877.

S2. Bergerson, W. F.; Mulder, J. A.; Hsung, R. P.; Zhu, X.-Y. J. Am. Chem. Soc. 1999, 121, 454-455).

S3. Rogozhina, E.; Belomoin, G.; Smith, A.; Abuhassan, L.; Barry, N.; Akcakir, O.; Braun, P. V.; Nayfeh, M. H.; *Appl. Phys. Lett.* 2001, *78*, 3711-3713.

Complete reference 35

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; J. A. Pople, J. A. *Gaussian 03*, Revision E.01, Gaussian Inc., Wallingford CT, 2004.