Supporting Information

Stereocontrolled and Efficient Total Synthesis of (-)-Stephanotic Acid Methyl Ester and (-)-Celogentin C

Weimin Hu, Fengying Zhang, Zhengren Xu, Qiang Liu, Yuxin Cui, Yanxing Jia*

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 73000, China

- **S2.** General information
- S3-S12. Experimental procedure and physical data
- **S13-S44.** ¹H and ¹³C spectra of compounds

General information

All reagents were obtained from commercial suppliers unless otherwise stated. Tetrahydro- furan (THF) was distilled from potassium sodium alloys; dichloromethane and acetonitrile were distilled from calcium hydride; N, N-Dimethylformamide (DMF) was distilled from magnesium sulfate under vacuum; Methanol was distilled from magnesium methoxide. Flasks were flame-dried under vacuum and cooled under a stream of nitrogen or argon.

Flash chromatography was performed using silica gel (200-300 mesh) with solvents distilled prior to use. Visualization was achieved under a UV lamp (254 nm and 365 nm), and by developing the plates with phosphomolybdic acid or triketohydrindene hydrate in ethanol.

¹H NMR were recorded at 300 MHz or 400 MHz NMR spectrometer, ¹³C NMR at 75 MHz or 100 MHz NMR spectrometer unless otherwise stated. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, m: multiplet, br s: broad singlet for proton spectra. Coupling constants (J) are reported in Hertz (Hz). Infrared spectra were recorded with a thin layer of the product on a KBr disk.

The following abbreviations are used: **EtOAc**; ethyl acetate; **THF**: Tetrahydrofuran; **DMF**: N, N-Dimethylformamide; **Boc**₂**O**: di-tert-butyldicarbonate; **HOAc**: acetic acid; **DMAP**: 4-Dimethylaminopyridine; **EDCI**: 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide Hydrochloride; **HATU**: O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate; **HBTU**: O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate; **HOBt**: 1-Hydroxybenzotriazole; **DIPEA**: diisopropylethylamine; **NBS**: N-Bromosuccinimide

Experimental procedure and physical data

Compound 4.^{1,2,3} To the solution of (2E)-isohexenoic acid (2.67 g, 23.4 mmol) and Et_3N (2.5 equiv) in THF (volume corresponded to 0.2 M of the oxazolidinone) was added trimethylacetyl chloride (2.62 g, 21.7 mmol) at -20

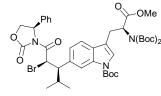
^oC. A white solid was formed instantaneously. The mixture was stirred at -20 ^oC for 2.0 h. Lithium chloride (0.92 g, 21.6 mmol) was added, followed by the oxazolidinone (2.92 g, 17.9 mmol). The mixture was allowed to warm to room temperature slowly and stirred for 4.0 h. The reaction was quenched by addition of saturated NH₄Cl and the solution was extracted with EtOAc; The organic layer was washed subsequently with saturated NaHCO₃, brine and water, dried over anhydrous Na₂SO₄ and filtered. EtOAc was removed in vacuo, and the residue was purified by flash column chromatography(silica gel, 12% EtOAc in petroleum ether) provided the desired product **4** (4.33 g, 93%). ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.30 (m, 5H), 7.22 (dd, *J* = 15.6, 1.2 Hz, 1H), 7.05 (dd, *J* = 15.6, 6.6 Hz, 1H), 5.48 (dd, *J* = 8.7, 3.9 Hz, 1H), 4.68 (t, *J* = 9.0 Hz, 1H), 4.26 (dd, *J* = 9.0, 3.9 Hz, 1H), 2.52 (m, 1H), 1.07 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 165.0, 158.2, 153.8, 139.2, 129.1 (2C), 128.6, 126.0 (2C), 117.6, 69.8, 57.6, 31.3, 21.1, 21.0.

Compound 10. ⁵ To a stirred suspension of nitration of 6-nitro-L-tryptophan 8⁴ (6.39 g, 25.7 mmol) in dry MeOH (90 mL) was added slowly Me₃SiCl (25.0 mL, 196 mmol) in an ice-cold bath. After the addition was completed, The ice-cold bath was removed and the reaction was stirred at room temperature for 18.0 h. Then, Et₃N (50 mL, 361 mmol) and (Boc)₂O (8.9 g, 40.8 mmol) were sequentially added. The reaction mixture was stirred until TLC showed complete protection. The solvent was removed under reduced pressure and the residue was extracted between water and EtOAc (3 × 60 mL). The combined organic layers were dried over Na₂SO₄, and then evaporated in vacuo.

To a solution of above crude product in dry CH₃CN (90 mL) was added DMAP (650 mg,

^{1.} Ho, G. J.; Mathre, D. J. J. Org. Chem. 1995, 60, 2271-2273.

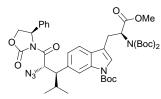
^{2.} Lin, J.; Liao, S.; Han, Y.; Qiu, W.; Hruby, V. J. *Tetrahedron: Asymmetry* **1997**, *8*, 3213-3221.


^{3.} Liao, S.; Shenderovich, M. D.; Lin, J.; Hruby, V. J. Tetrahedron 1997, 53, 16645-16662.

^{4.} Moriya, T.; Hagio, K.; Yoneda, N. Bull. Chem. Soc. Jpn. 1975, 48, 2217-2218.

^{5.} Jia, Y.; Bois-Choussy, M.; Zhu, J. Org. Lett. 2007, 9, 2401-2404.

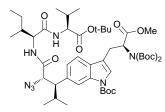
5.3 mmol) and (Boc)₂O (12.4 g, 56.9 mmol) at room temperature. The mixture was stirred for 1 h,after which time TLC showed that some starting material still remained. More (Boc)₂O (4.4 g, 20.2 mmol) was added and the mixture was additionally stirred overnight. The solvent was evaporated, and the crud purified by silica gel column chromatography to afford **10** (8.59 g, 77%). ¹H NMR (300 MHz, CDCl₃) δ 9.06 (s, 1H), 8.14 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.68 (s, 1H), 7.64 (d, *J* = 8.7 Hz, 1H), 5.19 (dd, *J* = 9.9, 5.3 Hz, 1H), 3.77 (s, 3H), 3.55 (dd, *J* = 15.0, 5.3 Hz, 1H), 3.39 (dd, *J* = 15.0, 9.9 Hz, 1H), 1.69 (s, 9H), 1.39 (s, 18H); ¹³C NMR (75 MHz, CDCl₃) δ 170.4, 151.9 (2C), 148.6, 144.9, 135.3, 134.1, 129.3, 119.0, 117.7, 116.6, 111.5, 84.9, 83.1 (2C), 57.8, 52.3, 27.8 (3C), 27.5 (6C), 25.2.


Compound 6.⁵ To a solution of nitro-tryptophane 10 (8.59 g, 15.3 mmol) and Zn dust (50.0 g) in CH₂Cl₂ (180 mL) was slowly added HOAc (14.0 mL) at 0 °C. The solution was stirred at room temperature for 20 min and then the solution was filtered. The filtrate was washed with sat. aqueous NaHCO₃, H₂O and brine, dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was dissolved in THF (112 mL), H₂O (79 mL) and 5% HCl (43 mL). NaNO₂ was slowly added to the solution at 0 °C. After being stirred at 0 °C for 5 min, the mixture was added to the solution of KI (15.8 g 95.2 mmol) and I_2 (4.06 g 16.0 mmol) in H_2O (150 mL), then the resulting reaction mixture was continued to stir at room temperature for 1.0 h. The reaction mixture was basified to pH 7-8 with sat. aqueous NaHCO₃, extracted with EtOAc, and the combined organic phases were washed with sat. aqueous NaHSO₃, H₂O and brine, dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 10-15% EtOAc in petroleum ether, then CH₂Cl₂ again) to provide the desired product 6 (7.08 g, 72%) and deiodo product (0.80 g 10%). 1 H NMR (300 MHz, CDCl₃) δ 8.50 (s, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.27 (s, 1H), 7.23 (d, J =7.8 Hz, 1H), 5.12 (dd, J = 9.9, 5.1 Hz, 1H), 3.72 (s, 3H), 3.44 (dd, J = 15.0, 5.1 Hz, 1H), 3.29 $(dd, J = 15.0, 9.9 \text{ Hz}, 1\text{H}), 1.60 \text{ (s}, 9\text{H}), 1.30 \text{ (s}, 18\text{H}); {}^{13}\text{C} \text{ NMR} (75 \text{ MHz}, \text{CDCl}_3) \delta 170.6,$ 151.7 (2C), 149.0, 136.3, 131.3, 129.8, 124.4, 124.1, 120.4, 116.3, 88.7, 83.9, 83.0 (2C), 58.0, 52.3, 28.0 (3C), 27.6 (6C), 25.3.

Compound 12. To a solution of iodo-tryptophane **6** (1.29 g, 2.0 mmol) in dry THF (4.0 mL) was added *i*-PrMgCl (2.0 M, 1.0 mL, 2.0 mmol) dropwise at -30 °C and the reaction mixture was stirred at the same temperature for 30 min. CuBr·Me₂S (83 mg, 0.4 mmol)

was added to the reaction at -30 °C and the mixture was warmed to -20 °C over 20 min. The unsaturated amide **4** (519 mg, 2.0 mmol) in dry THF (2.0 mL) was added slowly at -15 to -10

^oC. After being stirred at the same temperature for 4.0 h, the reaction mixture was cooled to -78 °C, and NBS (357 mg, 2.0 mmol) in dry THF (5.0 mL) was added. After an additional 2.0 h, the mixture was slowly warmed to 0 °C and then was stirred at 0 °C for 2.0 h. the reaction mixture was quenched with saturated NaHSO₃ and extracted with EtOAc (3×30 mL). The combined organic phase was washed with water (30 mL), brine (30 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 12% - 17% EtOAc in petroleum ether) to afford the desired product 12 (1.11 g, 65%). [α]_D³⁰ -64.5 (*c* 1.00, MeOH); IR (neat): 2979, 1784, 1735, 1481, 1442, 1370, 1326, 1257, 1139, 1087, 851, 765, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.46 (d, J = 8.2Hz, 1H), 7.40 (s, 1H), 7.37-7.32 (m, 5H), 7.05 (d, *J* = 8.2 Hz, 1H), 6.36 (d, *J* = 10.4 Hz, 1H), 5.46 (dd, J = 8.8, 4.4 Hz, 1H), 5.21 (dd, J = 10.0, 4.6 Hz, 1H), 4.82 (t, J = 8.8 Hz, 1H), 4.30 (dd, J = 8.8, 4.4 Hz, 1H), 3.76 (s, 3H), 3.50 (dd, J = 15.2, 4.6 Hz, 1H), 3.45 (dd, J = 10.4, 5.2)Hz, 1H), 3.34 (dd, J = 15.2, 10.0 Hz, 1H), 2.09 (m, 1H), 1.65 (s, 9H), 1.32 (s, 18H), 0.90 (d, J = 6.8 Hz, 3H), 0.80 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 167.9, 152.9, 151.6, 149.6, 137.7, 135.1, 134.1, 129.7, 129.1, 128.8, 125.8, 124.5, 118.1, 116.3, 83.5, 82.9, 70.0, 58.1, 53.8, 52.2, 30.8, 28.1, 27.7, 25.6, 21.9, 17.9; HRMS (ESI) m/z calcd for $C_{42}H_{58}BrN_4O_{11}$ (M + NH₄)⁺ 873.3280; found 873.3279.

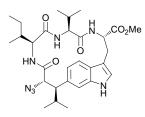

Compound 13. To a solution of compound **12** (5.74 g, 6.7 mmol) in DMF (21 mL) was added NaN₃ (1.14 g, 17.5 mmol) in one portion at room temperature. After being stirred for one day, DMF was removed under vacuum. the residue was diluted with EtOAc

(50 mL) and water (50 mL), and the aqueous phase was extracted with EtOAc (2 × 50 mL). The combined organic extracts were washed with water (2 × 50 mL), brine (2 × 50 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 10%-12% EtOAc in petroleum ether) to afford the desired product **13** (4.52 g, 82%). [α]_D³⁴ –29.9 (*c* 1.00, MeOH); IR (neat): 2978, 2104, 1785, 1736, 1698, 1482, 1443, 1370, 1329, 1267, 1255, 1158, 1141, 1089, 851, 762, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.47 (s, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 6.69 (t, *J* = 7.6 Hz, 2H), 6.35 (d, *J* = 7.6 Hz, 2H), 5.78 (d, *J* = 11.6 Hz, 1H), 5.26 (dd, *J* = 8.8, 4.4 Hz, 1H), 5.23 (dd, *J* = 10.0, 5.0 Hz, 1H), 4.57 (t, *J* = 8.8 Hz, 1H), 4.02 (dd, *J* = 8.8, 4.4 Hz, 1H), 3.78 (s, 3H), 3.55 (dd, *J* = 14.8, 5.0 Hz, 1H), 3.38 (dd, *J* = 14.8, 10.0 Hz, 1H), 3.22 (dd, *J* = 11.6, 4.0 Hz, 1H), 2.34 (m, 1H), 1.66 (s, 9H), 1.35 (s, 18H), 0.94 (d, *J* = 6.8 Hz, 3H), 0.80 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 169.4, 152.8, 151.7, 149.3, 137.0, 134.9, 132.1, 129.7, 128.2, 127.7, 125.0, 124.6, 124.5, 118.3, 116.1, 115.9, 83.8, 82.9, 69.5, 58.9, 57.7, 57.3, 52.4, 52.2, 28.5, 28.0, 27.7, 25.4, 21.0,

17.1; HRMS (ESI) m/z calcd for C₄₂H₅₄N₆NaO₁₁ (M + Na)⁺ 841.3743; found 841.3738.

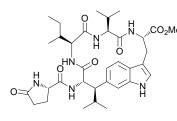
L-isoleucyl-L-valine tert-butyl ester 14. A solution of valine tert-butyl ester (113 mg, 0.65 mmol) and N-Cbz-L-isoleucine (193 mg, 0.73 mmol) in dry THF (3.0 mL) at 0 °C was treated with HOBt (97 mg, 0.72 mmol), EDCI (193 mg, 1.01 mmol), and DIPEA (0.25 mL, 186 mg, 1.44 mmol). The reaction mixture was stirred at 0 °C for 1 h and at room temperature overnight. Water was added to the mixture, and the layers were separated. The aqueous layer was extracted with EtOAc (3×15 mL), and the combined organic layers were washed with water (20 mL), brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography(silica gel, 12% EtOAc in petroleum ether) to give the crude product N-Cbz-L-isoleucyl-L-valine tert-butyl ester.

To a solution of above crude product in MeOH (1.5 mL) was added HCO₂NH₄ (214 mg, 3.40 mmol) and 10% Pd/C (47 mg). The resulting mixture was stirred under H₂ (1 atm) at room temperature for 16 h, then filtered through filter paper and concentrated in vacuo. the residue was purified by flash column chromatography (silica gel, 1% Et₃N in CH₂Cl₂) to afford **14** (136 mg) in a total yield of 60% for two steps. [α]_D²⁰ –37.6 (*c* 1.00, MeOH); IR (neat): 3330, 2966, 2934, 2877, 1733, 1665, 1509, 1370, 1150, 848 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 1H), 4.39 (dd, *J* = 9.0, 4.2 Hz, 1H), 3.29 (d, *J* = 3.6 Hz, 1H), 2.15 (m, 1H), 1.96 (m, 1H), 1.51 (br s, 2H), 1.44 (s, 9H), 1.35 (m, 1H), 1.09 (m, 1H), 0.96-0.85 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 174.3, 171.3, 81.6, 59.9, 56.9, 37.8, 31.1, 27.8 (3C), 23.6, 18.9, 17.4, 15.9, 11.7; HRMS (ESI) *m*/*z* calcd for C₁₅H₃₁N₂O₃ (M + H)⁺ 287.2329; found 287.2334.



Compound 15. To a solution of azido compound **13** (409 mg, 0.50 mmol) in THF (6.0 mL) was added water (2.0 mL). The solution was stirred at 0 °C for 15 min, and then 30% H_2O_2 (0.45 mL, 8 equiv.) was added dropwise followed by dropwise addition of lithium hydroxide monohydrate (81 mg, 1.93 mmol) in water (1.0

mL). The resulting mixture was stirred at 0 °C for 6 h. The reaction was quenched with saturated Na_2SO_3 and stirred at room temperature for 30 min. The mixture was acidified with 6 N HCI to pH = 2 and extracted with EtOAc (3 × 20 mL). The combined organic phase was washed with water (30 mL), brine (30 mL), dried over Na_2SO_4 , and concentrated in vacuo to give crud product, which was used directly in the next step.


A solution of above acid and amine 14 in dry THF (3.0 mL) at 0 °C was treated with HATU (263 mg, 0.69 mmol) and DIPEA (0.30 mL, 223 mg, 1.73 mmol). The resulting

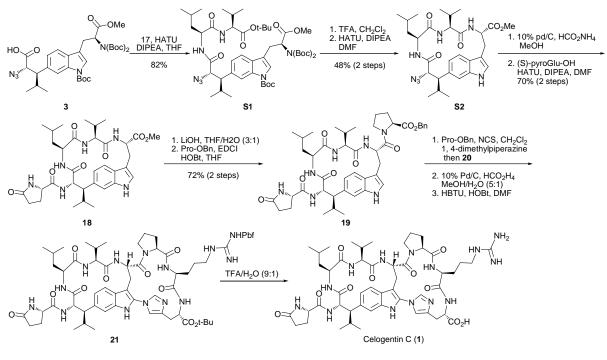
mixture was stirred at room temperature for 1 d. The reaction mixture was diluted with EtOAc. The organic phase was washed with 1% HCl (20 mL), saturated NaHCO₃ (20 mL), water (20 mL), brine (20 mL), dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 12% - 17% EtOAc in petroleum ether) to afford the desired product 15 (367 mg) in a total yield of 78% for two steps. $\left[\alpha\right]_{D}^{22}$ -35.0 (c 1.00, MeOH); IR (neat): 3401, 2975, 2108, 1736, 1699, 1655, 1516, 1443, 1370, 1257, 1155, 1088, 851, 768 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.99 (s, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.36 (s, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.71 (d, J = 8.1 Hz, 1H), 6.14 (d, J = 8.4 Hz, 1H), 5.18 (dd, J = 10.2, 5.0 Hz, 1H), 4.34 (d, J = 5.4 Hz, 1H), 4.28 (dd, J = 8.7, 4.8 Hz, 1H), 4.08 (t, J = 7.8 Hz, 1H), 3.75 (s, 3H), 3.48 (dd, J = 15.0, 5.0 Hz, 1H), 3.29 (dd, J = 15.0, 10.2 Hz, 1H), 3.02 (dd, J = 8.4, 5.4 Hz, 1H), 2.52 (m, 1H), 2.08-2.01 (m, 2H), 1.64 (s, 9H), 1.43 (s, 9H), 1.31 (s, 18H), 1.31-1.15 (m, 1H), 1.04 (d, J = 6.3 Hz, 3H), 0.85-0.66 (m, 16H); ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 170.5, 170.2, 168.2, 151.6, 149.4, 135.5, 129.6, 124.4, 123.9, 118.6, 116.2, 115.5, 83.4, 82.9, 82.0, 67.0, 58.0, 57.7, 57.6, 55.0, 52.3, 36.9, 31.2, 28.8, 28.1, 27.9, 27.7, 25.5, 24.9, 21.4, 20.4, 18.7, 17.6, 14.9, 11.1; HRMS (ESI) m/z calcd for $C_{48}H_{75}N_7NaO_{12}$ (M + Na)⁺ 964.5366; found 964.6365.

Compound 16. Trifluoroacetic acid (5.0 mL) was added slowly to a solution of compound **15** (283 mg, 0.30 mmol) in CH_2Cl_2 (5.0 mL) at ^oC. After 2.0 h the reaction mixture was concentrated ensuring all excess trifluoroacetic had been removed. The residue was dissolved in anhydrous DMF (150 mL), cooled to 0 ^oC, DIPEA (0.75 mL, 4.31

mmol) and HATU (1.14 g, 3.0 mmol) were added sequentially. The reaction mixture was allowed to warm to room temperature, was stirred for 9 days, and then was concentrated. The residue was dissolved in EtOAc (50 mL) and was washed with 1% HCl (20 mL), saturated NaHCO₃ (2 × 30 mL) and brine (30 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, 60% - 90% EtOAc in petroleum ether) to give the product **16** (82 mg, 48%). [α]_D²⁷ –18.5 (*c* 1.00, MeOH); IR (neat): 3328, 2965, 2101, 1745, 1661, 1513, 1460, 1384, 1211 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 7.48 (d, *J* = 8.4 Hz, 1H), 7.01 (s, 1H), 6.98 (s, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 5.48 (m, 1H), 4.03 (d, *J* = 8.4 Hz, 1H), 3.20-3.11 (m, 2H), 2.32 (m, 1H), 2.02 (m, 1H), 1.64 (m, 1H), 1.45 (m, 1H), 1.11 (m, 1H), 1.03 (d, *J* = 6.4 Hz, 3H), 0.96 (d, *J* = 6.4 Hz, 3H), 0.92-0.89 (m, 12H); ¹³C NMR (100 MHz, CD₃OD) δ 173.7, 172.2, 171.7, 171.1, 138.4, 131.2, 127.1, 125.6, 120.2, 118.7, 115.8, 110.0, 66.6, 60.0, 59.4, 53.4, 52.8, 51.9, 38.9, 32.4, 30.1, 28.7, 26.0, 22.0, 19.0, 18.9, 15.9, 11.0; HRMS (ESI) *m/z* calcd for C₂₉H₄₂N₇O₅ (M + H)⁺

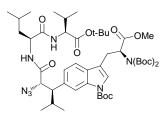
Stephanotic acid methyl ester 2. A solution of compound 16 (80 mg, 0.14 mmol) in MeOH (3.0 mL) was degassed for 20 min, then HCO_2NH_4 (115 mg) and 10% Pd/C (190 mg) was added sequentially. The reaction mixture was stirred under argon at room temperature for 10 h and filtered through filter

paper. The filter pad was washed with MeOH, and the filtrate was concentrated. The residue was dissolved in EtOAc (30 mL) and was washed with saturated NaHCO₃ (10 mL), H₂O (10 mL) and brine (10 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo to give crud product, which was used directly in the next step.

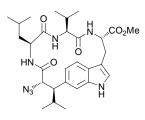

A solution of above crud product in dry DMF (2.0 mL) at 0 °C was treated with (S)-Pyroglutamic acid (32 mg, 0.25 mmol), DIPEA (0.1 mL, 0.58 mmol) and HATU (107 mg, 0.28 mmol). The reaction mixture was allowed to warm to room temperature overnight and the solvent was removed under vacuum. The residue was dissolved in EtOAc (30 mL) and was washed with HCl (1M; 10 mL), saturated NaHCO₃ (10 mL) and brine (10 mL). The organic layer was dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by column chromatography (silica gel, 3% - 4% MeOH in CH₂Cl₂) to give stephanotic acid methyl ester 2 (64 mg, 70%). $[\alpha]_D^{22}$ –112.4 (*c* 0.50, MeOH); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.69 (s, 1H), 8.52 (d, J = 9.2 Hz, 1H), 8.30 (d, J = 10.0 Hz, 1H), 7.87 (s, 1H), 7.43 (d, J =8.4 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 6.99-6.97 (m, 3H), 6.88 (s, 1H), 5.23 (m, 1H), 4.86 (t, J = 10.4 Hz, 1H), 4.11 (dd, J = 8.8, 3.6 Hz, 1H), 3.88 (dd, J = 7.6, 6.0 Hz, 1H), 3.76 (dd, J =10.4, 8.4 Hz, 1H), 3.65 (s, 3H), 3.27 (m, 1H), 3.13 (dd, J = 15.2, 8.8 Hz, 1H), 2.99 (dd, J = 15.2, 8.8 Hz, 1H), 3.13 (dd, J = 15.2, 8.8 Hz, 1H), 3.14 (dd, J = 15.2, 8.8 Hz, 1H), 3.1 11.6, 3.6 Hz, 1H), 2.24 (m, 1H), 2.13 (m, 1H), 2.08 (m, 2H), 2.01 (m, 1H), 1.71 (m, 1H), 1.62 (m, 1H), 1.22 (m, 2H), 0.92 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H), 0.77 (d, J = 8.6 Hz, 3H), 0.68-0.63 (m, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ 177.5, 172.2, 171.8, 170.7, 170.0, 169.7, 136.1, 129.8, 125.5, 123.5, 119.0, 117.8, 114.4, 108.4, 58.0, 57.7, 55.2, 55.1, 52.0, 51.9, 51.1, 37.2, 30.5, 29.0, 27.1, 26.8, 25.6, 24.1, 21.8, 18.7, 17.9, 17.3, 15.4, 10.4; HRMS (ESI) m/z calcd for C₃₄H₄₉N₆O₇ (M + H)⁺ 653.3657; found 653.3664.

L-leucyl-L-valine tert-butyl ester 17. A solution of valine tert-butyl ester (5.19 g, 30.0 mmol) and N-Cbz-L-leucine (8.05 g, 30.4 mmol) in dry CH₂Cl₂ (100 mL) at 0 °C was treated with HOBt (4.72 g, 35.0 mmol), EDCI (7.72 g, 40.3 mmol), and DIPEA (13.0 mL, 9.65 g, 74.8 mmol). The resulting mixture was stirred at 0 °C for 1 h and at room temperature for 1 d. The reaction mixture was washed with saturated NaHCO₃ (50 mL), water (50 mL), brine (50 mL), dried (Na₂SO₄), and

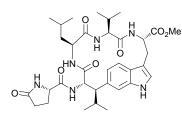
concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 12% EtOAc in petroleum ether) to give the product N-Cbz-L-leucyl-L-valine tert-butyl ester. $[\alpha]_D^{31}$ –46.5 (*c* 1.00, MeOH); IR (neat): 3313, 2963, 1733, 1701, 1658, 1548, 1458, 1369, 1270, 1239, 1148 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.29 (m, 5H), 6.41 (d, *J* = 8.4 Hz, 1H), 5.22 (d, *J* = 7.2 Hz, 1H), 5.11 (s, 2H), 4.40 (dd, *J* = 8.8, 4.4 Hz, 1H), 4.21 (m, 1H), 2.13 (m, 1H), 1.70-1.62 (m, 2H), 1.53 (m, 1H), 1.46 (s, 9H), 0.94-0.87 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 170.7, 156.1, 136.2, 128.5 (2C), 128.1, 128.0 (2C), 81.9, 67.0, 57.4, 53.6, 41.3, 31.4, 28.0 (3C), 24.6, 22.9, 22.0, 18.8, 17.5; HRMS (ESI) *m/z* calcd for C₂₃H₃₇N₂O₅ (M + H)⁺ 421.2697; found 421.2691.


To a solution of above product (5.66 g, 13.5 mmol) in MeOH (40.0 mL) was added 10% Pd/C (319 mg). The resulting mixture was stirred under H_2 (4 atm) at room temperature for 12 h, then filtered through filter paper and concentrated in vacuo to afford the desired product **17** (3.79 g, 98%), which was directly used for next reaction.

Compound 18 was prepared from compound 3 according to the same procedure as that described for stephanotic acid methyl ester 2; Compound S3 and Celogentin C was prepared according to the literature procedure 6 (Scheme 1).

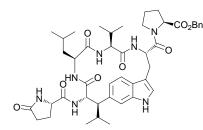

Scheme 1

^{6.} Ma, B.; Litvinov, D. N.; He, L.; Banerjee, B.; Castle, S. L. Angew. Chem. Int. Ed. 2009, 48, 6104-6107.


Compound S1. $[\alpha]_D^{31}$ –40.0 (*c* 1.00, MeOH); IR (neat): 3336, 2976, 2109, 1736, 1698, 1661, 1520, 1442, 1370, 1257, 1142, 1087, 851, 768 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.34 (s, 1H), 7.03 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.42 (d, *J* = 8.0 Hz, 1H), 6.38 (d, *J* = 8.8 Hz, 1H), 5.16 (dd, *J* = 10.0, 4.8 Hz,

1H), 4.33 (d, J = 5.2 Hz, 1H), 4.29-4.21 (m, 2H), 3.72 (s, 3H), 3.46 (dd, J = 14.8, 4.8 Hz, 1H), 3.28 (dd, J = 14.8, 10.0 Hz, 1H), 2.99 (dd, J = 8.8, 5.2 Hz, 1H), 2.49 (m, 1H), 2.04 (m, 1H), 1.62(s, 9H), 1.41 (s, 9H), 1.45-1.38 (m, 1H), 1.29 (s, 18H), 1.29-1.13 (m, 2H), 1.02 (d, J = 6.8Hz, 3H), 0.81 (d, J = 6.8 Hz, 6H), 0.75 (d, J = 6.8 Hz, 3H), 0.72 (d, J = 6.4 Hz, 3H), 0.68 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.4, 170.2, 168.1, 151.4, 149.1, 135.2, 129.4, 124.2, 123.3, 118.3, 115.9, 115.5, 83.1, 82.5, 81.4, 66.7, 57.8, 57.3, 54.8, 52.0, 51.5, 40.3, 30.9, 28.6, 27.8, 27.7, 27.4, 25.2, 24.0, 22.4, 21.5, 21.2, 20.1, 18.5, 17.4; HRMS (ESI) m/z calcd for C₄₈H₇₉N₈O₁₂ (M + NH₄)⁺ 959.5812; found 959.5816.

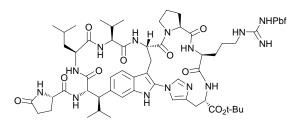
Compound S2. $[\alpha]_D^{24}$ –23.5 (*c* 1.00, MeOH); IR (neat): 3318, 2960, 2101, 1743, 1659, 1630, 1519, 1457, 1387, 1370, 1218 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 7.48 (d, *J* = 8.4 Hz, 1H), 7.03 (s, 1H), 6.98 (s, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 5.47 (dd, *J* = 10.4, 6.0 Hz, 1H), 4.30 (dd, *J* = 9.2, 6.4 Hz, 1H), 3.91 (d, *J* = 11.2 Hz, 1H), 3.83 (d, *J* = 7.6 Hz, 1H), 3.91 (d, *J* = 11.2 Hz, 1H), 3.83 (d, *J* = 7.6 Hz), 3.83 (d, J = 7.6 Hz), 3.83 (d, J = 7.6 Hz), 3.83 (d, J = 7


1H), 3.77 (s, 3H), 3.49 (dd, J = 15.2, 6.0 Hz, 1H), 3.16 (dd, J = 15.2, 10.4 Hz, 1H), 3.12 (dd, J = 11.2, 5.2 Hz, 1H), 2.31 (m, 1H), 2.04 (m, 1H), 1.56 (m, 1H), 1.48-1.36 (m, 2H), 1.01 (d, J = 7.2 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H), 0.91-0.86 (m, 12H); ¹³C NMR (100 MHz, CD₃OD) δ 173.61, 173.58, 172.0, 170.8, 138.4, 131.1, 127.2, 125.6, 120.1, 118.7, 115.9, 110.0, 66.5, 59.5, 53.8, 53.4, 52.9, 52.0, 44.0, 32.5, 30.1, 28.6, 25.9, 23.3, 22.0, 21.7, 19.0, 18.82, 18.78; HRMS (ESI) *m/z* calcd for C₂₉H₄₂N₇O₅ (M + H)⁺ 568.3242; found 568.3241.

Compound 18. $[\alpha]_D^{34}$ –200.5 (*c* 1.00, MeOH); IR (neat): 3310, 2960, 1741, 1649, 1521, 1456, 1368, 1264, 1214 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.69 (s, 1H), 8.53 (d, *J* = 8.8 Hz, 1H), 8.39 (d, *J* = 10.0 Hz, 1H), 7.86 (s, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.31 (d, *J* = 8.4 Hz, 1H), 6.98 (s, 1H), 6.97 (d, *J* = 8.0 Hz, 1H),

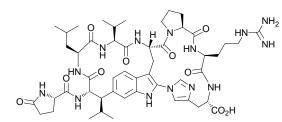
6.90 (s, 1H), 6.80 (d, J = 8.0 Hz, 1H), 5.22 (m, 1H), 4.86 (t, J = 10.4 Hz, 1H), 4.11 (dd, J = 8.4, 2.8 Hz, 1H), 4.03 (t, J = 9.2 Hz, 1H), 3.88 (t, J = 7.0 Hz, 1H), 3.65 (s, 3H), 3.28 (m, 1H), 3.15 (dd, J = 15.2, 8.4 Hz, 1H), 2.99 (dd, J = 11.8, 3.0 Hz, 1H), 2.24 (m, 1H), 2.12-2.04 (m, 4H), 1.70 (m, 1H), 1.40-1.35 (m, 2H), 1.23 (m, 1H), 0.91 (d, J = 6.8 Hz, 3H), 0.87 (d, J = 6.4 Hz, 3H), 0.85 (d, J = 6.0 Hz, 3H), 0.79-0.75 (m, 6H), 0.69 (d, J = 6.4 Hz, 3H); ¹³C NMR (100

MHz, DMSO- d_6) δ 177.4, 172.3, 172.1, 171.7, 169.9, 169.8, 136.0, 129.9, 125.6, 123.4, 119.0, 117.7, 114.5, 108.4, 58.2, 55.14, 55.05, 52.0, 51.9, 51.7, 51.3, 42.9, 30.5, 29.0, 27.0, 26.8, 25.5, 23.7, 23.1, 21.8, 20.9, 18.6, 17.6, 17.3; HRMS (ESI) *m*/*z* calcd for C₃₄H₄₉N₆O₇ (M + H)⁺ 653.3657; found 653.3651.

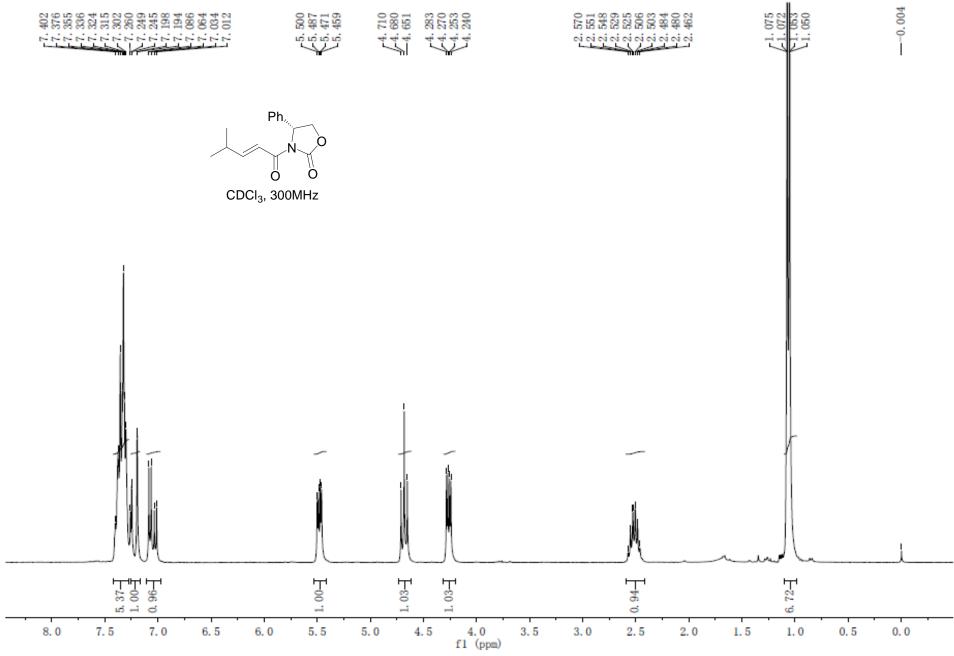


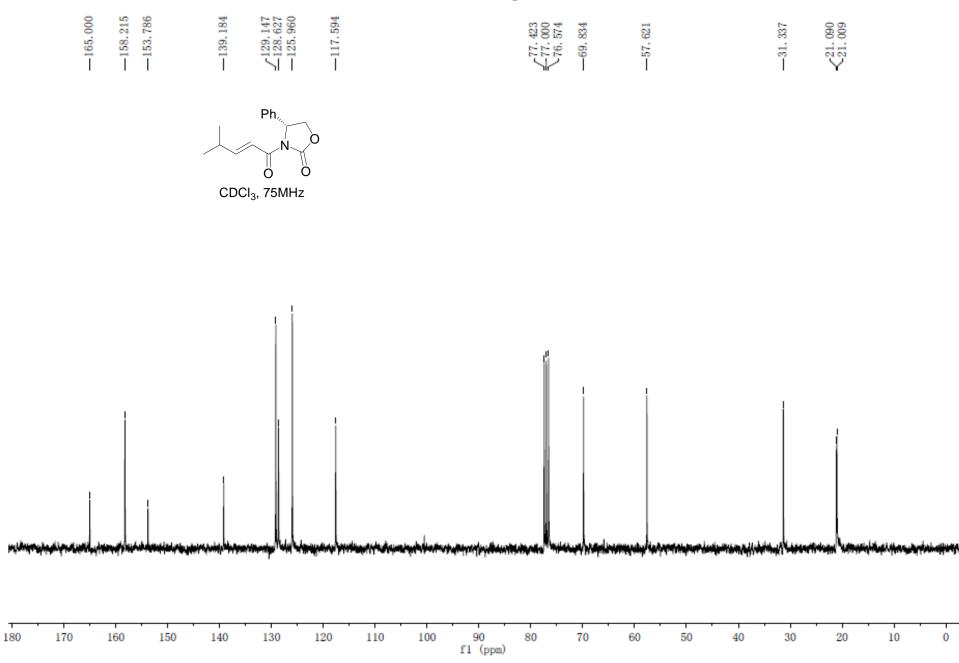
Compound 19.⁷ To a solution of compound **18** (33 mg, 0.05 mmol) in THF/H₂O (3:1, 2.0 mL) was added lithium hydroxide monohydrate (21 mg, 0.50 mmol) at 0 °C. The resulting mixture was stirred at 0 °C for 3 h. The reaction mixture was acidified with 6 N HCI to pH = 2 and was

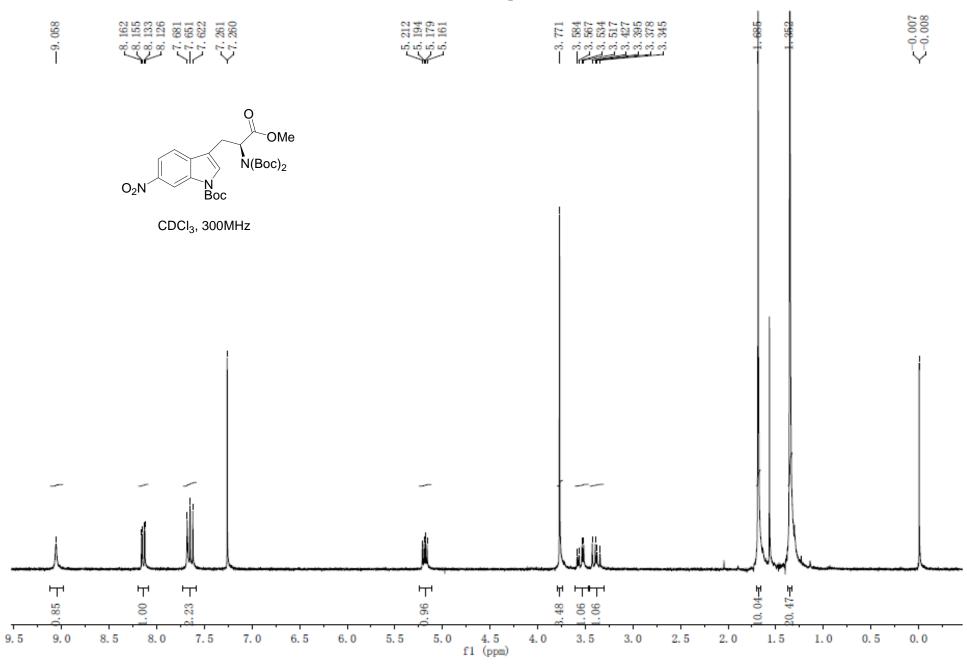
diluted with EtOAc (30 mL). The mixture was dried over Na₂SO₄, and concentrated in vacuo to give crud product, which was used directly in the next step.

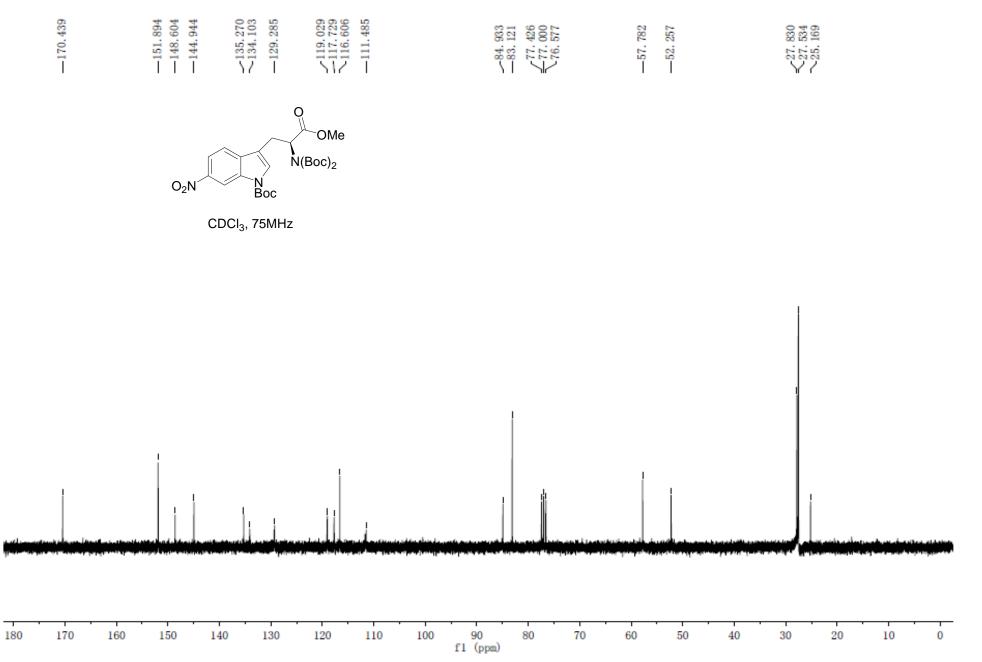

A solution of above crud product and L-proline benzyl ester (20 mg, 0.10 mmol) in anhydrous THF (3.0 mL) was treated with HOBt (13 mg, 0.10 mmol), EDCI (21 mg, 0.11 mmol) and DIPEA (25 µL, 0.14 mmol). The resulting mixture was allowed to warm to room temperature and stirred for 2 days. The reaction was treated with saturated NaHCO₃ (5 mL) and extracted with CH₂Cl₂ (6×5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Preparative TLC (silica gel, 1:10 MeOH/CH₂Cl₂ elution) afforded 19 (30 mg, 72%). $[\alpha]_D^{34}$ –128.0 (c 1.00, MeOH); ¹H NMR (400 MHz, DMSO-d₆) δ 10.63 (s, 1H), 8.51 (d, J = 9.2 Hz, 1H), 8.33 (d, J = 9.2 Hz, 1H), 7.86 (s, 1H), 7.39-7.38 (m, 5H), 7.35-7.34 (m, 2H), 6.98 (s, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.87 (s, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.31 (m, 1H), 5.18 (d, J = 12.4 Hz, 1H), 5.12 (d, J = 12.4 Hz, 1H), 4.85 (t, J = 10.2 Hz, 1H), 4.41 (dd, *J* = 8.4, 5.6 Hz, 1H), 4.11 (dd, *J* = 8.4, 2.8 Hz, 1H), 4.02 (m, 1H), 3.90-3.82 (m, 2H), 3.76 (m, 1H), 3.23 (dd, J = 15.2, 4.6 Hz, 1H), 3.04 (dd, J = 15.2, 7.6 Hz, 1H), 2.98 (dd, J = 11.6, 3.2 Hz, 1H), 2.28-2.20 (m, 2H), 2.13-2.06 (m, 4H), 2.03-1.95 (m, 2H), 1.85 (m, 1H), 1.69 (m, 1H), 1.39-1.34 (m, 2H), 1.24 (m, 1H), 0.85 (d, J = 6.8 Hz, 6H), 0.80-0.75 (m, 9H), 0.69 (d, J= 6.4 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 177.5, 172.2, 171.9, 171.8, 170.0, 169.5, 169.2, 135.9, 129.5, 128.5, 128.1, 128.0, 126.0, 124.2, 118.7, 117.9, 114.3, 108.0, 66.0, 58.7, 57.6, 55.2, 55.0, 52.0, 51.7, 50.0, 46.7, 42.8, 30.3, 29.0, 28.6, 26.8, 26.2, 25.6, 24.9, 23.8, 23.2, 21.8, 20.9, 18.8, 17.7, 17.3; HRMS (ESI) m/z calcd for C₄₅H₆₀N₇O₈ (M + H)⁺ 826.4498; found 826.4496.

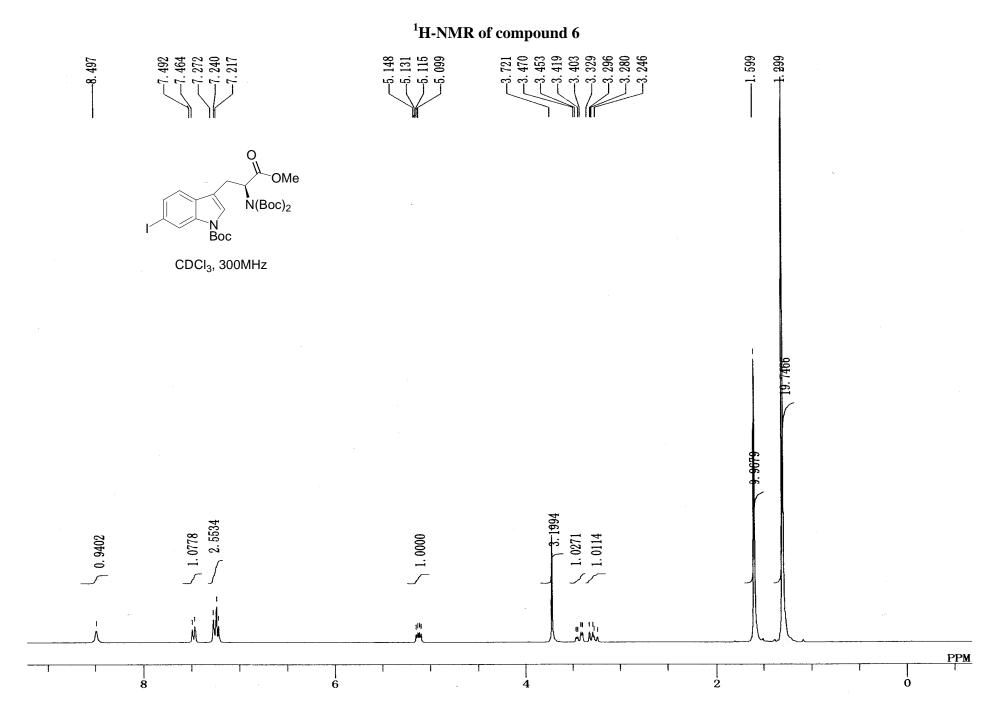
Compound S3. $[\alpha]_D^{25}$ -24.0 (*c* 0.50, CH₂Cl₂), lit ⁷ $[\alpha]_D^{25}$ -28.0 (*c* 0.067, CH₂Cl₂); ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.42 (s, 1H), 8.75 (d, *J* = 9.6 Hz, 1H), 8.51 (d, *J* = 8.8 Hz, 1H), 8.38 (d, *J* = 9.2 Hz, 1H), 8.31 (d, *J* = 10.0 Hz, 1H), 7.87 (s, 1H), 7.85 (s, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.33 (s, 1H), 7.02 (br s, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H),

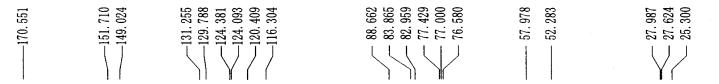

6.85 (s, 1H), 6.66 (br s, 1H), 6.59 (d, J = 5.2 Hz, 1H), 6.38 (br s, 1H), 5.69 (m, 1H), 4.88-4.79 (m, 2H), 4.14-4.07 (m, 3H), 4.03-3.92 (m, 2H), 3.90-3.84 (m, 1H), 3.56 (t, J = 7.8 Hz, 1H),

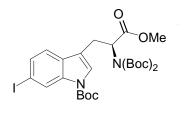

3.19-3.13 (m, 2H), 3.06 (d, J = 2.8 Hz, 1H), 3.03-2.98 (m, 2H), 2.95 (s, 2H), 2.78 (dd, J = 16.4, 12.4 Hz, 1H), 2.59 (t, J = 14.0 Hz, 1H), 2.47 (s, 3H), 2.42 (s, 3H), 2.26-2.19 (m, 2H), 2.15-2.12 (m, 1H), 2.10-2.02 (m, 4H), 1.99 (s, 3H), 1.88-1.82 (m, 1H), 1.77-1.69 (m, 3H), 1.62 (m, 1H), 1.50-1.37 (m, 3H), 1.41 (s, 9H), 1.39 (s, 3H), 1.38 (s, 3H), 1.25 (m, 1H), 1.18-1.12 (m, 1H), 0.82 (d, J = 6.4 Hz, 3H), 0.77 (d, J = 6.4 Hz, 3H), 0.72 (d, J = 6.8 Hz, 3H), 0.69-0.65 (m, 9H); ¹³C NMR (100 MHz, DMSO- d_6) δ 177.4, 172.1, 171.5, 171.3, 171.1, 170.8, 170.0, 169.3, 169.1, 157.4, 156.0, 138.2, 137.4, 137.2, 134.2, 132.7, 131.4, 130.6, 129.4, 125.0, 124.3, 119.4, 116.6, 116.2, 113.8, 99.9, 86.2, 81.5, 61.6, 57.2, 55.1, 54.7, 52.2, 51.2, 50.4, 47.2, 46.8, 42.5, 41.4, 31.5, 31.2, 29.9, 29.0, 28.3, 27.6, 27.5, 26.5, 26.1, 25.5, 25.1, 24.4, 23.9, 23.1, 21.8, 20.9, 18.9, 18.7, 18.1, 17.6, 17.0, 12.2; HRMS (ESI) *m/z* calcd for C₆₇H₉₅N₁₄O₁₃S (M + H)⁺ 1335.6918; found 1335.6820.

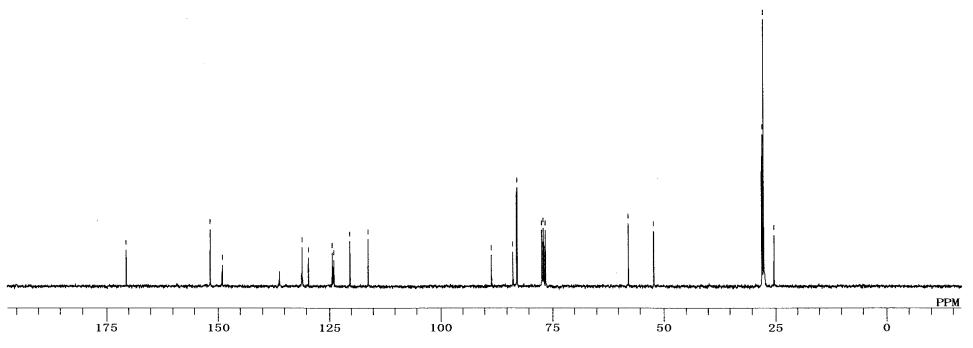


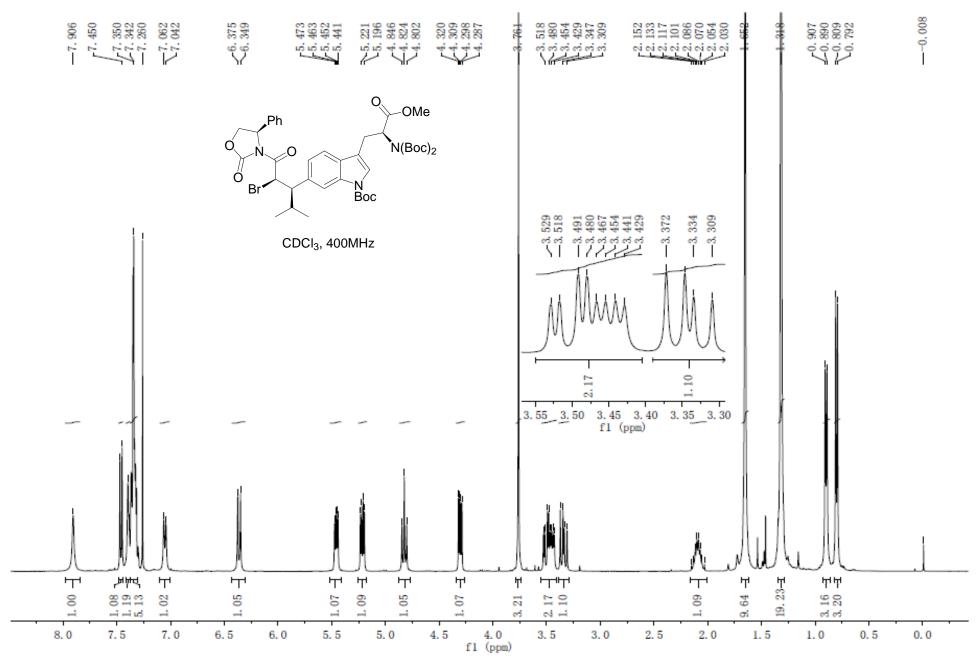

Celogentin C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.83 (s, 1H), 9.33 (s, 1H), 8.81 (d, J = 8.8 Hz, 1H), 8.54 (d, J = 8.8 Hz, 1H), 8.34 (d, J = 9.6 Hz, 1H), 8.14 (d, J = 8.8 Hz, 1H), 7.88 (s, 1H), 7.76 (s, 1H), 7.62 (br s, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.01

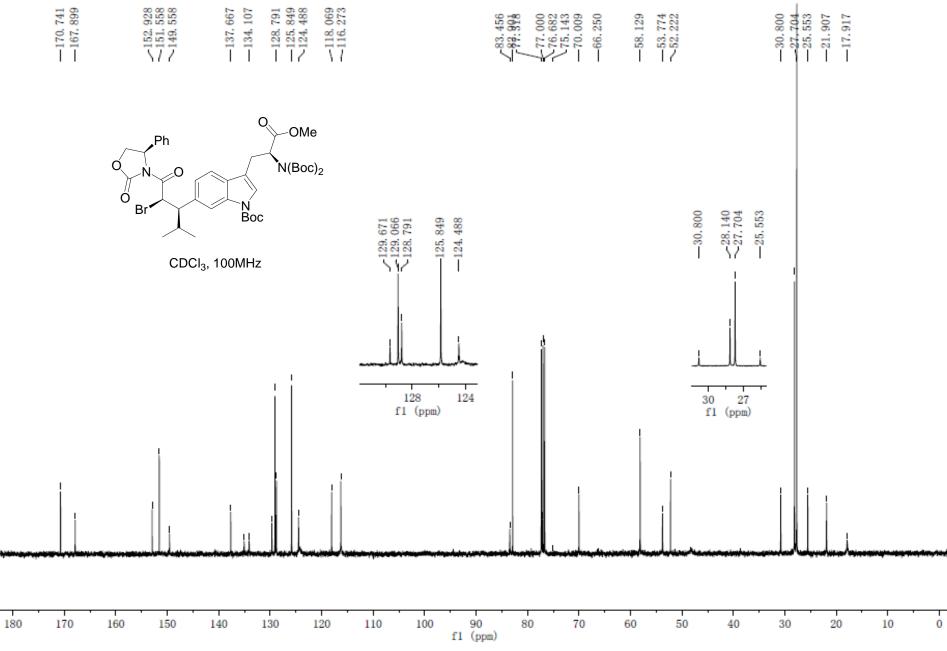

(d, J = 8.4 Hz, 1H), 6.95 (d, J = 10.4 Hz, 1H), 6.94 (s, 1H), 6.81 (d, J = 6.4 Hz, 1H), 5.62 (dd, J = 15.8, 9.0 Hz, 1H), 4.90 (t, J = 10.6 Hz, 1H), 4.83 (t, J = 10.4 Hz, 1H), 4.20 (dd, J = 15.8, 9.0 Hz, 1H), 4.15-4.09 (m, 2H), 3.99-3.94 (m, 2H), 3.82-3.74 (m, 1H), 3.56 (t, J = 7.6 Hz, 1H), 3.42 (d, J = 16.0 Hz, 1H), 3.32 (dd, J = 15.4, 5.8 Hz, 1H), 3.12-3.06 (m, 3H), 2.93 (dd, J = 15.2, 12.8 Hz, 1H), 2.59 (dd, J = 15.2, 11.6 Hz, 1H), 2.27-2.20 (m, 2H), 2.16-2.12 (m, 1H), 2.12-2.06 (m, 2H), 2.03-1.96 (m, 2H), 1.87-1.74 (m, 3H), 1.72-1.65 (m, 1H), 1.63-1.58 (m, 1H), 1.48-1.37 (m, 4H), 1.23-1.15 (m, 1H), 0.83 (d, J = 6.4 Hz, 3H), 0.77 (d, J = 6.0 Hz, 1H), 0.73-0.70 (m, 9H), 0.67 (d, J = 6.0Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 177.4, 172.1, 171.3, 171.2, 170.9, 169.3, 169.1, 156.8, 136.5, 132.8, 131.5, 131.1, 128.6, 124.9, 119.5, 114.0, 100.9, 61.6, 57.2, 55.1, 54.7, 52.1, 51.3, 49.9, 47.2, 46.9, 41.5, 40.5, 31.1, 29.7, 29.0, 26.6, 25.5, 25.0, 23.9, 23.0, 21.7, 20.9, 18.6, 18.2, 17.0; HRMS (ESI) *m/z* calcd for C₄₅H₆₀N₇O₈ (M + H)⁺ 1027.5472; found 1027.5455.

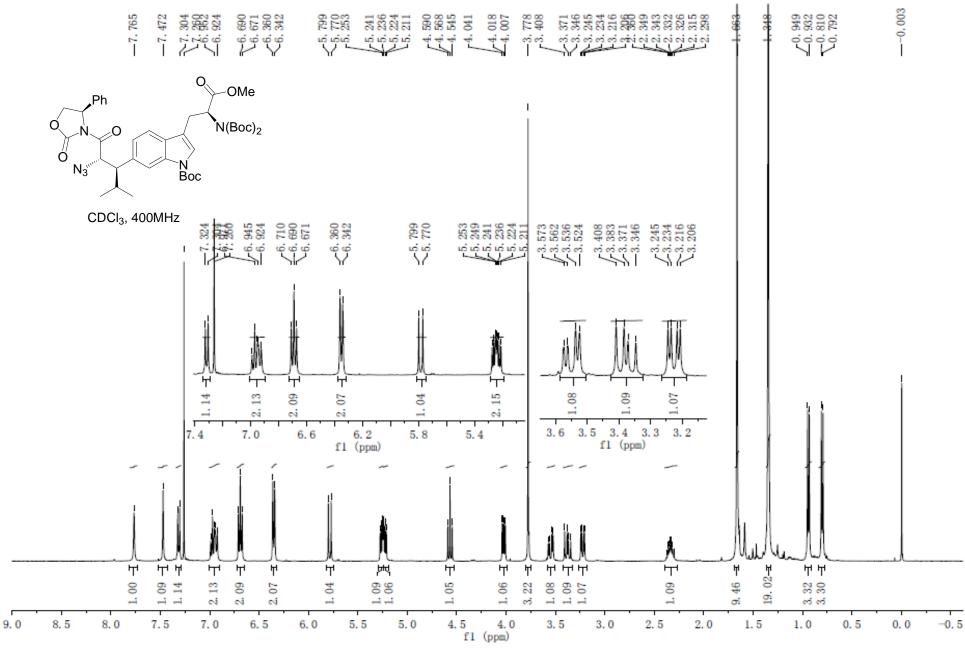


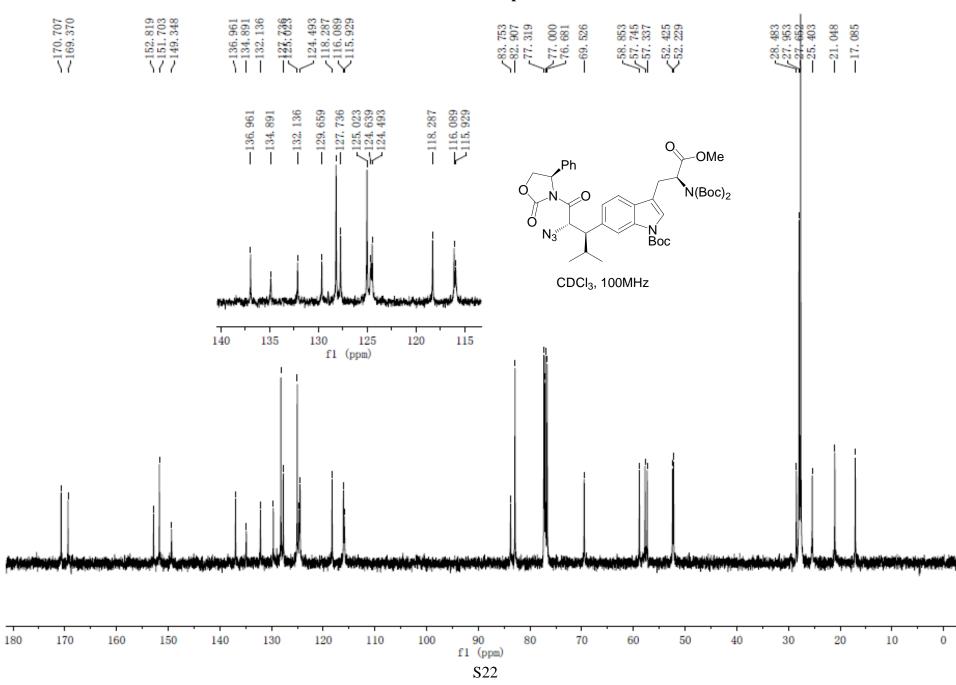


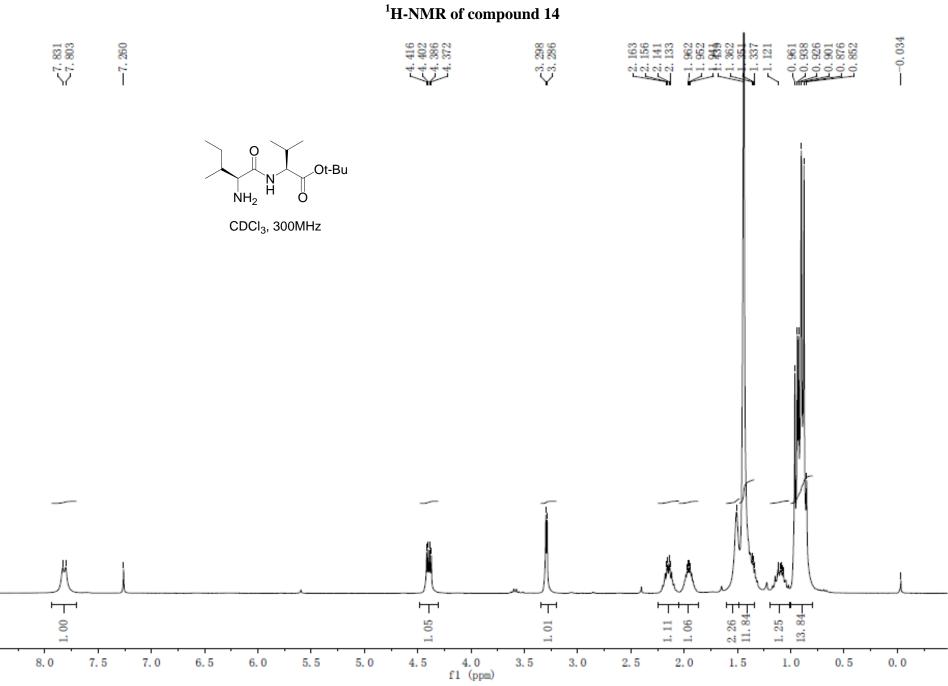


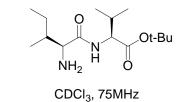


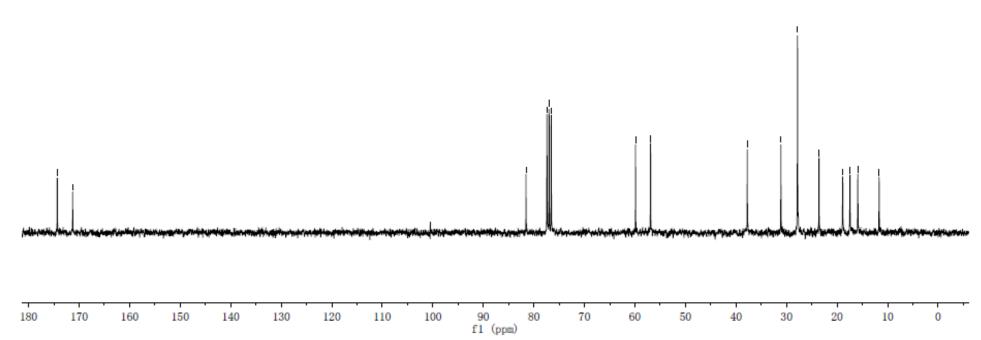


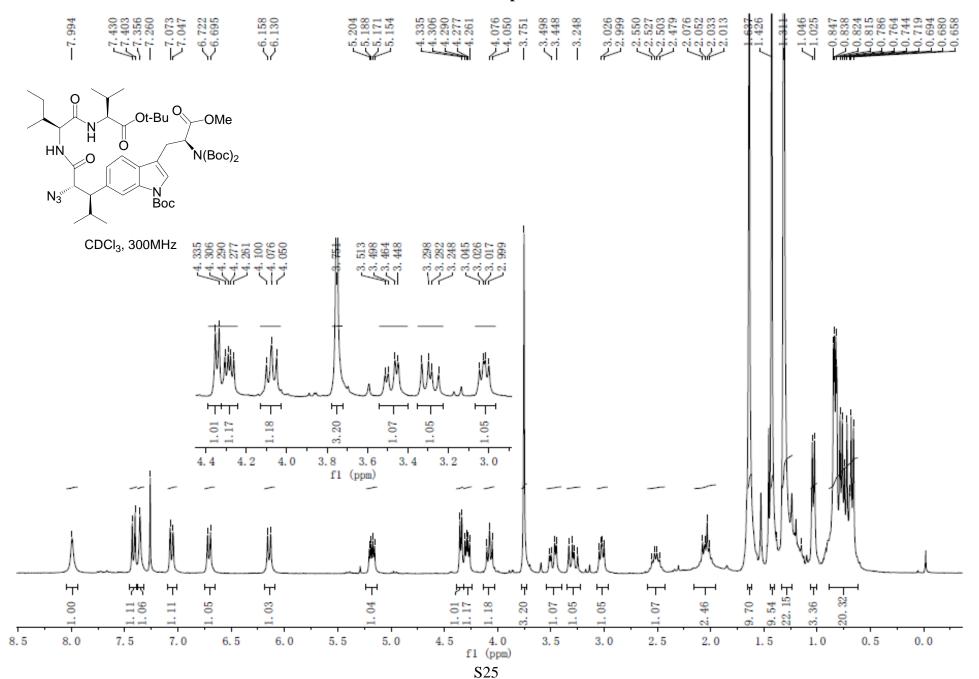


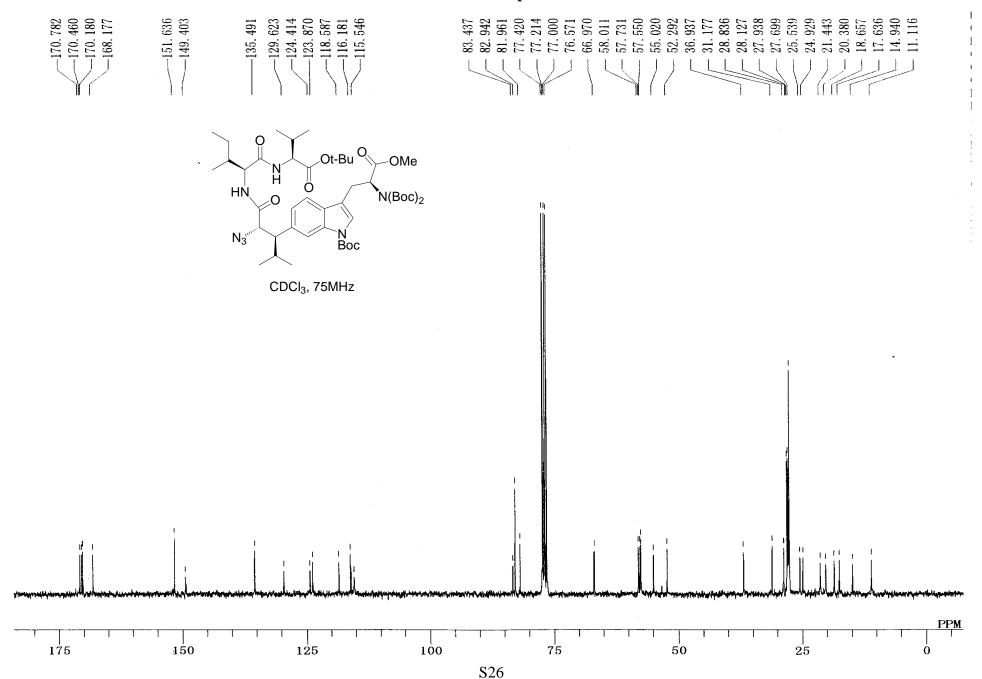

CDCl₃, 75MHz

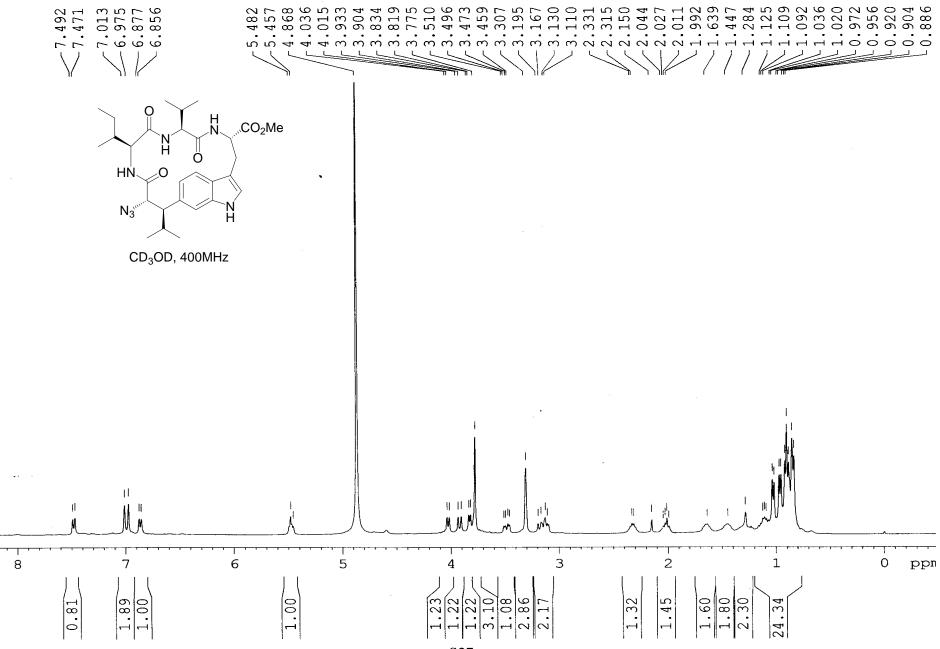


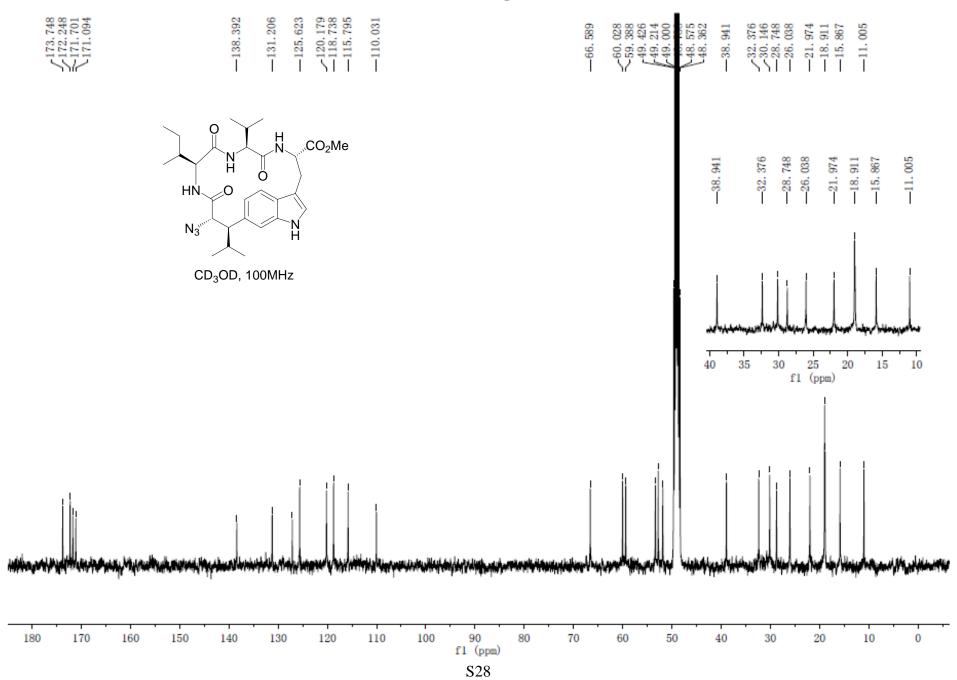


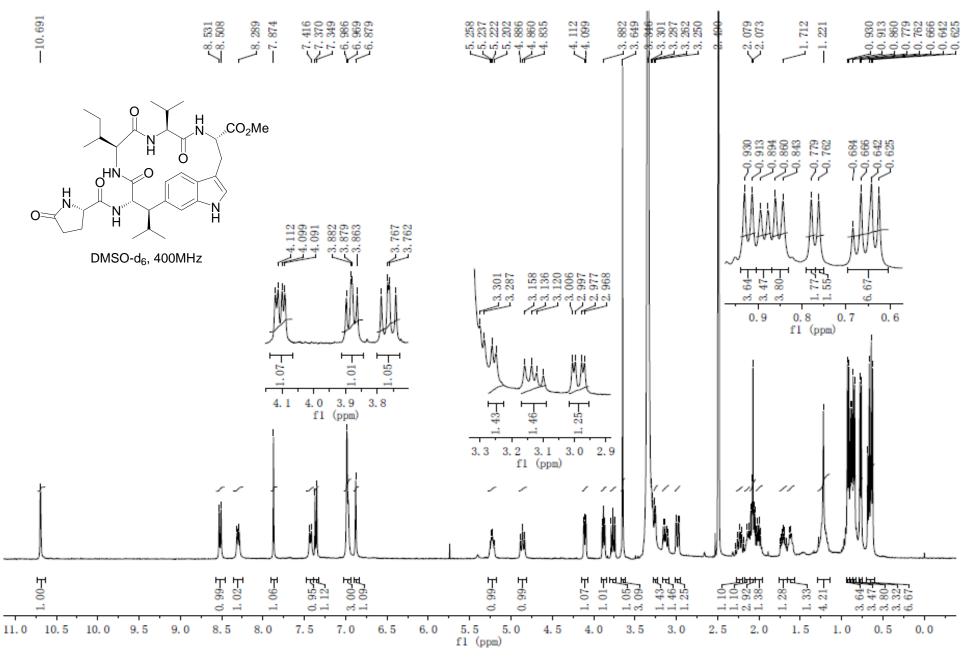


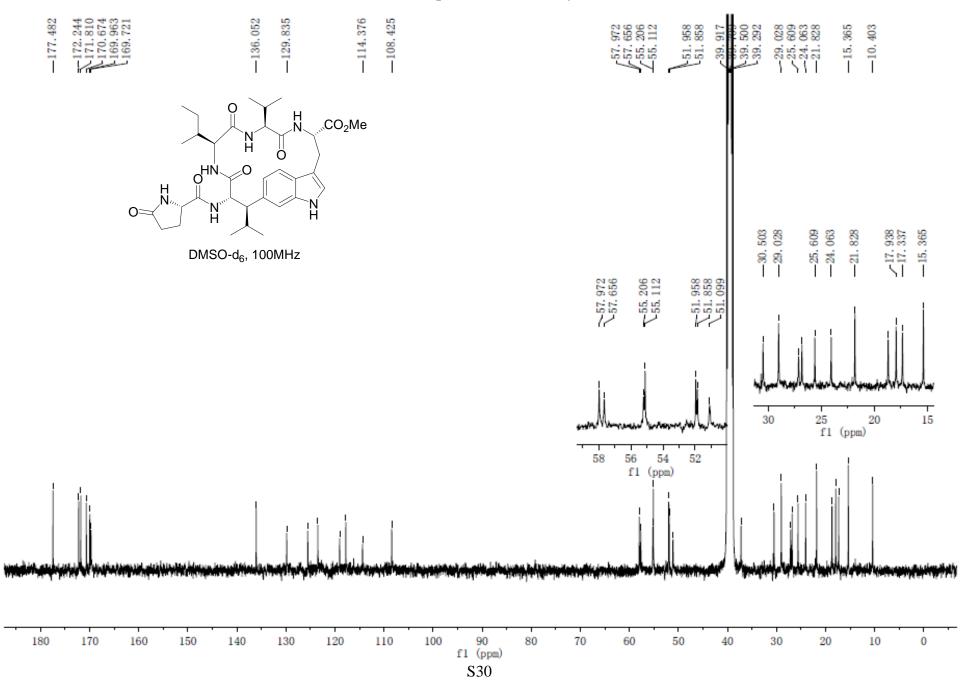


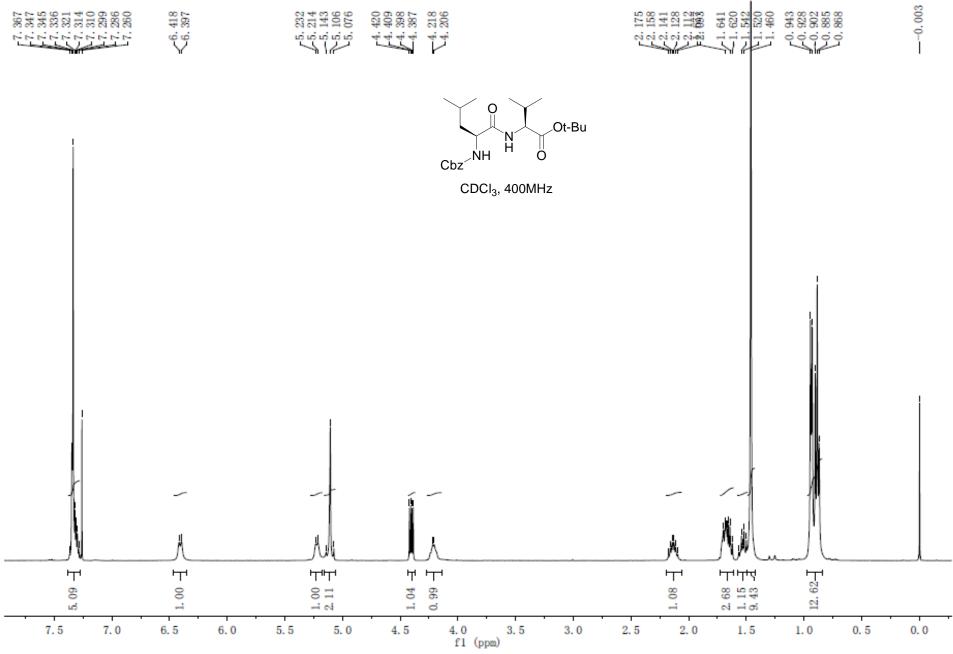


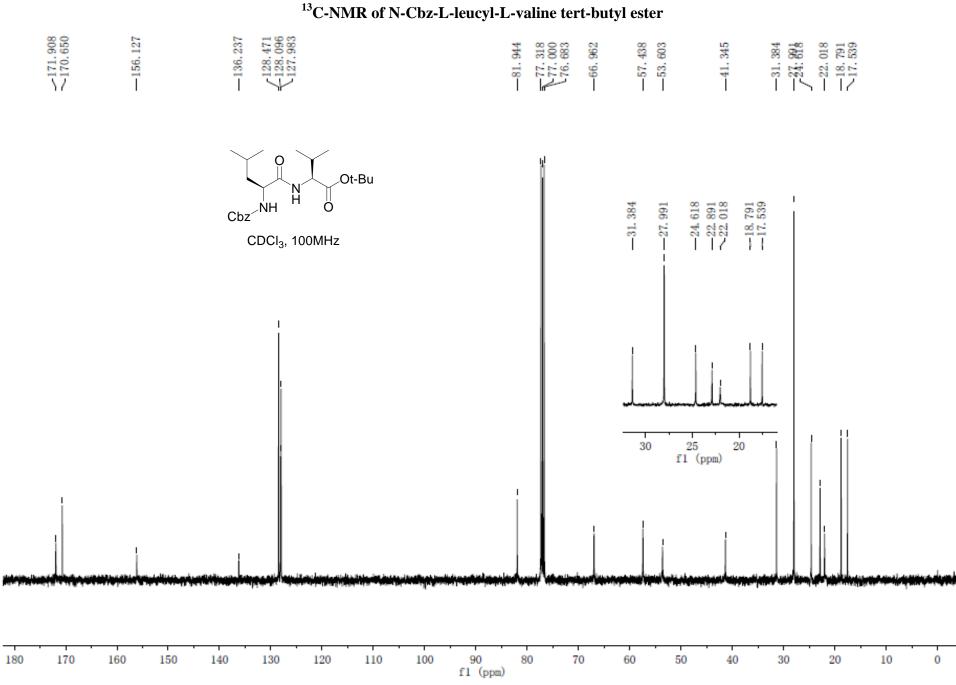


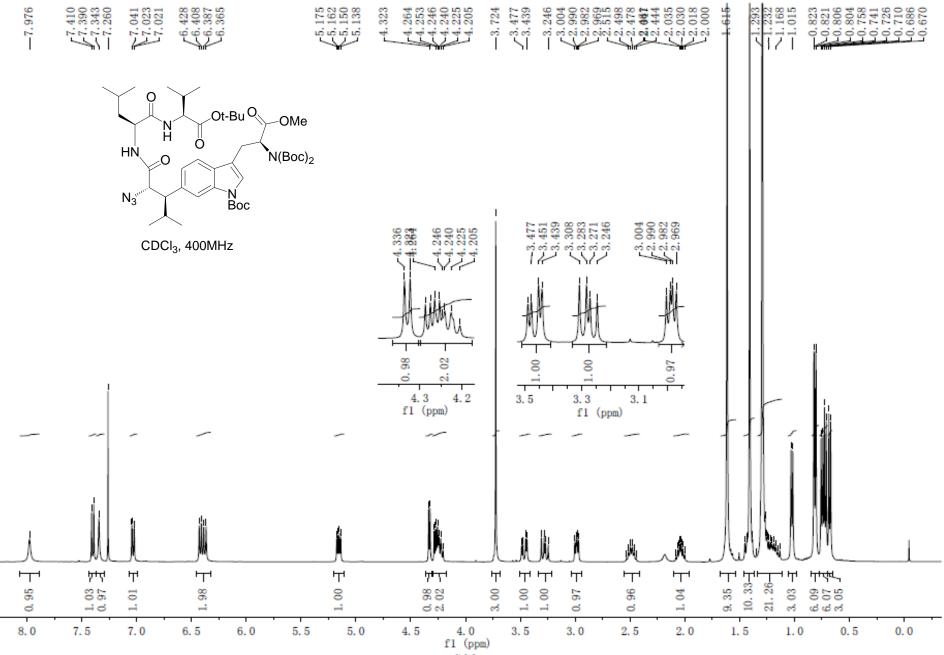


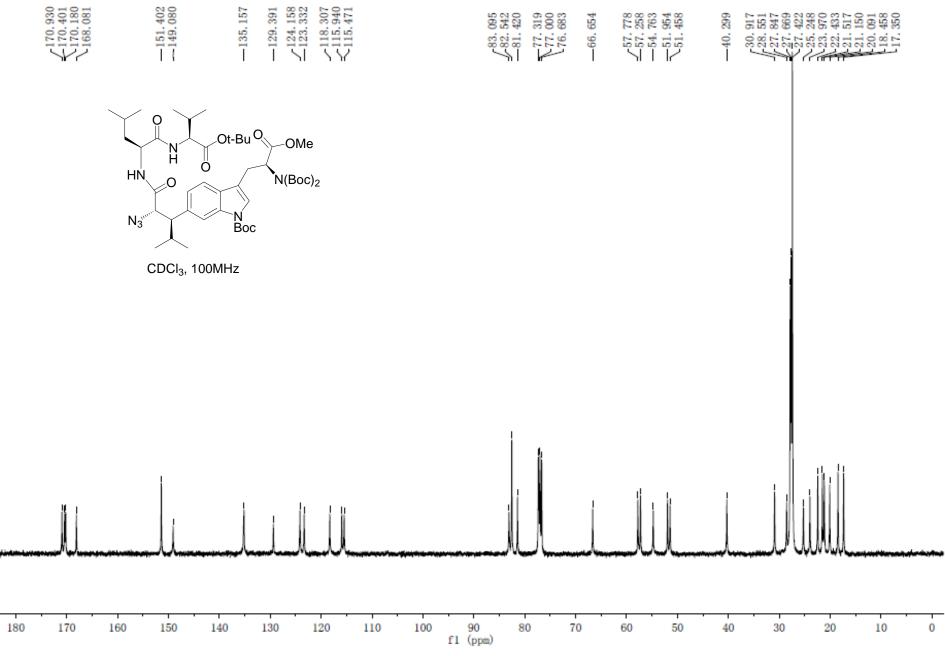


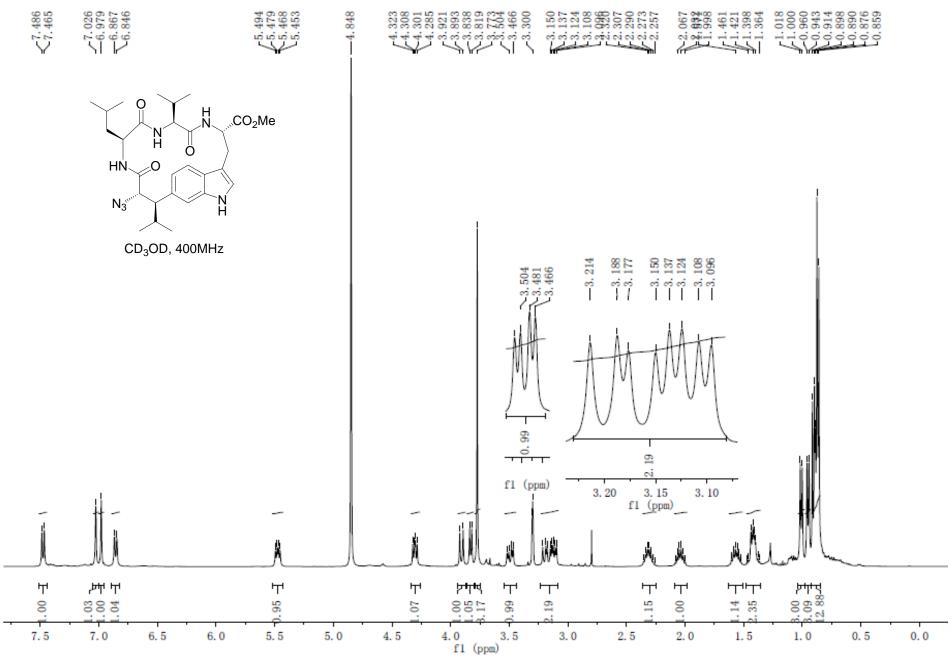


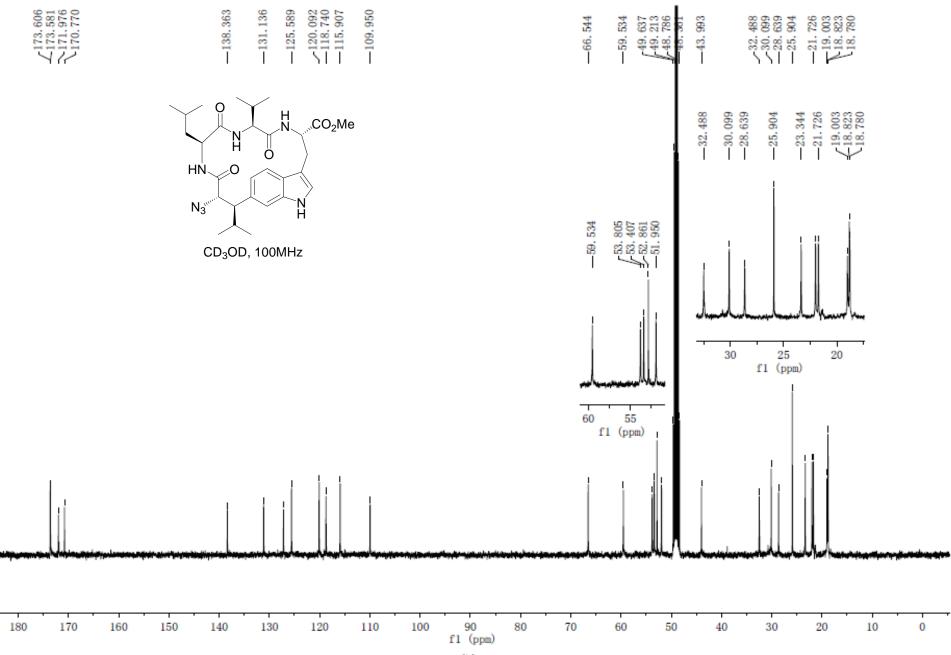

¹H-NMR of stephanotic acid methyl ester 2

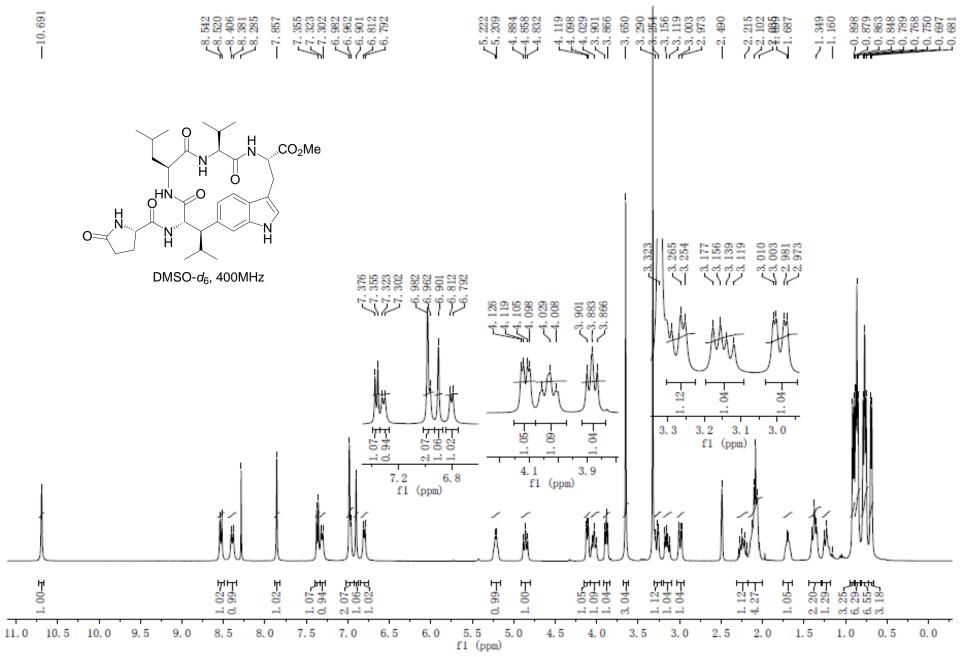


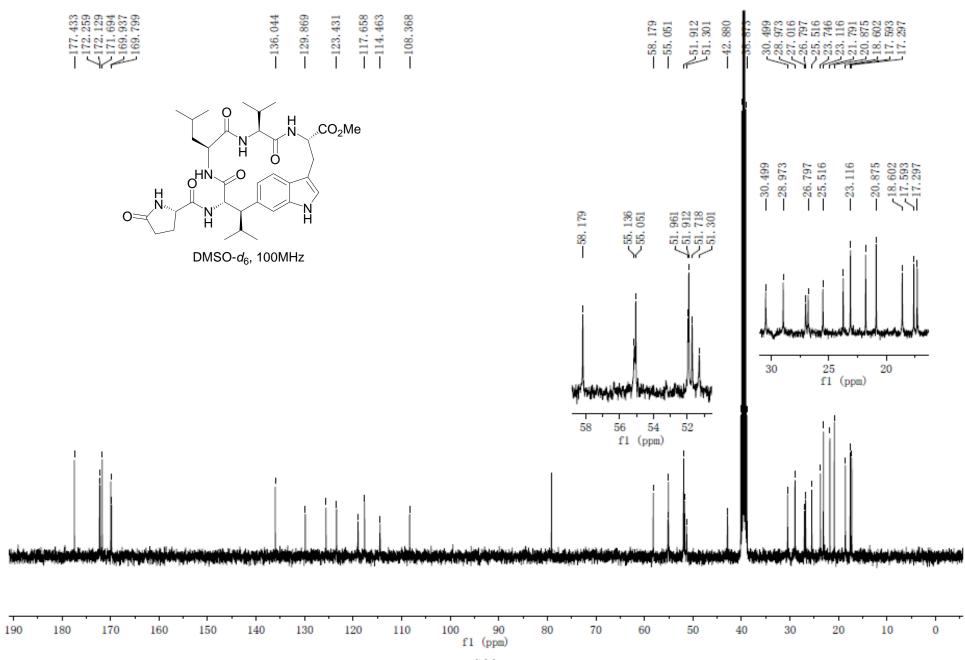

¹³C-NMR of stephanotic acid methyl ester 2

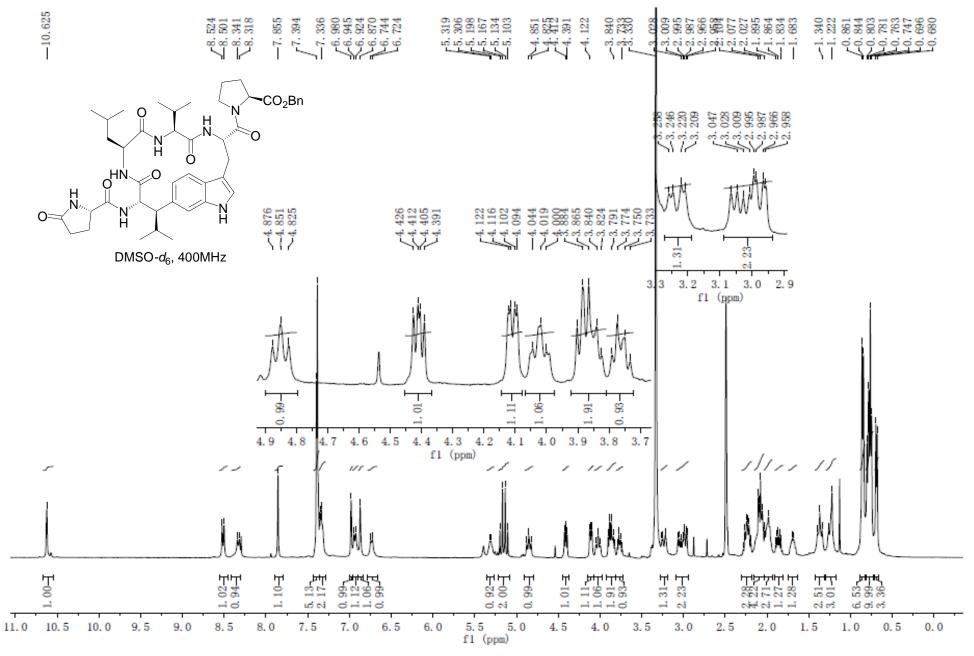


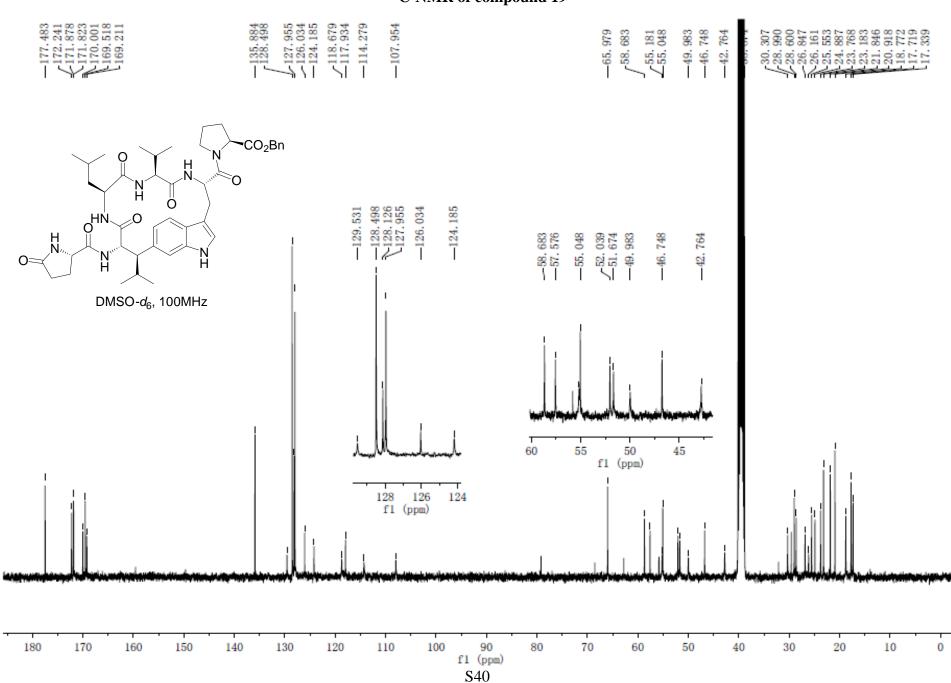

¹H-NMR of N-Cbz-L-leucyl-L-valine tert-butyl ester

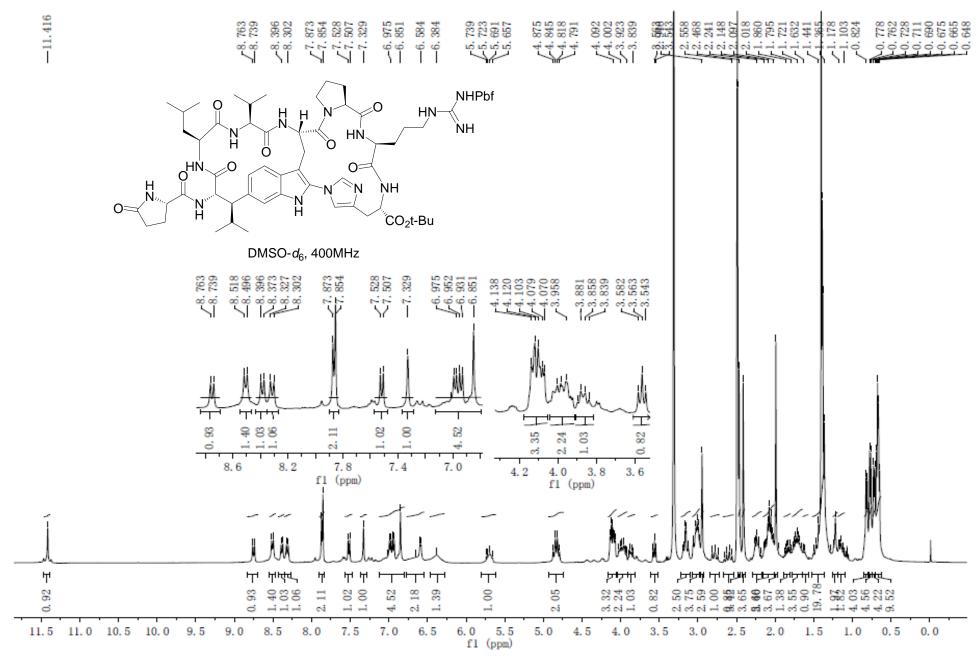


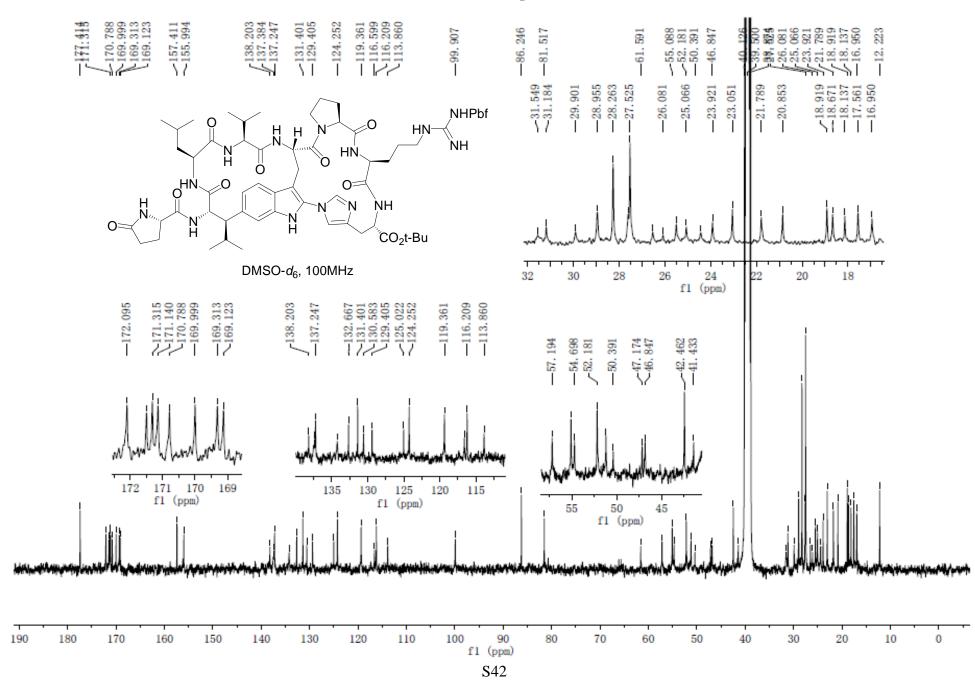


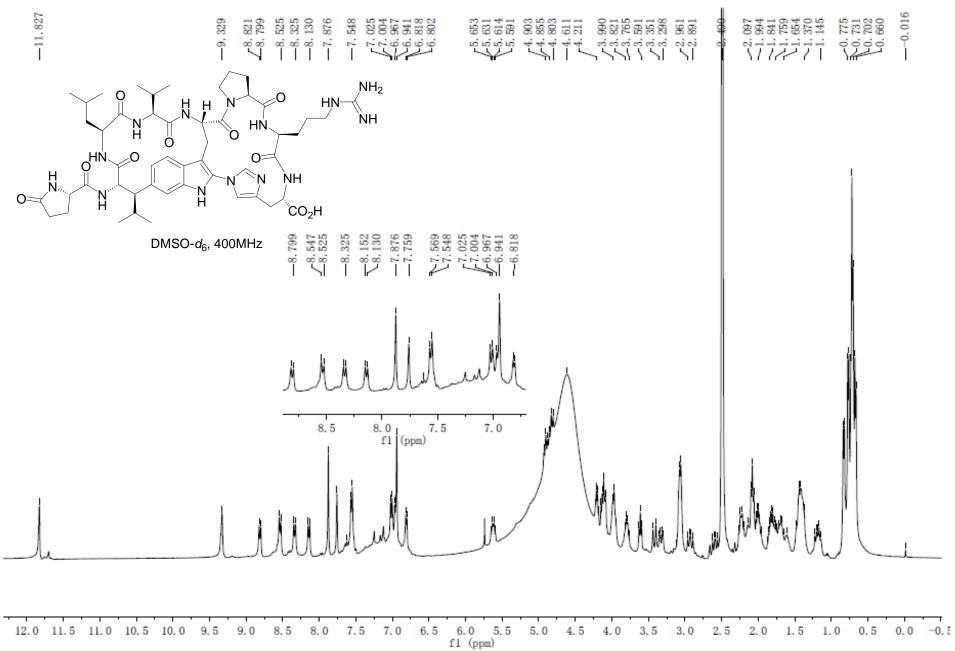


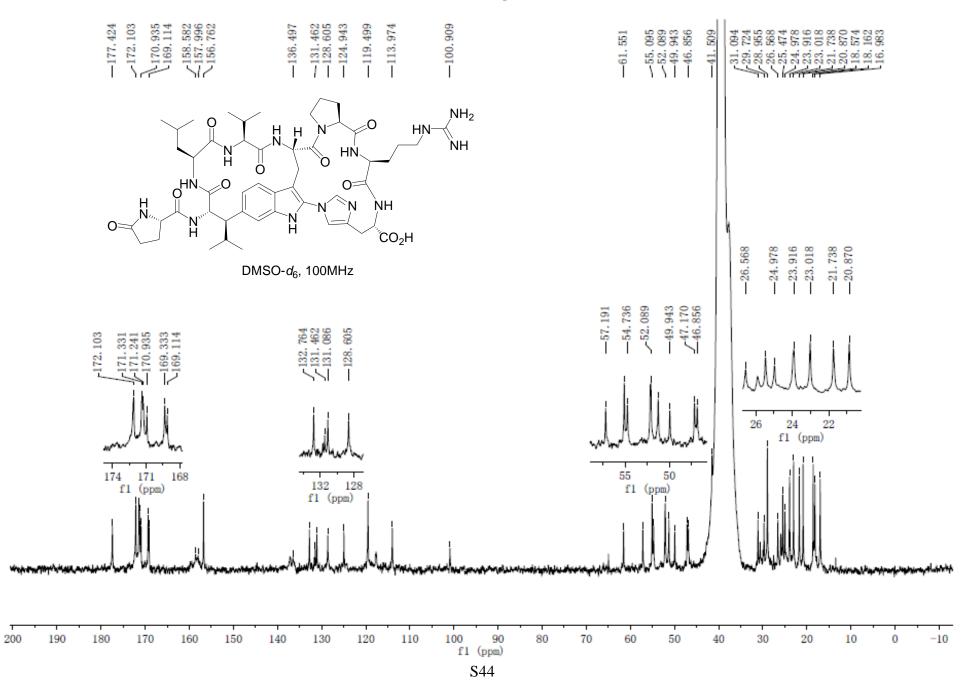












¹H-NMR of Celogentin C (1)

¹³C-NMR of Celogentin C (1)

