Supporting information

Enantioselective Friedel-Crafts Reaction of β-Trifluoromethylated

Acrylates with Pyrroles and its Application to Synthesis of

Trifluorinated Heliotridane

Yiyong Huang,[#] Etsuko Tokunaga,[#] Satoru Suzuki,[#] Shuichi Nakamura,[#] Motoo Shiro[§] and Norio Shibata^{*#} [#]Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.

[§]Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan

Table of Contents

General Methods	S1-S2
Synthesis of β–CF ₃ Acrylates (1)	S2
General Catalytic Procedure for the Asymmetric Friedel-Crafts Reactions	S2
Characterization Data of the Asymmetric FC Reaction Products (3a-3o)	S3-S10
Synthesis of Optically Active Trifluoromethylated Heliotridane	S10-S12
Absolute Stereochemistry Determination	S13-S14
¹ H, ¹³ C, and ¹⁹ F NMR Spectra	S15-S84
HPLC Charts	S85-S92

General Methods

All reactions were performed in oven-dried glassware under a nitrogen atmosphere, except where noted. Chemicals and solvents were purchased from commercial suppliers and used as received, excepting as follows. Dichloromethane, THF, ether, and toluene were dried by passing through an activated column. All reactions were monitored by TLC, or ¹⁹F NMR. TLC analysis was performed by illumination with a UV lamp (254 nm),

staining with I₂, or PMA [phosphomolybdic acid (5 g) in ethanol (100 ml)] and heating. All flash chromatography was packed with silica-gel (60 N spherical neutral size 63-210 um) as the stationary phase. ¹H NMR (600 MHz) spectra were recorded on a Bruker Avance 600 instrument in CDCl₃ (7.26), or CD₂Cl₂ (5.24), and chemical shifts were measured relative to residual solvent peak. Chemical shifts (δ) are expressed in ppm downfield from internal TMS. Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, dt = doublet of triplet, dq = doublet of quartet, m = multiplet, br = broad), coupling constant(s) and integration. ¹³C NMR (150.9 MHz) spectra were recorded on a Bruker Avance 600 instrument. Chemical shifts are reported in parts per million (ppm) down field from TMS, using the middle resonance of $CDCl_3$ (77.23), or CD_2Cl_2 (53.73) as an internal standard. ¹⁹F NMR (188 MHz) was recorded on a Varian Mercury 200 instrument using CFCl₃ (0) as an internal standard. HPLC analysis were performed on a JASCO U-2080 plus using 4.6 x 250 mm CHIRALPAK OD-H or CHIRALCEL AD-H column. Optical rotations were measured on a HORIBA SEPA-300. Infrared spectra were recorded on a JASCO were recorded on a SHIMADZU FT/IR-200 spectrometer. Mass spectra GCMS-QP5050A or SHIMADZU LCMS-2010EV. High resolution mass spectra (HRMS) (EI+) were obtained from the Mass Spectrometry Laboratory, Nagoya Institute of Technology, Nagoya.

Synthesis of β–CF₃ Acrylates (1)

3-[(E)-4,4,4-Trifluorobut-2-enoyl]oxazolidin-2-one (1): The known compound **1** was synthesized according to the reported procedure.¹ ¹H NMR (CDCl₃, 600 MHz) δ 7.91 (dq, 1.8 Hz, 15.6 Hz, 1H), 6.93-6.86 (m, 1H), 4.50 (dt, 7.8 Hz, 0.6 Hz, 2H), 4.12 (dt, 7.8 Hz, 0.6 Hz, 2H); ¹³C NMR (CDCl₃, 600 MHz) δ 163.0, 153.4,

132.3 (q, 34.7 Hz), 127.6 (q, 6.2 Hz), 122.5 (q, 270.3 Hz), 62.8, 42.9; ¹⁹F NMR (CDCl₃, 188 MHz) δ -65.3 (s, 3F).

General Catalytic Procedure for the Friedel-Crafts Reactions

To an oven dried 10 mL test tube was added appropriate Lewis acid and 1.1 equiv of (*R*, *R*)-Ph–dbfox ligand. At N₂ atmosphere, dry CH₂Cl₂ was introduced, followed by stirring at RT for 1 h. 4Å MS and β –CF₃ acrylates were added at RT, then the solution of pyrroles in CH₂Cl₂ was injected by syringe at the reaction temperature. While some Friedel-Crafts products have the same polarity as the starting material on TLC, the reaction would be monitored by ¹⁹F NMR. After the starting material disappeared, the residue was directly subjected to the silica-gel column chromatography to afford the title product.

Characterization Data of the Friedel-Crafts Reaction Products

3-[4,4,4-Trifluoro-3-(1-methyl-1H-pyrrol-2-yl)-butyryl]-oxazo lidin-2-one (3*a*): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex Zn(NTf₂)₂/(R, R)-Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates **1a** (10.5 mg, 0.050 mmol), and

the solution of N-methyl pyrrole (20.0 mg, 0.250 mmol) in 0.05 mL CH₂Cl₂. The mixture was stirred at -75 °C for 24 h, then passed through a plug of silica gel using 3:1 petroleum ether:ethyl acetate to afford the title compound (14.0 mg, 96%) as a clear oil. The enantiomeric purity was determined by HPLC analysis as 98% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, $\lambda = 232$ nm, $\tau_{min} = 17.9$ min, $\tau_{maj} = 20.6$ min]; $[\alpha]_D^{25} = -91.6$ (*c* 0.6, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 6.58 (d, 1.8 Hz, 1H), 6.17-6.15 (m, 1H), 6.08 (t, 3.0 Hz, 1H), 4.43-4.35 (m, 2H), 4.16-4.11 (m, 1H), 3.98-3.89 (m, 2H), 3.81 (dd, 10.8 Hz, 18.0 Hz, 1H), 3.69 (s, 3H), 3.38 (dd, 3.0 Hz, 18.0 Hz, 1H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 169.7, 153.3, 126.0 (q, 279.1 Hz), 125.5, 123.1, 107.9, 107.1, 62.2, 42.4, 36.6 (q, 29.4 Hz), 35.7, 33.9; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.7 (s, 3F); IR (neat) 1781.9, 1701.9, 1489.7, 1397.2, 1338.3, 1315.2, 1267.9, 1225.5, 1159.9, 1103.1, 1039.4, 965.2, 885.1, 760.8, 724.1, 679.8, 664.3, 619.0 cm⁻¹; MS (ESI, *m/z*) 313.050 (M+Na⁺); HRMS calcd. for C₁₂H₁₃F₃N₂O₃⁺ 290.0878 found 290.0892.

3-[4,4,4-Trifluoro-3-(1H-pyrrol-2-yl)-butyryl]-oxazolidin-2-on e (*3b*): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex Zn(NTf₂)₂/(*R*, *R*)-Ph–dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates **1a** (10.5 mg, 0.050 mmol), and the solution of

pyrrole (17.0 mg, 0.250 mmol) in 0.05 mL CH₂Cl₂. The mixture was stirred at -75 °C for 24 h, then passed through a plug of silica gel using 2:1 petroleum ether:ethyl acetate to afford the title compound (13.40 mg, 97%) as a white solid. The enantiomeric purity was determined by HPLC analysis as 99% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, $\lambda = 232$ nm, $\tau_{maj} = 24.4$ min, $\tau_{min} = 27.1$ min]; $[\alpha]_D^{25} = +77.8$ (*c* 0.3, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 8.46 (br s, 1H), 6.74-6.73 (m, 1H), 6.17-6.14 (m, 2H), 4.42-4.35 (m, 2H), 4.19-4.12 (m, 1H), 3.99-3.89 (m, 2H), 3.72 (dd, 10.2 Hz, 17.4 Hz, 1H), 3.38 (dd, 4.2 Hz, 17.4 Hz, 1H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 170.2, 153.9, 126.5 (q, 279.3 Hz), 124.2, 118.9, 109.1, 108.5, 62.7, 42.9, 39.5 (q, 29.7 Hz), 35.5; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.2 (d, 9.2 Hz, 3F); IR (KBr) 3427.9, 1796.4, 1782.9, 1687.4, 1481.1, 1410.7, 1321.9, 1276.7, 1227.5, 1196.6, 1178.3, 1127.2, 1102.1, 1037.5, 754.0, 731.8, 677.9 cm⁻¹; mp = 150-151 °C; MS (ESI, *m/z*) 299.050 (M+Na⁺); HRMS calcd. for C₁₁H₁₁F₃N₂O₃⁺ 276.0722 found 276.0742.

3-[4,4,4-Trifluoro-3-(5-methyl-1H-pyrrol-2-yl)-butyryl]-oxaz olidin-2-one (3c): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates **1a** (10.5 mg, 0.050 mmol), and the solution of pyrrole (20.0 mg, 0.250 mmol) in 0.05 mL

CH₂Cl₂. The mixture was stirred at -75 °C for 24 h, then passed through a plug of silica gel using 2:1 petroleum ether:ethyl acetate to afford the title compound (14.0 mg, 96%) as a white solid. The enantiomeric purity was determined by HPLC analysis as 97% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 232 nm, τ_{maj} = 28.3 min, τ_{min} = 38.0 min]; [α]_D²⁵ = -18.1 (*c* 0.33, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 8.08 (br s, 1H), 6.02-6.01 (m, 1H), 5.81-5.78 (m, 1H), 4.43-4.35 (m, 2H), 4.20-4.10 (m, 1H), 3.97-3.92 (m, 2H), 3.72 (dd, 10.2 Hz, 18.0 Hz, 1H), 3.38 (dd, 4.2 Hz, 18.0 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 169.9, 153.5, 128.5, 126.1 (q, 279.6 Hz), 122.2, 108.4, 106.3, 62.3, 42.5, 39.2 (q, 29.1 Hz), 35.0, 12.9 (d, 3.3 Hz); ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.3 (d, 7.9 Hz, 3F); IR (KBr) 3451.9, 1782.5, 1690.3, 1401.0, 1362.5, 1342.2, 1318.1, 1277.6, 1242.9, 1164.8, 1122.4, 1102.1, 1039.4, 774.3, 754.9, 708.7, 679.8 cm⁻¹; mp = 121-122 °C; MS (ESI, *m/z*) 313.100 (M+Na⁺); HRMS calcd. for C₁₂H₁₃F₃N₂O₃⁺ 290.0878 found 290.0892.

3-[4,4,4-Trifluoro-3-(5-ethyl-1H-pyrrol-2-yl)-butyryl]-oxazoli din-2-one: (*3d*) At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates **1a** (10.5 mg, 0.050 mmol), and the solution of pyrrole (24.0 mg, 0.250 mmol) in 0.05 mL

CH₂Cl₂. The mixture was stirred at -75 °C for 24 h, then passed through a plug of silica gel using 2:1 petroleum ether:ethyl acetate to afford the title compound (14.9 mg, 98%) as a white solid. The enantiomeric purity was determined by HPLC analysis as 92% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 70/30 , flow rate 0.5 mL/min, λ = 232 nm, τ_{maj} = 16.0 min, τ_{min} = 18.9 min]; [α]_D²⁵ = -8.0 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 8.04 (br s, 1H), 6.04-6.03 (m, 1H), 5.83-5.82 (m, 1H), 4.42-4.35 (m, 2H), 4.11-4.07 (m, 1H), 4.01-3.93 (m, 2H), 3.73 (dd, 10.2 Hz, 18.0 Hz, 1H), 3.35 (dd, 4.2 Hz, 18.0 Hz, 1H), 2.59 (t, 7.2 Hz, 2H), 1.22 (dt, 1.2 Hz, 7.2 Hz); ¹³C NMR (CDCl₃, 150.9 MHz) δ 169.9, 153.4, 135.0, 126.1 (q, 279.5 Hz), 122.0, 108.1, 104.6, 62.2, 42.5, 39.5 (q, 29.1 Hz), 35.0, 20.8, 13.2; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.2 (d, 9.2 Hz, 3F); IR (KBr) 3386.6, 1790.5, 1780.1, 1682.2, 1389.1, 1385.6, 1270.3, 1185.8, 1160.4, 1125.1, 1110.4, 1038.6, 770.3, 760.9 cm⁻¹; mp = 100-101 °C; MS (ESI, *m/z*) 327.050 (M+Na⁺); HRMS calcd. for C₁₃H₁₅F₃N₂O₃⁺ 304.1035 found 304.1033.

3-[4,4,4-Trifluoro-3-(1-ethyl-1H-pyrrol-2-yl)-butyryl]-oxazoli din-2-one (*3e*): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates **1a** (10.5 mg, 0.050 mmol), and

the solution of N-ethyl pyrrole (24.0 mg, 0.250 mmol) in 0.05 mL CH₂Cl₂. The mixture was stirred at -75 °C for 24 h, then passed through a plug of silica gel using 3:1 petroleum ether:ethyl acetate to afford the title compound (14.6 mg, 96%) as a clear oil. The enantiomeric purity was determined by HPLC analysis as 96% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, $\lambda = 232$ nm, $\tau_{min} = 12.6$ min, $\tau_{maj} = 17.3$ min]; [α]_D²⁵ = -79.2 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 6.67 (d, 1.2 Hz, 1H), 6.18-6.16 (m, 1H), 6.12 (t, 2.4 Hz, 1H), 4.43-4.36 (m, 2H), 4.17-4.13 (m, 1H), 4.08-3.98 (m, 2H), 3.98-3.91 (m, 2H), 3.86 (dd, 10.2 Hz, 18.0 Hz, 1H), 3.38 (dd, 3.6 Hz, 18.0 Hz, 1H), 1.44 (t, 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 169.8, 153.3, 126.0 (q, 279.1 Hz), 124.7, 123.2, 107.9, 107.5, 62.2, 42.5, 41.3, 36.5 (q, 29.3 Hz), 35.8, 16.4; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.5 (d, 7.9 Hz, 3F); IR (neat) 1781.9, 1701.8, 1508.1, 1485.9, 1396.2, 1313.3, 1265.1, 1226.5, 1159.9, 1104.1, 1070.3, 1039.4, 760.8, 722.2, 679.8, 620.0 cm⁻¹; MS (ESI, *m/z*) 327.150 (M+Na⁺); HRMS calcd. for C₁₃H₁₅F₃N₂O₃⁺ 304.1035 found 304.1053.

3-[4,4,4-Trifluoro-3-(1-propyl-1H-pyrrol-2-yl)-butyryl]-oxazo lidin-2-one (*3f*): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates **1a** (10.5 mg, 0.050 mmol), and

the solution of N-propyl pyrrole (27.3 mg, 0.250 mmol) in 0.05 mL CH₂Cl₂. The mixture was stirred at -75 °C for 24 h, then passed through a plug of silica gel using 3:1 petroleum ether:ethyl acetate to afford the title compound (15.3 mg, 96%) as a clear oil. The enantiomeric purity was determined by HPLC analysis as 95% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 0.8 mL/min, λ = 232 nm, τ_{min} = 10.5 min, τ_{maj} = 12.7 min]; [α]_D²⁵ = -145.8 (*c* 0.3, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 6.65 (t, 1.2 Hz, 1H), 6.18-6.16 (m, 1H), 6.10 (t, 2.4 Hz, 1H), 4.43-4.36 (m, 2H), 4.15-4.13 (m, 1H), 3.99-3.92 (m, 2H), 3.92-3.85 (m, 2H), 3.84 (dd, 10.2 Hz, 18.0 Hz, 1H), 3.38 (dd, 3.6 Hz, 18.0 Hz, 1H), 1.88-1.78 (m, 2H), 0.96 (dt, 1.2 Hz, 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 169.8, 153.3, 126.0 (q, 279.1 Hz), 124.8, 121.9, 107.9, 107.2, 62.2, 48.5, 42.5, 36.6 (q, 29.3 Hz), 35.8, 24.3, 11.3; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.5 (d, 9.2 Hz, 3F); IR (neat) 1781.9, 1702.8, 1482.0, 1396.2, 1363.4, 1312.3, 1267.9, 1247.7, 1225.5, 1159.9, 1108.9, 1072.2, 963.3, 720.3, 620 cm⁻¹; MS (ESI, *m/z*) 341.100 (M+Na⁺); HRMS calcd.

for $C_{14}H_{17}F_3N_2O_3^+$ 318.1191 found 318.1183.

3-[4,4,4-Trifluoro-3-(1-butyl-1H-pyrrol-2-yl)-butyryl]-oxazoli

din-2-one (3g): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates 1a (10.5 mg, 0.050 mmol), and the solution of N-butyl pyrrole (30.8 mg, 0.250 mmol) in 0.05 mL CH₂Cl₂. The mixture was stirred at -75 $^{\circ}$ C for 36 h, then passed through a plug of silica gel using 3:1 petroleum ether: ethyl acetate to afford the title compound (15.8 mg, 95%) as a clear oil. The enantiomeric purity was determined by HPLC analysis as 93% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 232$ nm, $\tau_{min} = 17.3$ min, $\tau_{mai} = 21.5$ min]; $[\alpha]_D^{25} = -44.9$ (c 0.5, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 6.64 (t, 1.2 Hz, 1H), 6.18-6.16 (m, 1H), 6.10 (t, 2.4 Hz, 1H), 4.43-4.35 (m, 2H), 4.17-4.12 (m, 1H), 4.04-3.88 (m, 4H), 3.84 (dd, 10.2 Hz, 18.0 Hz, 1H), 3.38 (dd, 3.6 Hz, 18.0 Hz, 1H), 1.83-1.74 (m, 2H), 1.40-1.34 (m, 2H), 0.96 (dt, 1.2 Hz, 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 169.8, 153.3, 126.1 (g, 279.3 Hz), 124.8, 121.9, 107.9, 107.2, 62.2, 46.7 (d, 30.9 Hz), 42.5, 36.6 (q, 28.8 Hz), 35.9, 33.1, 20.0, 13.7; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.4 (d, 7.9 Hz, 3F); IR (neat) 1781.9, 1703.8, 1482.0, 1396.2, 1312.3, 1267.0, 1224.6, 1161.9, 1112.7, 1073.2, 1039.4, 961.3, 884.2, 760.8, 719.3 cm⁻¹; MS (ESI, m/z) 355.150 (M+Na⁺); HRMS calcd. for $C_{15}H_{19}F_{3}N_{2}O_{3}^{+}332.1348$ found 332.1361.

3-[4,4,4-Trifluoro-3-(1-allyl-1H-pyrrol-2-yl)-butyryl]-oxazoli din-2-one (*3h*): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates **1a** (10.5 mg, 0.050 mmol), and

the solution of N-allyl pyrrole (26.8 mg, 0.250 mmol) in 0.05 mL CH₂Cl₂. The mixture was stirred at -75 °C for 36 h, then passed through a plug of silica gel using 3:1 petroleum ether:ethyl acetate to afford the title compound (14.2 mg, 90%) as a clear oil. The enantiomeric purity was determined by HPLC analysis as 95% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 232 nm, τ_{min} = 19.7 min, τ_{maj} = 22.8 min]; [α]_D²⁵ = -18.5 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 6.37-6.32 (m, 1H), 6.20-6.19 (m, 1H), 6.13-6.12 (m, 1H), 6.03-5.96 (m, 1H), 5.22-5.20 (m, 1H), 5.12 (dd, 1.2 Hz, 17.4 Hz, 1H), 4.66-4.55 (m, 2H), 4.43-3.36 (m, 2H), 4.17-4.14 (m, 1H), 3.99-3.91 (m, 2H), 3.77 (dd, 10.2 Hz, 18.0 Hz, 1H), 3.41 (dd, 3.6 Hz, 18.0 Hz, 1H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 169.7, 153.3, 134.2, 126.0 (q, 279.5 Hz), 125.2, 122.1, 117.4, 108.4, 107.7, 62.2, 49.4, 42.5, 36.6 (q, 28.8 Hz), 35.9; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.3 (d, 7.9 Hz, 3F); IR (neat) 3442,3, 1718.3, 1419.3, 1363.4, 1293.0, 1255.4, 1191.8, 1161.9, 1110.8, 1032.7, 931.4, 806.1, 742.5, 684.6, 634.5 cm⁻¹; MS (ESI, *m/z*) 339.100 (M+Na⁺); HRMS calcd. for C₁₄H₁₅F₃N₂O₃⁺ 316.1035 found 316.1045.

3-[4,4,4-Trifluoro-3-(1-benzyl-1H-pyrrol-2-yl)-butyryl]-oxazo lidin-2-one (*3i*): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as

described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates 1a (10.5 mg, 0.050 mmol), and the solution of N-benzyl pyrrole (39.3 mg, 0.250 mmol) in 0.05 mL CH₂Cl₂. The mixture was stirred at -60 $^{\circ}$ C for 48 h, then passed through a plug of silica gel using 3:1 petroleum ether: ethyl acetate to afford the title compound (17.0 mg, 93%) as a white solid. The enantiomeric purity was determined by HPLC analysis as 86% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 232$ nm, $\tau_{maj} = 40.9$ min, $\tau_{min} = 50.4$ min]; $[\alpha]_D^{25} = -20.0$ (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) & 7.34-7.26 (m, 3H), 7.11 (d, 7.8 Hz, 2H), 6.19-6.14 (m, 1H), 6.25-6.24 (m, 1H), 6.17-6.15 (m, 1H), 5.24 (B of AB, J = 16.2 Hz, 1H), 5.15 (A of AB, 16.2 Hz, 1H), 4.39-4.33 (m, 2H), 4.16-4.11 (m, 1H), 3.93-3.87 (m, 2H), 3.68 (ddd, 1.2 Hz, 9.6 Hz, 18.0 Hz, 1H), 3.40 (dd, 3.6 Hz, 18.0 Hz, 1H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 169.6, 153.3, 137.5, 128.7, 127.6, 127.1, 126.9, 126.0 (q, 279.7 Hz), 122.8, 108.7, 107.9, 62.2, 50.5, 42.4, 36.7 (q, 29.0 Hz), 36.1; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.4 (d, 7.9 Hz, 3F); IR (KBr) 1777.1, 1707.7, 1397.2, 1379.8, 1311.4, 1265.1, 1240.9, 1163.8, 1135.8, 1119.5, 754.0, 729.9 cm⁻¹; mp = 92-93 °C; MS (ESI, m/z) 389.100 (M+Na⁺); HRMS calcd. for C₁₈H₁₇F₃N₂O₃⁺ 366.1191 found 366.1191.

3-[4,4,4-Trifluoro-3-(1-phenyl-1H-pyrrol-2-yl)-butyryl]-oxazo lidin-2-one (3j): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates **1a** (10.5 mg, 0.050 mmol), and

the solution of N-phenyl pyrrole (35.8 mg, 0.250 mmol) in 0.05 mL CH₂Cl₂. The mixture was stirred at -20 °C for 24 h, then passed through a plug of silica gel using 3:1 petroleum ether:ethyl acetate to afford the title compound (16.6 mg, 94%) as a white solid. The enantiomeric purity was determined by HPLC analysis as 88% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ = 232 nm, τ_{maj} = 21.5 min, τ_{min} = 25.3 min]; [α]_D²⁵ = -111.9 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 7.50-7.41 (m, 5H), 6.79-6.78 (m 1H), 6.34-6.33 (m, 1H), 6.26-6.25 (m, 1H), 4.41-4.38 (m, 2H), 4.09-4.06 (m, 1H), 3.97-3.94 (m, 2H), 3.91 (dd, 11.4 Hz, 18.0 Hz, 1H), 3.29 (dd, 3.6 Hz, 18.0 Hz, 1H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 169.5, 153.4, 139.4, 129.2, 128.0, 127.2, 126.0, 125.8 (q, 279.1 Hz), 123.0, 108.7, 108.4, 62.2, 42.5, 36.6 (q, 29.4 Hz), 35.3; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.6 (s, 3F); IR (KBr) 1773.2, 1717.3, 1703.8, 1597.7, 1502.3, 1393.3, 1321.0, 1267.0, 1152,3, 1113.7, 1037.5, 768.5, 756.9, 736.7 cm⁻¹; mp = 175-176 °C; MS (ESI, *m/z*) 375.100 (M+Na⁺); HRMS calcd. for C₁₇H₁₅F₃N₂O₃⁺ 352.1035 found 352.1035.

3-[4,4,4-Trifluoro-3-(5-methyl-1-methyl-1H-pyrrol-2-yl)-butyr yl]-oxazolidin-2-one (*3k*): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β-CF₃ acrylates **1a** (10.5 mg, 0.050 mmol), and the solution of 2-methyl-N-methyl pyrrole (9.6 mg, 0.100 mmol) in 0.05 mL CH₂Cl₂. The mixture was stirred at -75 °C for 24 h, then passed through a plug of silica gel using 3:1 petroleum ether:ethyl acetate to afford the title compound (14.7 mg, 97%) as a white solid. The enantiomeric purity was determined by HPLC analysis as 94% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 232 nm, τ_{min} = 18.8 min, τ_{maj} = 22.3 min]; [α]_D²⁵ = -76.1 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 6.05 (d, 3.6 Hz, 1H), 5.84 (d, 3.6 Hz, 1H), 4.43-4.35 (m, 2H), 4.17-4.10 (m, 1H), 3.99-3.91 (m, 2H), 3.84 (ddd, 1.2 Hz, 10.8 Hz, 18.0 Hz, 1H), 3.52 (s, 3H), 3.36 (dd, 3.0 Hz, 18.0 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 169.9, 153.3, 129.8, 126.1 (q, 279.5 Hz), 124.7, 106.6, 105.9, 62.2, 42.4, 37.0 (q, 29.0 Hz), 30.2, 12.7; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.7 (d, 7.9 Hz, 3F); IR (KBr) 1776.1, 1698.0, 1413.6, 1333.5, 1316.2, 1260.2, 1227.5, 1160.9, 1116.6, 761.7, 679.9 cm⁻¹; mp = 100-101 °C; MS (ESI, *m/z*) 327.100 (M+Na⁺); HRMS calcd. for C₁₃H₁₅F₃N₂O₃⁺ 304.1035 found 304.1049.

3-[4,4,4-Trifluoro-3-(5-ethyl-1-methyl-1H-pyrrol-2-yl)-butyryl]-oxazolidin-2-one (31): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates **1a** (11.0 mg, 0.050 mmol), and the solution of 2-ethyl-N-methyl pyrrole (11.0 mg, 0.100 mmol) in

0.05 mL CH₂Cl₂. The mixture was stirred at -75 °C for 48 h, then passed through a plug of silica gel using 3:1 petroleum ether:ethyl acetate to afford the title compound (15.8 mg, 99%) as a white solid. The enantiomeric purity was determined by HPLC analysis as 88% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 232 nm, τ_{min} = 18.1 min, τ_{maj} = 21.2 min]; $[\alpha]_D^{25}$ = -55.2 (*c* 0.7, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 6.09 (d, 3.6 Hz, 1H), 5.86 (d, 3.6 Hz, 1H), 4.44-4.36 (m, 2H), 4.19-4.14 (m, 1H), 3.99-3.92 (m, 2H), 3.83 (dd, 10.2 Hz, 18.0 Hz, 1H), 3.53 (s, 3H), 3.37 (dd, 3.0 Hz, 18.0 Hz, 1H), 2.58-3.53 (m, 2H), 1.24 (t, 7.8 Hz, 3H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 169.9, 153.4, 136.1, 126.2 (q, 279.5 Hz), 124.9, 106.7, 104.1, 62.3, 42.5, 36.9 (q, 28.4 Hz), 35.7, 30.1, 20.1, 12.6; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.7 (d, 6.6 Hz, 3F); IR (KBr) 1782.9, 1702.8, 1396.2, 1311.4, 1267.0, 1225.5, 1159.9, 1101.1, 1070.3, 1038.5, 960.4, 884.2, 758.9, 678.8 cm⁻¹; mp = 71-72 °C; MS (ESI, *m/z*) 341.100 (M+Na⁺); HRMS calcd. for C_{14H17}F₃N₂O₃⁺ 318.1191 found 318.1182.

3-[4,4,4-Trifluoro-3-(5-benzyl-1-methyl-1H-pyrrol-2-yl)-butyr yl]-oxazolidin-2-one (*3m*): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates **1a** (10.5 mg, 0.050 mmol), and the solution of 2-benzyl-N-methyl pyrrole (17.0 mg, 0.100 mmol) in 0.05 mL CH₂Cl₂. The mixture was stirred at -75 °C for 48 h, then passed through a plug of silica gel using 3:1 petroleum ether:ethyl acetate to afford the title compound (18.1 mg, 95%) as a white solid. The enantiomeric purity was determined by HPLC analysis as 76% ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 232$ nm, $\tau_{maj} = 36.7$ min, $\tau_{min} = 42.9$ min]; $[\alpha]_D^{25} = -48.5$ (*c* 0.43, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) & 7.29-7.26 (m, 2H), 7.21-7.19 (m, 1H), 7.10 (d, 7.2 Hz, 2H), 6.10 (d, 3.6 Hz, 1H), 5.836 (d, 3.6 Hz, 1H), 4.43-4.36 (m, 2H), 4.15-4.11 (m, 1H), 3.99-3.91 (m, 4H), 3.83 (dd, 10.8 Hz, 18.0 Hz, 1H), 3.44 (s, 3H), 3.38 (dd, 3.0 Hz, 18.0 Hz, 1H); ¹³C NMR (CDCl₃, 150.9 MHz) & 169.8, 153.3, 139.1, 132.2, 128.5, 128.4, 128.2, 126.2, 126.1 (q, 279.5 Hz), 125.5, 107.4, 106.7, 62.2, 42.5, 37.0 (q, 29.4 Hz), 35.6, 33.3, 30.5; ¹⁹F NMR (CDCl₃, 188 MHz) & -70.7 (d, 6.6 Hz, 3F); IR (KBr) 1782.9, 1705.7, 1397.2, 1331.6, 1316.2, 1265.1, 1155.2, 1096.3, 757.9, 677.8 cm⁻¹; mp = 153-154 °C; MS (ESI, *m/z*) 403.100 (M+Na⁺); HRMS calcd. for C₁₉H₁₉F₃N₂O₃⁺ 380.1348 found 380.1328.

3-[4,4,4-Trifluoro-3-(1H-indole-3-yl)-butyryl]-oxazolidin -2-one (3n): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added 4 Å MS (15.0 mg), β -CF₃ acrylates **1a** (10.5 mg, 0.050 mmol),

and the solution of indole (11.7 mg, 0.100 mmol) in 0.05 mL CH₂Cl₂. The mixture was stirred at -75 °C for 24 h, then passed through a plug of silica gel using 2:1 petroleum ether:ethyl acetate to afford the title compound (16.1 mg, 99%) as a white solid. The enantiomeric purity was determined by HPLC analysis as 99 % ee; [Chiralcel OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 0.5 mL/min, λ = 254 nm, τ_{min} = 18.6 min, τ_{maj} = 27.5 min]; $[\alpha]_D^{25}$ = -52.1 (*c* 0.7, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 8.21 (br s, 1H), 7.70 (d, 7.8 Hz, 1H), 7.34 (d, 7.8 Hz, 1H), 7.25-7.15 (m, 3H), 4.49-4.45 (m, 1H), 4.35-4.21 (m, 2H), 3.91-3.78 (m, 3H), 3.56 (dd, 4.2 Hz, 17.4 Hz, 1H); ¹³C NMR (CDCl₃, 600 MHz) δ 169.8, 153.5, 135.9, 126.9 (q, 279.1 Hz), 126.7, 123.7, 122.5, 120.2, 119.1, 111.3, 109.2, 62.1, 42.5, 37.0 (q, 29.1 Hz), 35.3; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.3 (d, 9.2 Hz, 3F); IR (KBr) 3399.9, 1782.9, 1693.2, 1458.9, 1403.9, 1389.5, 1325.8, 1274.7, 1232.3, 1177.3, 1098.3, 1036.5, 965.2, 741.5 cm⁻¹; mp = 132-133 °C; MS (ESI, *m/z*) 349.100 (M+Na⁺); HRMS calcd. C₁₅H₁₃F₃N₂O₃⁺ for 326.0878 found 326.0905.

3-[4,4,4-Trifluoro-3-(1H-indole-2-yl)-butyryl]-oxazolidi n-2-one (30): At N₂ atmosphere, to 20 mol % (0.010 mmol) of catalyst complex $Zn(NTf_2)_2/(R, R)$ -Ph-dbfox prepared as described above in 0.2 mL CH₂Cl₂ was sequentially added

4 Å MS (15.0 mg), β -CF₃ acrylates **1a** (10.5 mg, 0.050 mmol), and the solution of 4,7-dihydroindole (12.0 mg, 0.100 mmol) in 0.05 mL CH₂Cl₂. After stirring at -75 °C for 24 h, the reaction mixture was allowed to warm to RT., and 21.6 mg (2 equiv, 0.200 mmol) of *p*-benzoquinone was added. The reaction was stirred at rt. for 2 h, then passed

through a plug of silica gel using CH₂Cl₂ to afford the title compound (14.7 mg, 90%) as a yellow solid. The enantiomeric purity was determined by HPLC analysis as 75 % ee; [Chiralcel AD-H, *n*-hexane/*i*-PrOH = 90/10, flow rate 0.5 mL/min, λ = 254 nm, τ_{maj} = 121.8 min, τ_{min} = 146.7 min]; $[\alpha]_D^{25}$ = +1.6 (*c* 0.7, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 8.37 (br s, 1H), 7.59 (d, 7.8 Hz, 1H), 7.38 (d, 7.8 Hz, 1H), 7.22 (t, 7.2 Hz, 1H), 7.12 (t, 7.2 Hz, 1H), 6.55 (s, 1H), 4.45-4.28 (m, 3H), 4.00-3.91 (m, 2H), 3.87 (dd, 10.2 Hz, 18.0 Hz, 1H), 3.56 (dd, 3.6 Hz, 18.0 Hz, 1H); ¹³C NMR (CDCl₃, 600 MHz) δ 169.5, 153.4, 136.1, 130.8, 127.9, 125.9 (q, 279.6 Hz), 122.6, 120.7, 120.2, 111.0, 102.8, 62.3, 42.5, 39.7 (q, 29.2 Hz), 35.1; ¹⁹F NMR (CDCl₃, 188 MHz) δ -69.5 (d, 7.9 Hz, 3F); IR (KBr) 3326.6, 1763.6, 1706.7, 1590.9, 1475.3, 1458.9, 1408.7, 1397.2, 1330.6, 1305.6, 1260.3, 1237.1, 1162.9, 1137.8, 1097.3, 1068.4, 1037.5, 789.7, 754.0, 686.5 cm⁻¹; mp = 120-121 °C; MS (ESI, *m/z*) 349.150 (M+Na⁺); HRMS calcd. C₁₅H₁₃F₃N₂O₃⁺ for 326.0878 found 326.0914.

Synthesis of Optically Active Trifluoromethylated Heliotridane

To a solution of (*S*)-**3b** (98% ee, 110.0mg, 0.40 mmol) in THF was added 1 N NaOH (aq., 0.80 mL, 0.80 mmol). After stirring at rt for 1 h, 1 N HCl (aq.) was slowly added to adjust the PH value of the reaction mixture to 1-2. Compound (*S*)-**4** (66.2 mg, 80%) was isolated as a solid by flash column chromatography using 3:1 petroleum ether:ethyl acetate as eluent. $[\alpha]_D^{25} = +17.3$ (*c* 0.8, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 8.26 (br s, 1H), 6.76 (d, 2.4 Hz, 1H), 6.18-6.16 (m, 2H), 3.96-3.91 (m, 1H), 3.01 (dd, 4.2 Hz, 10.8 Hz, 1H), 2.88 (dd, 9.6 Hz, 10.8 Hz, 1H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 176.1, 125.8 (q, 279.5 Hz), 123.2, 118.8, 108.9, 108.1, 39.7 (q, 29.3 Hz), 33.8; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.7 (s, 3F); IR (KBr) 3470.3, 3119.3, 1719.2, 1660.4, 1560.1, 1418.4, 1363.4, 1293.0, 1272.8, 1181.2, 1164.8, 1035.6, 993.2, 930.5, 859.1, 810.9, 680.8 cm⁻¹; mp = 70-71 °C; MS (ESI, *m/z*) 206.050 (M-H⁻); HRMS calcd. C₈H₈F₃NO₂⁺ for 207.0507 found 207.0513.

To a 10 mL test tube was added 4 (66.0 mg, 0.40 mmol), 5% of Rh-Al₂O₃ (8 mg), and 4 mL EtOH. The resulting mixture was put into an autoclave, and purged with H₂ (10 atm). After stirring at rt for 24 h, the catalyst was filtrated through celite, then the solvent was evaporated *in vacuo* to provide the 2-pyrrolidine carboxylic acid as white solid.² Without further purification, the compound obtained was heated under reflux with the phosphine oxide **6** (186 mg, 0.41 mmol) and triethyl amine (0.2 mL, 1.43 mmol) in 10 mL acetonitrile. After 6 h, the resulting solution was concentrated, then subjected to column chromatography using ether as eluent. The faster running fractions was determined as **7a** as a colorless oil (23.0 mg, 30%), while the lower fractions was as **7b** a colorless oil (4.0 mg, 5%).³ The ratio and stereochemistry of the two isomers were identified from ¹⁹F NMR spectrum. The value of -67.9 ppm in lower magnetic field due to steric deshielding effect indicates a *cis* arrangement of hydrogen and CF₃ group and thus the structure **7b** for the minor isomer.⁴ Hence, the chemical shift value of -71.1 ppm belongs to the major *syn* isomer.

(*syn*)-1-Trifluoromethyl-hexahydropyrrolizin-3-one (7a): $[\alpha]_D^{25} =$ +26.0 (*c* 0.35, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) & 3.95 (dt, 6.6 Hz, 9.0 Hz, 1H, 5-H), 3.59 (dt, 8.4 Hz, 11.4 Hz, 1H, 8-H), 3.13-3.09 (m, 1H, 8'-H), 2.91 (dd, 10.2 Hz, 16.2 Hz, 1H, 3-H), 2.87-2.79 (m, 1H, 4-H), 2.67 (dd, 9.0 Hz, 16.2 Hz, 1H, 3'-H), 2.21-2.15 (m, 2H, 6-H, 7-H),

2.12-2.04 (m, 1H, 7'-H), 1.50-1.43 (m, 1H, 6'-H); ¹³C NMR (CDCl₃, 600 MHz) δ 171.1, 126.1 (q, 276.6 Hz), 60.9 (d, 3.2 Hz), 44.8 (q, 29.1 Hz), 41.3, 35.2 (d, 2.26 Hz), 31.6, 26.6; ¹⁹F NMR (CDCl₃, 188 MHz) δ -71.1 (d, 6.6 Hz, 3F); IR (neat) 2976.6, 2884.9, 1782.9, 1702.8, 1428.0, 1343.2, 1270.9, 1166.7, 1123.3, 1085.7, 688.5 cm⁻¹; MS (ESI, *m/z*) 216.100 (M+Na⁺); HRMS calcd. C₈H₁₀F₃NO 193.0714 found 193.0756.

(*anti*)-1-Trifluoromethyl-hexahydropyrrolizin-3-one (7b): $[\alpha]_D^{25} =$ +24.0 (*c* 0.3, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) & 4.04-4.00 (m, 1H, 5-H), 3.57 (dt, 8.4 Hz, 11.4 Hz, 1H, 8-H), 3.23-3.15 (m, 1H, 4-H), 3.14-3.10 (m, 1H, 8'-H), 2.93 (dd, 10.2 Hz, 17.4 Hz, 1H, 3-H), 2.64 (dd, 4.8 Hz, 17.4 Hz, 1H, 3'-H), 2.22-2.17 (m, 1H, 7-H), 2.06-1.98 (m, 1H,

7'-H), 1.96-1.92 (m, 1H, 6-H), 1.75-1.67 (m, 1H, 6'-H); ¹³C NMR (CDCl₃, 600 MHz) δ 172.0, 126.5 (q, 278.5 Hz), 61.1, 41.3, 38.3 (q, 28.5 Hz), 33.9, 29.7, 26.4; ¹⁹F NMR (CDCl₃, 188 MHz) δ –67.8 (d, 6.6 Hz, 3F); IR (neat) 2926.5, 1779.0, 1684.4, 1484.0, 1428.0, 1392.4, 1294.0, 167.0, 1178.3, 1150.3, 1126.2, 1103.1, 760.8 cm⁻¹; MS (ESI, *m/z*) 216.100 (M+Na⁺); HRMS calcd. C₈H₁₀F₃NO 193.0714 found 193.0698.

At N₂ atmosphere, to a solution of **7a** (20.0 mg, 0.104 mmol) in ether (2.0 mL) was added LiAlH₄ (15.8 mg, 0.416 mmol) directly at 0 °C. After stirring at 35 °C for 6 h, the solution was cooled to rt before Na₂SO₄·10H₂O (135.0 mg, 0.416 mmol) was slowly added to the reaction mixture. The resulting solution was stirred at rt for overnight. The solvent was removed by a steady stream of N₂ to obtain slightly yellow oil **8** (10.0 mg, 54% yield).⁵ $[\alpha]_D^{25} = +20.3$ (*c* 0.3, Et₂O); ¹H NMR (CD₂Cl₂, 600 MHz). δ ¹H NMR (CDCl₃, 600 MHz) δ 3.41-3.38 (m, 1H, 5-H), 3.04-3.01 (m, 1H, 2-H), 2.83 (dt, 10.2 Hz, 6.6 Hz, 1H, 8-H), 2.54 (dt, 9.6 Hz, 6.6 Hz, 1H, 2'-H), 2.46 (dt, 10.2 Hz, 6.6 Hz, 1H, 8'-H), 2.35-2.29 (m, 1H, 4-H), 2.06-2.00 (m, 1H, 3-H), 1.96-1.85 (m, 2H, 6-H, 3'-H), 1.80-1.73 (m, 1H, 7-H), 1.72-1.65 (m, 1H, 7'-H), 1.54-1.49 (m, 1H, 6'-H); ¹³C NMR (CD₂Cl₂, 600 MHz) δ 128.1 (q, 277.2 Hz), 64.8(d, 2.3 Hz), 54.7, 54.1, 49.6 (q, 26.1 Hz), 32.2, 27.7 (d, 2.1 Hz), 26.1; ¹⁹F NMR (CD₂Cl₂, 188 MHz) δ -70.1 (d, 9.2 Hz, 3F); MS (EI, *m/z*) 179 (M ⁺); HRMS calcd. C₈H₁₂F₃N for 179.0922 found 179.0941.

To a solution of **8** (10.0 mg, 0.056 mmol) in 1 mL ether was added the solution of Picric acid (20.0 mg, 0.056 mmol) in 1 mL ether. After stirring for 1h at rt, the precipitate was filtrated as the target compound **9** (8.0 mg, 35% yield). $[\alpha]_D^{25} = -5.8$ (*c* 0.6, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 8.88 (s, 2H, Ar-H), 4.50-4.47 (m, 1H, 5-H), 4.15-4.12 (m, 1H, 2-H), 3.80 (dt, 12.0 Hz, 7.2 Hz, 1H, 8-H), 3.16-3.12 (m, 1H, 8'-H), 3.06 (dt, 10.8 Hz, 6.0 Hz, 1H, 2-H), 2.81-2.75 (m, 1H, 4-H), 2.54-2.46 (m, 2H, 6-H, 3-H), 2.38-2.32 (m, 1H, 7-H), 2.21-2.14 (m, 1H, 7'-H), 2.05-2.00 (m, 1H, 6'-H); ¹³C NMR (CDCl₃, 600 MHz) δ 162.3, 141.6, 128.6, 126.7, 125.2 (q, 277.7 Hz), 67.0 (d, 2.4 Hz), 55.6, 54.9, 48.7 (q, 29.5 Hz), 30.8, 26.7, 25.0; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.0 (d, 6.6 Hz, 3F); IR (KBr) 1716.3, 1637.3, 1557.2, 1489.7, 1434.8, 1329.7, 1276.7, 1162.9, 111.8 cm⁻¹; mp = 181-183 °C; MS (ESI, *m/z*) 212.200 (M+Na⁺); Anal. Calcd. (%) for C₁₄H₁₅F₃N₄O₇ C, 41.18; H, 3.70; N, 13.72; found C, 41.22; H, 3.90; N, 13.60.

Absolute Stereochemistry Determination

At N₂ atmosphere, to a mixture of (4S)-benzyl-3-[(E)-4,4,4-Trifluorobut-2-enoyl]oxazolidin-2-one 10 (15.0 mg, 0.050 mmol), 4 Å MS (15.0 mg), and 20 mol % of catalyst $Zn(NTf_2)_2$ (6.2 mg, 0.010 mmol) in 0.5 mL CH₂Cl₂ was added pyrrole (17.0 mg, 0.250 mmol). The mixture was stirred at rt for 2 h, then passed through a plug of silica gel using 4:1 petroleum ether: ethyl acetate to afford two diastereoisomers. One diastereoisomer was separated as white solid (13.40 mg, 97%), which was determined as 11b by single-crystal x-ray analysis. $\left[\alpha\right]_{D}^{25} = +81.5$ (c 0.3, CHCl₃); ¹H NMR (CDCl₃, 600 MHz) δ 8.46 (br s, 1H), 7.29-7.24 (m, 3H), 7.01 (d, 7.2 Hz, 2H), 6.77-6.76 (m, 1H), 6.22-6.17 (m, 2H), 4.67-4.63 (m, 1H), 4.23-4.15 (m, 3H), 3.85 (dd, 10.2 Hz, 17.4 Hz, 1H), 3.31 (dd, 4.2 Hz, 17.4 Hz, 1H), 3.02 (dd, 3.0 Hz, 13.2 Hz, 1H), 2.66 (dd, 9.0 Hz, 13.2 Hz, 1H); ¹³C NMR (CDCl₃, 150.9 MHz) δ 169.8, 153.4, 134.7, 129.4, 129.0, 127.4, 126.1 (g, 279.5 Hz), 123.6, 118.6, 118.6, 108.8, 108.5, 66.2 (d, 3.6 Hz), 39.5 (g, 29.0 Hz), 37.4, 35.1; ¹⁹F NMR (CDCl₃, 188 MHz) δ -70.1 (d, 9.2 Hz, 3F); IR (KBr) 3387.4, 1776.1, 1692.2, 1441.5, 1401.0, 1358.6, 1302.7, 1262.2, 1218.8, 1195.7, 1163.8, 1153.2, 1132.0, 1101.2, 726.1 cm⁻¹; mp = 150-151 °C; MS (ESI, m/z) 388.850 (M+Na⁺); HRMS calcd. for $C_{18}H_{17}F_{3}N_{2}O_{3}^{+}$ 366.1191 found 366.1200.

CIF file of **11b** is available as Supporting Information.

To a solution of **11b** (11.0mg, 0.030 mmol) in THF was added 1 N NaOH (aq., 0.10 mL, 0.10 mmol). After stirring at rt for 1 h, 1N HCl (aq.) was slowly added to adjust the PH

value of the reaction mixture to 1-2. Compound (*R*)-4 (5.0 mg, 83%) was isolated by flash column chromatography, which has the opposite optical rotation as compound 4 transformed from **3b**. Thus the absolute stereochemistry of compound **3b** was determined as *S*.

References

- (1) Tamura, K.; Yamazaki, T.; Kitazume, T.; Kubota, T. *J Fluorine Chem.* **2005**, *126*, 918–930.
- (2) Evans, D. A.; Fandrick, K. R. Org. Lett. 2006, 8, 2249-2252.
- (3) Gilchrist, T. L.; Lemos, A.; Ottaway, C. J. J. Chem. Soc. Perkin Trans 1. 1997, 3005-3012.
- (4) William, R.; Dolbier, JR. *Guide to Fluorine NMR for Organic Chemistry*; WILEY: New Jersey, **2009**; pp 1-256.
- (5) Andenson, P. G.; Backvalll, J.-E. J. Am. Chem. Soc. 1992, 114, 8698-8699.

J∠U

S54

FC-122-1-0914-1H-2D

S77

lΗ

HPLC Charts 3a, 98% ee (OD-H, Hex/i-PrOH = 70/30, flow rate = 0.8 mL/min, λ = 232 nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	17.258	49.741	50.959	1	17.917	1.102	1.303
2	20.358	50.259	49.041	2	20.625	98.898	98.697

3b, 99% ee (OD-H, Hex/i-PrOH = 70/30, flow rate = 0.5 mL/min, λ = 232 nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	23.217	49.418	56.370	1	24.375	99.554	99.506
2	25.275	50.582	43.630	2	27.142	0.446	0.494

FC-69-R

12

3c, 97% ee (OD-H, Hex/i-PrOH = 90/10, flow rate = 1.0 mL/min, $\lambda = 232$ nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	28.458	50.072	69.127	1	28.342	98.390	99.026
2	37.208	49.928	30.873	2	37.992	1.610	0.974

3d, 92% ee (OD-H, Hex/i-PrOH = 70/30, flow rate = 0.5 mL/min, λ = 232 nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	15.858	50.764	62.289	1	16.033	95.889	96.941
2	18.450	49.236	37.711	2	18.875	4.111	3.059

3e, 96% ee (OD-H, Hex/i-PrOH = 70/30, flow rate = 0.8 mL/min, $\lambda = 232$ nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	13.125	51.154	55.999	1	12.583	2.184	3.326
2	18.308	48.846	44.001	2	17.317	97.816	96.674

3f, 95% ee (OD-H, Hex/i-PrOH = 70/30, flow rate = 0.8 mL/min, $\lambda = 232$ nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	9.792	50.986	54.311	1	10.508	2.270	3.137
2	11.692	49.014	45.689	2	12.693	97.730	96.863

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	17.292	50.140	53.772	1	17.275	3.374	4.903
2	21.483	49.860	46.228	2	21.542	96.626	95.097

3h, 95% ee (OD-H, Hex/i-PrOH = 70/30, flow rate = 0.5 mL/min, λ = 232 nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	19.017	50.391	54.310	1	19.725	2.315	2.817
2	22.075	49.609	45.690	2	22.833	97.685	97.183

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	40.967	50.709	59.833	1	40.975	92.258	92.777
2	49.983	49.291	40.167	2	50.458	7.742	7.223

3j, 88% ee (OD-H, Hex/i-PrOH = 90/10, flow rate = 1.0 mL/min, $\lambda = 232$ nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	19.867	49.895	54.713	1	21.508	93.980	94.695
2	23.142	50.105	45.287	2	25.308	6.020	5.305

N-Ph O

3j

F₃C

С

3k, 94% ee (OD-H, Hex/i-PrOH = 70/30, flow rate = 0.5 mL/min, λ = 232 nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	19.850	49.583	51.266	1	18.783	3.056	3.481
2	23.333	50.417	48.734	2	22.275	96.944	96.519

31, 88% ee (OD-H, Hex/i-PrOH = 70/30, flow rate = 0.5 mL/min, λ = 232 nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	16.567	49.645	51.767	1	18.067	5.874	6.836
2	19.250	50.355	48.233	2	21.192	94.126	93.164

3m, 76% ee (OD-H, Hex/i-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 232 nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	36.192	50.760	67.263	1	36.725	87.929	93.093
2	42.942	49.240	32.737	2	42.892	12.071	6.907

3n, 99% ee (OD-H, Hex/i-PrOH = 70/30, flow rate = 1.0 mL/min, $\lambda = 232$ nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	13.842	50.091	56.833	1	13.383	0.147	0.309
2	21.025	49.909	43.167	2	19.192	99.853	99.691

30, 75% ee (OD-H, Hex/i-PrOH = 90/10, flow rate = 0.5 mL/min, $\lambda = 232$ nm)

No.	t _R [min]	Area [%]	Height [%]	No.	t _R [min]	Area [%]	Height [%]
1	124.425	50.937	65.383	1	121.767	87.324	91.777
2	139.817	49.063	34.617	2	146.742	12.676	8.223