SUPPORTING INFORMATION

(1R)-(+)-Camphor and Acetone Derived $\alpha^{\prime}-$ Hydroxy Enones in Asymmetric Diels-Alder Reaction: Catalytic Activation by Lewis and Brønsted Acids, Substrate Scope, Applications in Syntheses, and Mechanistic Studies

Patricia Bañuelos, ${ }^{\dagger}$ Jesús M. García, ${ }^{\dagger}$ Enrique Gómez-Bengoa, ${ }^{\#}$ Ada Herrero, ${ }^{\dagger}$ José M. Odriozola, ${ }^{\dagger}$ Mikel Oiarbide, ${ }^{\#}$ Claudio Palomo, ${ }^{\# *}$ and Jesús Razkin.
\# Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco, Apdo. 1072, 20080, San Sebastián, Spain
${ }^{\dagger}$ Departamento de Química Aplicada, Universidad Pública de Navarra, Campus de Arrosadía, 31006, Pamplona, Spain.
claudio.palomo@ehu.es

Table of Contents

General 2
Preparation of α '-hydroxy enones 2
Derived from camphor 2
Method A (via allene 10): Preparation of 1, 11, and 12a 3
Method B (aldol condensation): for compounds 12b,c 5
Method C (Heck reaction): for 12d-12g 5
Method D (olefin metathesis): for 12b 5
Derived from acetone 6
Method E: Preparation of 2 6
Method F (from 3-hydroxy-3-methyl-2-butanone): preparation of 42 7
Method G (aldol condensation): for compounds 43-45 8
Preparation of 2-diethylphosphoryloxy-1,3-butadiene (33) 8
Camphor-derived cycloadducts not included in the Experimental Section 9
$\mathrm{Cu}(\mathrm{OTf})_{2}$-tBOX-catalyzed Diels-Alder reaction of achiral $\alpha^{\prime}-$ hydroxy enones 9
Cycloadducts derived from achiral α '-hydroxy enones 9
Oxidative removal of the auxiliary (I): synthesis of carboxylic acids $\mathbf{5 0 / 5 1}$ 9
Oxidative removal of the auxiliary (II): synthesis of ketones 54/55 10
Attempted direct organocatalytic Diels-Alder reaction of cinnamaldehyde 10
Kinetic measurements for the Brønsted acid-catalyzed Diels-Alder reactions. 12
Quantum calculations of Brønsted acid-catalyzed Diels-Alder reactions 16
General information 16
Reaction of $\mathbf{1}$ and cyclopentadiene 16
Reaction of methyl vinyl ketone and cyclopentadiene 21
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 41

General

All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring. Tetrahydrofuran (THF) was distilled from sodium metal/benzophenone ketyl. Dichloromethane was distilled from calcium hydride. Anhydrous dimethylformamide (DMF) and trifluoromethanesulfonic acid (TfOH) were used from commercial sources without further purification. Cyclopentadiene was distilled by cracking dicyclopentadiene prior to use. Myrcene was distilled $\left(167^{\circ} \mathrm{C} / 760 \mathrm{~mm} \mathrm{Hg}\right)$ prior to use. The remaining dienes were used as acquired without further purification.

Purification of reaction products was carried out by flash chromatography using silica gel 60 (230-400 mesh). Analytical thin layer chromatography was performed on $0,25 \mathrm{~mm}$ silica gel $60-\mathrm{F}$ plates. Visualization was accomplished with UV light and p-anisaldehyde solution followed by heating. Melting points were measured with a melting point apparatus and are uncorrected. Infrared spectra were recorded on a FT-IR spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a $200 \mathrm{MHz}(50 \mathrm{MHz})$ spectrometer and are reported in ppm from internal CHCl_{3}. Optical rotations were measured at $25 \pm 0.2{ }^{\circ} \mathrm{C}$ on a Polarimeter in dichloromethane unless otherwise stated. Combustion analyses were performed on a elemental analyzer. Electrospray ionization (ESI) mass spectrometry experiments were performed on an API ion trap spectrometer.

Preparation of α^{\prime}-hydroxy enones

Preparation of camphor-derived α^{\prime}-hydroxy enones

All camphor-derived α '-hydroxy enones were prepared according to either of the alternate, sometimes complementary, procedures described in Scheme S1, as follows:
METHOD A

(R)-(+)-camphor

1 R': H, 75\% (10g scale)
11 R': CH_{3}

Scheme S1. Routes employed for the preparation of camphor-derived α '-hydroxy enones
METHOD A (via allene 10): Multigram preparation of $\mathbf{1}$. Compound $\mathbf{1}$ was prepared at 10 g scale starting from (1R)-(+)-camphor according to the following procedure which is adapted from a previously described protocol. ${ }^{1}$

Methoxyallene ($8.82 \mathrm{~g}, 126 \mathrm{mmol}$) was added to a solution of $\mathrm{nBuLi}(2.5 \mathrm{M}$ in hexanes, 48 $\mathrm{mL}, 120 \mathrm{mmol})$ in THF (60 mL) cooled to $-30^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring for 30 minutes at the same temperature, TMEDA ($18.3 \mathrm{~mL}, 120 \mathrm{mmol}$) and a solution of $(1 R)-(+)$-camphor $(9.12 \mathrm{~g}, 60 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ were added dropwise. The resulting mixture was allowed to stir for 2 hours at $-30^{\circ} \mathrm{C}$ and then was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 60$ mL), the combined organics were dried over MgSO_{4}, and the solvent was removed under reduced pressure. The product was purified by distillation (about 10% of the starting camphor was separated) and collected as a colorless liquid. Yield of allene 10: 10 g (75\%); b.p. 70-72 ${ }^{\circ} \mathrm{C} / 0.1$ torr; $[\alpha]_{\mathrm{D}}{ }^{25}+38.0\left(c\right.$ 1.0, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 3585,2950,2924,2868,1951,1066$, $876 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 5.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}$, $1 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13 \mathrm{~Hz}), 1.69-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.29(\mathrm{~m}, 2 \mathrm{H})$,

[^0]$1.12(\mathrm{~s}, 3 \mathrm{H}), 1.08-0.88(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 197.5,138.9$, $92.1,82.0,56.4,52.9,49.8,44.8,42.5,31.5,26.6,21.1,20.9,11.3$. The distillate product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ and washed twice with $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure to give $\mathbf{1}$ as a white solid. Purification was effected by flash silica gel column chromatography using a 1:30 ethyl acetate/hexane mixture as the eluant. Yield of (1R)-2-endo-propenoyl-1,7,7-trimethylbicyclo[2.2.1]-heptan-2-ol (1): 9.36 g (75% from (1R)-(+)-camphor); m.p. $72-73{ }^{\circ} \mathrm{C}$; $[\alpha]_{{ }^{25}}-34.5\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 3488(\mathrm{OH}), 1685(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.88$ $(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.6 \mathrm{~Hz}, \mathrm{~J}=17.2 \mathrm{~Hz}), 6.34(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{~J}=16.9 \mathrm{~Hz}), 5.67(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $2.2 \mathrm{~Hz}, \mathrm{~J}=10.3 \mathrm{~Hz}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.44-0.80(\mathrm{~m}, 4 \mathrm{H})$, $1.10(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 201.6,131.8,128.7,86.9,52.6$, $50.6,45.2,41.3,30.2,26.5,20.9,20.4,10.6$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$ (208.33) C, 74.94 ; H, 9.70. Found: C, 74.85 ; H, 10.01 .

Preparation of 11. The method described in Reference 1 was employed: Methyl iodide (0.51 $\mathrm{mL}, 8 \mathrm{mmol})$ was added to a solution of $\mathrm{NaH}(0.20 \mathrm{~g}, 8 \mathrm{mmol})$ in dry DMF $(12 \mathrm{~mL})$ cooled to $-50^{\circ} \mathrm{C}$ under a nitrogen atmosphere. Then a solution of allene $10(0.889 \mathrm{~g}, 4 \mathrm{mmol}$, obtained as above) in DMF (4 mL) was added at the same temperature and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour. The reaction was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and then was extracted twice with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, and the combined organic layers were washed with water ($2 \times 10 \mathrm{~mL}$). The organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure. The residue thus obtained was dissolved in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ and a 5% aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}(8 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 16 hours. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 10 \mathrm{~mL}$). The combined organics were dried over MgSO_{4}, and the solvent was removed under reduced pressure. Purification of the product $\mathbf{1 1}$ was effected by flash silica gel column chromatography using a 1:30 ethyl acetate/hexane mixture as the eluant. Yield of (1R)-2-endo-propenoyl-2-exo-methoxy-1,7,7trimethylbicyclo[2.2.1]heptane (11): $0.534 \mathrm{~g}\left(60 \%\right.$ from 10); oil; $[\alpha]_{D}^{25}+27.0\left(c 1.0, \mathrm{Cl}_{2} \mathrm{CH}_{2}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 1691(\mathrm{CO}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.98\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.3 \mathrm{~Hz}, \mathrm{~J}^{\prime}=17.2 \mathrm{~Hz}\right), 6.33$ (dd, $1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{~J}^{\prime}=17.6 \mathrm{~Hz}$), $5.64\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{~J}^{\prime}=10.3 \mathrm{~Hz}\right), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=12.8), 1.92-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.87-0.75(\mathrm{~m}, 1 \mathrm{H})$, $0.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 201.6,132.5,127.9,93.5,52.1,51.1,50.6,45.2,33.3,30.6$, 26.0, 20.6, 20.6, 11.3.

Preparation of 12a. Compound 12a was prepared following a previously described procedure: ${ }^{2}$ To a solution of allene $10(0.222 \mathrm{~g}, 1 \mathrm{mmol}$, obtained as mentioned above) in THF (4 mL) at $-78{ }^{\circ} \mathrm{C}$, $\mathrm{nBuLi}(2.5 \mathrm{M}$ in hexanes, $1.2 \mathrm{~mL}, 3 \mathrm{mmol})$ was added and the reaction was stirred at $-25^{\circ} \mathrm{C}$ for 4 h . Then, MeI ($0.21 \mathrm{~mL}, 3.5 \mathrm{mmol}$) was added and the mixture was stirred for 2 h at the same temperature. The reaction was quenched with 1 N HCl (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (eluant: ethyl acetate/hexane $1: 60$) to afford the corresponding enone. $0.150 \mathrm{~g}(67 \%)$; m.p. $82^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-54.0\left(c 1.0, \mathrm{Cl}_{2} \mathrm{CH}_{2}\right.$); IR (neat, $\left.\mathrm{cm}^{-1}\right) 3427(\mathrm{OH})$, $1680(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.01-6.90(\mathrm{dq}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{~J}=14.7 \mathrm{~Hz}), 6.61(\mathrm{dq}, 1 \mathrm{H}$, $\left.\mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}{ }^{\prime}=15.0 \mathrm{~Hz}\right), 3.13(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.8 \mathrm{~Hz}), 1.87(\mathrm{~d}, 3 \mathrm{H}, 7.0 \mathrm{~Hz}), 1.80-1.61(\mathrm{~m}$, $2 \mathrm{H}), 1.40-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.06-0.72(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR

[^1]METHOD B (aldol condensation). n-Butyllithium (2.5 M in hexanes, $4.8 \mathrm{~mL}, 12 \mathrm{mmol}$) was added to a solution of diisopropylamine ($1.6 \mathrm{~mL}, 12 \mathrm{mmol}$) in THF (15 mL) cooled to $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at the same temperature for 30 min . Then, a solution of α-hydroxy methylketone $\mathbf{6}(0.98 \mathrm{~g}, 5 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added dropwise and the reaction was stirred for 1 hour. Then a solution of the corresponding aldehyde (7.5 mmol) in THF (50 mL) was added and the mixture was allowed to warm to room temperature for 20 to 24 hours. After this time, the resulting mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(75 \mathrm{~mL})$, the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 75 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, and evaporated under reduced pressure. Purification of the crude product was effected by flash silica gel column chromatography using a 1:50 ethyl acetate/hexane mixture as the eluant.

METHOD C (Heck reaction). A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.0022 \mathrm{~g}, 2.4 \mu \mathrm{~mol}), \mathrm{PPh}_{3}(0.0052 \mathrm{~g}$, $20 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.28 \mathrm{~mL}, 2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ was stirred for 30 minutes at room temperature. Then a solution of α^{\prime}-hydroxy enone $1(0.208 \mathrm{~g}, 1 \mathrm{mmol})$ and the corresponding iodobenzene (3 mmol) was added and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 1.5 h . After this time, the reaction was allowed to cool to room temperature and then $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered, and the solvent evaporated. The crude product was purified by column chromatography (eluant: ethyl acetate/hexane $1: 60$) to afford the corresponding enone.

METHOD D (olefin metathesis). A method adapted from the literature ${ }^{3}$ was employed. $\alpha^{\prime}-$ Hydroxy enone $1(1.04 \mathrm{~g}, 5 \mathrm{mmol})$ and the corresponding alkene (7.5 mmol) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and the solution was degassed by 3 freeze-pump-thaw cycles. Grubbs' $2^{\text {nd }}$ generation catalyst ($8.49 \mathrm{~g}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise and the resulting mixture was allowed to stir at room temperature for 24 hours. Then, the solvent was removed in vacuo and purification of the crude product was effected by flash silica gel column chromatography using ethyl acetate/hexane 1:30 as the eluant.

(1R)-2-endo-3'-cyclohexyl-2'-propenoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (12b)

The title compound was prepared according to METHOD B starting from cyclohexanecarboxaldehyde ($0.858 \mathrm{~g}, 7.5 \mathrm{mmol}$) in 24 h .0 .825 g (57%); white solid; m.p. $71-73^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-34.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat, cm^{-1}) $3476(\mathrm{OH}), 1680(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.92\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=6.6 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{2}=15.4 \mathrm{~Hz}\right), 6.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.4 \mathrm{~Hz}) 3.18(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.8 \mathrm{~Hz})$, 2.13-0.84 (m, 17H), $1.12(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 202.3,153.3,122.8,86.8,52.8,50.5,45.3,41.3,40.8,31.7$, 30.3, 26.7, 25.9, 25.7 20.9, 20.3, 10.5. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2}$ (290.49) C, $78.55 ;$ H, 10.43. Found: C, 78.50; H, 10.41.

[^2]Alternatively, the title compound could also be prepared according to the General Procedure METHOD D from vinylcyclohexane ($1 \mathrm{~mL}, 7.5 \mathrm{mmol}$). Yield $0.724 \mathrm{~g}, 50 \%$.
(1R)-2-endo-4'4'-dimethyl-2'-pentenoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (12c)

The title compound was prepared according to METHOD B starting from pivalaldehyde ($0.646 \mathrm{~g}, 7.5 \mathrm{mmol}$) in 20 h .0 .977 g (73%); white solid; m.p. $74-76^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-40.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat, cm^{-1}) $3477(\mathrm{OH}), 1685$ (CO); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.4 \mathrm{~Hz}), 6.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.8 \mathrm{~Hz})$, $3.15(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.8 \mathrm{~Hz}), 1.94-0.85(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.09$ $(\mathrm{s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 202.4,157.9,120.5$, 86.9, 52.8, 50.5, 45.3, 41.3, 33.9, 30.3, 28.7, 26.7, 20.9, 20.4, 10.5. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}(264.40) \mathrm{C}, 77.22 ; \mathrm{H}, 10.67$. Found: C, $77.18 ; \mathrm{H}, 10.65$.

Preparation of enones 12d-g: The title enones were prepared according to the General Procedure METHOD C and their characterization data were fully coincident with those previously reported in the literature. ${ }^{1}$ Copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of thus obtained compounds are provided in the corresponding Section of this SI.

Preparation of achiral $\boldsymbol{\alpha}^{\prime}$-hydroxy enones ${ }^{4}$

METHOD E (preparation of 2 from acetone via allene intermediate) ${ }^{5}$

Scheme S2

To a solution of methoxypropadiene $(3.50 \mathrm{~g}, 50 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}, \mathrm{nBuLi}$ (2.5 M in hexanes, $22 \mathrm{~mL}, 55 \mathrm{mmol}$) was added under nitrogen and the reaction was stirred at $-40^{\circ} \mathrm{C}$ for 10 min . Then, acetone ($4.04 \mathrm{~mL}, 55 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(55 \mathrm{~mL})$ was added within 5 min . The reaction was stirred at the same temperature for 0.5 h and quenched with $\mathrm{H}_{2} \mathrm{O}(100$ mL). The resulting mixture was allowed to warm to room temperature and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford 2-methyl-3-methoxy-3,4-pentadien-2-ol as a yellow liquid $(5.65 \mathrm{~g})(82 \%)$ that was employed in the next step without further purification.
The resulting methoxyallene ($5.65 \mathrm{~g}, 44 \mathrm{mmol}$) was added dropwise to 5% aq $\mathrm{H}_{2} \mathrm{SO}_{4}(110$ mL) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 1.5 h . After this time the reaction was allowed to

[^3]warm to room temperature and the solution was saturated with solid NaCl . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 60 \mathrm{~mL})$ and the combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed to give a yellow oil which upon distillation afforded the enone as a colorless liquid (4.42 g) (88%) b.p. $45^{\circ} \mathrm{C}(13 \mathrm{mmHg})$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 3445$ $(\mathrm{OH}), 1693(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.73(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{~J}=16.8 \mathrm{~Hz}), 6.50(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $\left.2.2 \mathrm{~Hz}, \mathrm{~J}^{\prime}=16.8 \mathrm{~Hz}\right), 5.82\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{~J}^{\prime}=10.3 \mathrm{~Hz}\right), 1.38(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 202.3, 131.1, 128.8, 75.4, 26.1.

METHOD F (via Horner-Wadsworth-Emmons olefination) ${ }^{6}$

Scheme S3

Methyl 2-hydroxyisobutyrate ($6.9 \mathrm{~mL}, 60 \mathrm{mmol}$) was added under a nitrogen atmosphere to a solution of dimethyl amino pyridine ($1.22 \mathrm{~g}, 10 \mathrm{mmol}$), triethylamine ($10 \mathrm{~mL}, 50 \mathrm{mmol}$) and triethylchlorosilane ($8.5 \mathrm{~mL}, 50 \mathrm{mmol}$) in 50 mL of dichloromethane. The reaction mass was stirred at room temperature for 24 hours. After filtering over celite to remove the salt, the filtrate was diluted with diethyl ether $(150 \mathrm{~mL})$ and the resulting solution was washed with brine ($1 \times 50 \mathrm{~mL}$) and water ($1 \times 50 \mathrm{~mL}$). The solvent was removed under reduced pressure to give the triethylsilyl ether. Yield: $12.6 \mathrm{~g}(92 \%)$. No further purification is needed. Dimethyl methyl phosphonate ($13.8 \mathrm{~mL}, 130 \mathrm{mmol}, 2.5 \mathrm{eq}$) in dry THF (40 mL) was added drop-wise to a cold solution of $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $79 \mathrm{~mL}, 130 \mathrm{mmol})$ in dry THF $(80 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirring the resulting solution for 30 min , a solution of the crude triethylsilyl ether prepared above ($12 \mathrm{~g}, 51 \mathrm{mmol}$) in dry THF (100 mL) was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature $\left(-78^{\circ} \mathrm{C}\right)$ for 3 h and then quenched at this temperature with saturated ammonium chloride solution (200 mL). After allowing reaction mass to come to room temperature, it was extracted with diethyl ether (3 x 250 mL), dried over MgSO_{4} and the solvent was evaporated under reduced pressure to get the title compound. Yield: $17 \mathrm{~g}(99 \%)$. It was used for the next step without further purification.

Dried $\mathrm{LiCl}(1.17 \mathrm{~g}, 27 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(3.8 \mathrm{~mL}, 27 \mathrm{mmol})$ were added successively to a solution of (3-methyl-2-oxo-3-triethylsilyloxybutyl)-phosphonic acid dimethyl ester (9.0 g, 27 $\mathrm{mmol})$ in dry $\mathrm{MeCN}(67 \mathrm{~mL})$. The resulting milky suspension was stirred for 15 min at room temperature and aldehyde (27 mmol) was added drop-wise. The mixture was stirred for 40 h , diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4} and concentrated in vacuo. The resulting oil was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(120 \mathrm{~mL})$ and $\mathrm{HF}(48 \%$ aqueous, 1.2 mL) was added dropwise. The mixture was stirred for 3 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried and concentrated in vacuo. Flash cromatography (hexanes-EtOAc, 10:1) of the residue gave pure α^{6}-hydroxy enone $\mathbf{4 2}$ in 85% yield. Characterization data of thus obtained compound were fully coincident with those reported in the literature. ${ }^{4}$

[^4]
METHOD G (Aldol condensation)

Scheme S4

3-Hydroxy-3-methyl-2-butanone ($5.0 \mathrm{~g}, 49 \mathrm{mmol}$) was dissolved in a mixture of $\mathrm{MeOH}(120$ mL) and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. Freshly distilled aldehyde (87.5 mmol) was then added followed by $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(10.28 \mathrm{~g}, 245 \mathrm{mmol})$. The reaction was stirred at reflux for 3 h , and after removal of MeOH under reduced pressure, the aqueous residue was diluted with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were combined, dried over MgSO_{4} and concentrated. The crude product was flash chromatographed $\left(\mathrm{SiO}_{2}\right)$ using a 10:1 hexane:ethyl acetate mixture as eluent to get the corresponding α-hydroxy enone.

Characterization data of thus obtained products $\mathbf{4 3 - 4 5}$ were fully coincident with those previously reported. ${ }^{4}$

Preparation of 2-diethylphosphoryloxy-1,3-butadiene (33) ${ }^{7}$

To a solution of 2,2,6,6-tetramethylpiperidine ($5.69 \mathrm{~g}, 40.3 \mathrm{mmol}$) in THF (50 mL) at $-78^{\circ} \mathrm{C}$ and under an atmosphere of nitrogen, was added a 2.5 M solution of n-butyllithium in hexane ($16.1 \mathrm{~mL}, 40.3 \mathrm{mmol}$) with stirring. After 10 min , a solution of methyl vinyl ketone ($3.08 \mathrm{~mL}, 37 \mathrm{mmol}$) in THF (20 ml) was added dropwise over 10 min . After another 10 min , diethyl chlorophosphate (6.4 mL , 44.4 mmol) was added and the reaction mixture was allowed to warm up to room temperature. Then, ice-cold water (100 ml) was added and the resulting mixture was extracted with a solution of ether and n -hexane ($1: 1,4 \times 100 \mathrm{~mL}$). The combined organics was washed two times with water, dried over MgSO_{4}, filtered and evaporated under reduced pressure. Purification of the crude product was effected by flash silica gel column chromatography using a 1:5 ethyl acetate/hexane mixture as the eluant, to afford $4.11 \mathrm{~g}(54 \%)$ of the title compound. Characterization data of thus obtained compound were in good agreement with those reported in the literature. ${ }^{7}$ Yelow oil; IR (neat, cm^{-1}) 1643, 1593 (C=C), 1268, 1027, 999 (phosphate); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.10\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}_{1}=3.3 \mathrm{~Hz}, \mathrm{~J}_{2}=10.5 \mathrm{~Hz}, \mathrm{~J}_{3}=17.1 \mathrm{~Hz}\right), 5.48$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=17.2 \mathrm{~Hz}), 5,12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.2 \mathrm{~Hz}), 5.01\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=4.1 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}\right), 4.66(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{J}_{1}=4.1 \mathrm{~Hz}, \mathrm{~J}_{2}=2.2 \mathrm{~Hz}\right), 4.10\left(\mathrm{dq}, 4 \mathrm{H}, \mathrm{J}_{1}=7.3, \mathrm{~J}_{2}=7 \mathrm{~Hz}\right), 1,35\left(\mathrm{dt}, 6 \mathrm{H}, \mathrm{J}_{1}=1.1 \mathrm{~Hz}, \mathrm{~J}_{2}=6.9 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 151.3$ (d), 131.3 (d), 116.1, 101.4 (d), 64.6 (d), 16.2 (d).

[^5]
Camphor-derived Diels-Alder adducts not included in the Experimental Section

Diels-Alder adducts 13-20, 27, and 29-32, were obtained by following the General Procedure C of the Experimental Section. Characterization data of thus obtained products were fully coincident with those previously reported in the literature. ${ }^{1}$ Copies of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are provided in the corresponding Section of this SI.

$\mathbf{C u}(\text { OTf })_{2}$-tBOX-catalyzed enantioselective Diels-Alder reaction of achiral α^{\prime}-hydroxy enones

Preparation of catalyst [Cu ((S, S)-tert-Bu-box)] (SbF $\left.\mathbf{F}_{6}\right)^{8}$
(S, S)-tert-butyl-bis-(oxazoline) ($16.2 \mathrm{mg}, 0.055 \mathrm{mmol}$), $\mathrm{CuCl}_{2}(6.7 \mathrm{mg}, 0.050 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(34.4 \mathrm{mg}, 0.10 \mathrm{mmol})$ were combined in an inert atmosphere and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added. The flask was wrapped in alumina foil to protect the reaction mixture from light. The reaction was stirred for 14 h in the dark to produce a blue or green solution with a whiteorange AgCl precipitate. At the end of this time the mixture was filtered in air through a short column of oven-dried Celite, and rinsed with 0.2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The clear blue solution of $[\mathrm{Cu}((S, S)$-tert-Bu-box $)]\left(\mathrm{SbF}_{6}\right)_{2}$ was employed as a catalyst solution $(0.05 \mathrm{M})$ for the DielsAlder reactions.

To a solution of the corresponding α '-hydroxy enone (0.5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added the diene (5-10 equiv) at the temperature indicated in tables 5 and 6. Immediately after, the 0.05 M solution of catalyst prepared as indicated above (1 mL) was added dropwise. The reaction mixture was stirred at the same temperature for the amount of time specified in the tables. The reaction mixture was then diluted with 5 mL of 1:1 ethyl acetate/hexane and directly applied to a short silica gel column ($1.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$) to remove copper salts. It was eluted with approximately 50 mL of 1:1 ethyl acetate/hexane and concentration afforded the unpurified product which was then analyzed by ${ }^{13} \mathrm{C}$ NMR. Subsequent purification was accomplished by column chromatography (silica gel, 1:30 ethyl acetate/hexane).

Cycloadducts from the Diels-Alder reaction with achiral α^{\prime}-hydroxyenones

Cu-catalyzed Diels-Alder adducts 36, and 38-41, were obtained following the above procedure. Their synthesis and characterization have been previously reported by us. ${ }^{4}$

Oxidative removal of the auxiliary (I). Synthesis of carboxylic acids 50 and 51

To a solution of the corresponding α^{\prime}-hydroxy ketone $\mathbf{1 3}$ or $\mathbf{2 7}(1 \mathrm{mmol})$ in acetonitrile (12 mL) at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of ceric ammonium nitrate (CAN) ($1.64 \mathrm{~g}, 3$ mmol) in water (6 mL) and the mixture was stirred at the same temperature for 10 minutes.

[^6]Then water (3 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 10$ mL), dried over MgSO_{4}, filtered, and the solvent evaporated to afford the starting (R)-(+)camphor in about 90% yield. The basic aqueous layer was acidified by adding concentrate HCl and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined extracts were dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude product was purified by column chromatography (eluant: ethyl acetate/hexane $1: 30$) to afford the corresponding carboxylic acid $\mathbf{5 0}$ or 51.

For full characterization of compounds $\mathbf{5 0}$ and $\mathbf{5 1}$, see Reference 1.

Oxidative removal of the auxiliary (II). Synthesis of ketones 54 and 55

$\mathrm{nBuLi}\left(2.5 \mathrm{M}\right.$ in hexanes, $1.2 \mathrm{~mL}, 3 \mathrm{mmol}$) or $\mathrm{MeLi}\left(1.4 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 2.14 \mathrm{~mL}, 3 \mathrm{mmol}$) was added to a solution of α '-hydroxy ketone 15 (1 mmol) in THF (3 mL) at $-78{ }^{\circ} \mathrm{C}$ and the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$ and the resulting mixture was allowed to warm to room temperature, after which the layers were separated and the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the solvent removed under reduced pressure. The residue thus obtained was subjected to oxidative scission by treatment with CAN, under the same conditions reported above. The resulting crude product $\mathbf{5 4}$ or $\mathbf{5 5}$ was purified by column chromatography (eluant: ethyl acetate/hexane 1:30).

For full characterization of compounds $\mathbf{5 4}$ and $\mathbf{5 5}$, see Reference 1.

The synthesis and characterization of carboxylic acids $\mathbf{5 2} / \mathbf{5 3}$ and ketones $\mathbf{5 6} / \mathbf{5 7}$ by oxidative scission of the corresponding D-A cycloadducts have been described earlier. For pertinent information, see Reference 4.

Attempted direct organocatalytic Diels-Alder reaction of cynnamaldehyde with myrcene and 1,3-cyclohexadiene

The cycloaddition reaction of cinnamaldehyde with either myrcene or 1,3-cyclohexadiene was attempted unsuccessfully using MacMillan's catalytic methodology. Several conditions were employed (see Scheme S5), but no detectable amount of cycloadduct was observed by ${ }^{1} \mathrm{H}$ NMR in either case, being the unchanged starting materials obtained instead. See below for the detailed experimental procedure.

A

B

Conditions:

- Cat A, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$
- Cat A, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}+40 \mathrm{~mol} \% \mathrm{TfOH}$
- Cat A, DMF/MeOH/H2O
- Cat B, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}+40 \mathrm{~mol} \% \mathrm{TfOH}$

Scheme S5

Procedure with catalyst A in $\mathbf{M e O H} / \mathbf{H}_{\mathbf{2}} \mathrm{O}$: ${ }^{9}$

To a solution of (5S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one hydrochloride ($0.20 \mathrm{~g}, 0.8$ mmol, catalyst $\mathbf{A})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(95 / 5 \mathrm{v} / \mathrm{v}, 2 \mathrm{~mL}, 1.0 \mathrm{M})$ was added trans-cinnamaldehyde $(0.25 \mathrm{~mL}, 2 \mathrm{mmol})$. The solution was stirred for 2 minutes before addition of the corresponding diene (6 mmol). After two days, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed successively with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. After evaporation, the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR and the presence of the corresponding cycloadduct (as dimethyl acetal) was not observed.

Procedure with catalyst A in $\mathrm{DMF} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as solvents: ${ }^{10}$

To a solution of cinnamaldehyde ($0.25 \mathrm{~mL}, 2 \mathrm{mmol}$) in DMF, MeOH , and water ($1 / 1 / 0.1 \mathrm{~mL}$ respectively) was added (5S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one hydrochloride (0.20 $\mathrm{g}, 0.8 \mathrm{mmol}$, catalyst \mathbf{A}). After the solution was stirred for 2 min . at room temperature, myrcene ($1.02 \mathrm{~mL}, 6 \mathrm{mmol}$) was added dropwise. The reaction was stirred 20 h , then diluted with water and $\mathrm{Et}_{2} \mathrm{O}$ and separated. The aqueous portion was extracted again with $\mathrm{Et}_{2} \mathrm{O}$, and the organics portions were combined, washed with brine, dried over MgSO_{4}, filtered and concentrated. After evaporation, the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR and the presence of the corresponding cycloadduct (as dimethyl acetal) was not observed.

Procedure in the presence of $\mathbf{T f O H}$:

To a solution of (5S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one hydrochloride ($0.20 \mathrm{~g}, 0.8$ mmol , catalyst \mathbf{A}) or ($2 \mathrm{~S}, 5 \mathrm{~S}$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($0.20 \mathrm{~g}, 0.8$ mmol , catalyst B) in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(95 / 5 \mathrm{v} / \mathrm{v}, 2 \mathrm{~mL}, 1.0 \mathrm{M})$ at $0^{\circ} \mathrm{C}$, was added transcinnamaldehyde. Then TfOH ($0.07 \mathrm{~mL}, 0.8 \mathrm{mmol}$) was added and the solution was stirred for 2 minutes at $0^{\circ} \mathrm{C}$ before addition of myrcene ($1.02 \mathrm{~mL}, 6 \mathrm{mmol}$). After one day of stirring at room temperature, the reaction mixture was quenched with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, and the solvent was removed under reduced pressure. After

[^7]evaporation, the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR and the presence of the corresponding cycloadduct (as dimethyl acetal) was not observed.

Kinetic measurements for the Brønsted acid-catalyzed Diels-Alder reactions.

The kinetic measurements were obtained from experiments performed in parallel using samples prepared from the same stock solutions of enone $\mathbf{1}$ and internal standard to avoid interexperimental errors. The reactions were performed in tightly stoppered NMR tubes using CDCl_{3} as solvent and the temperature was controlled by a thermostatic bath where the tubes were kept at 293 K and periodically shacked. The measurements started after addition and fast mixing of the diene (2,3-dimethyl-1,3-butadiene) and the corresponding amount of catalyst (TFA) to the stock solutions containing the $\alpha^{\prime}-$ hydroxy enone 1 and internal standard (2methylnaphtalene). The evolution of the reaction was followed by the periodical quantification of enone disappearance by NMR spectroscopy measuring the decrease of the signal of its methylene groups (dd at $\delta 5.67 \mathrm{ppm}$) respect to the methyl signal (s at $\delta 2.53$ ppm) of the internal standard, 2-methylnaphtalene.

For rate constants calculation, the experimental data points of $-\ln \left([\mathbf{1}] /[\mathbf{1}]_{0}\right)$ were plotted against time, with [1] and [1] ${ }_{0}$ being the actual and the initial concentration of species $\mathbf{1}$, respectively. The points were adjusted to lines by linear regression and the rate constants calculated from the values of the slopes [[using Igor Pro software (Wavemetrics Inc.)]]. To determine the reaction order in acid TFA, four different concentrations (5, 10, 15, and 20 mol $\%$) of TFA were tested and the calculated kinetic rate constants ($k_{\text {obs }}$) were plotted versus the catalyst loading. The straight line obtained $\left(R^{2}=0.984\right)$ indicates the first order dependence in TFA acid (see graphics below).

Experimental procedure. To a mixture of $\alpha^{\prime}-$ hydroxy enone 1, ($\left.156.2 \mathrm{mg}, 0.75 \mathrm{mmol}\right)$ and 2methylnaphtalene ($21.3 \mathrm{mg}, 0.15 \mathrm{mmol}$) as internal standard in $\mathrm{CDCl}_{3}(3 \mathrm{~mL})$, were successively added 2,3-dimethyl-1,3-butadiene ($308 \mathrm{mg}, 3.75 \mathrm{mmol}, 5$ equiv.) and the corresponding increasing amounts of TFA ($0.05,0.1,0.15$ or 0.20 equivalents in four experiments). After fast mixing of the mixture, $600 \mu \mathrm{~L}$ aliquots were taken into NMR tubes and spectra were recorded at suitable intervals.

Figure S1 (5 mol \% TFA)

$$
\begin{aligned}
& a=0.096212 \pm 0.056 \\
& b=0.0028892 \pm 0.000219 \\
& \operatorname{Pr}=0.985904 \\
& y=0.00289 x+0.096 \\
& R^{2}=0.986
\end{aligned}
$$

Figure S2 ($10 \mathrm{~mol} \% \mathrm{TFA}$)

$$
\begin{aligned}
& a=0.084243 \pm 0.0147 \\
& b=0.0033771 \pm 5.92 \mathrm{e}-05 \\
& \operatorname{Pr}=0.999233 \\
& y=0.00338 x+0.0842 \\
& R^{2}=0.999
\end{aligned}
$$

Figure S3 ($15 \mathrm{~mol} \% \mathrm{TFA}$)

$$
\begin{aligned}
& a=0.31948 \pm 0.105 \\
& b=0.0036963 \pm 0.000394 \\
& \operatorname{Pr}=0.972721 \\
& y=0.0037 x+0.319 \\
& R^{2}=0.973
\end{aligned}
$$

Figure S4 ($20 \mathrm{~mol} \% \mathrm{TFA}$)

$$
\begin{aligned}
& a=0.0057038 \pm 0.0583 \\
& b=0.0039087 \pm 0.000246 \\
& \operatorname{Pr}=0.988309 \\
& y=0.00391 x+0.0057 \\
& R^{2}=0.988
\end{aligned}
$$

Figure S5. Order in acid TFA.

$$
\begin{aligned}
& \mathrm{a}=0.0026234 \pm 0.00012 \\
& \mathrm{~b}=6.7554 \mathrm{e}-05 \pm 8.76 \mathrm{e}-06 \\
& \operatorname{Pr}=0.983612 \\
& \mathrm{y}=0.000067 \mathrm{x}+0.0026 \\
& \mathrm{R}^{2}=0.984
\end{aligned}
$$

Quantum calculations of Brønsted acid-catalyzed Diels-Alder reactions

General Information.

All structures were optimized using the functional B3LYP ${ }^{11}$ and the $6-31+\mathrm{G}^{* *}$ basis sets as implemented in Gaussian 03. ${ }^{12}$ Density Functional Theory has been shown to reliably predict the results of $[4+2]$ Diels-Alder and other pericyclic reactions. ${ }^{13}$ All energy minima and transition structures were characterized by frequency analysis. The stationary points were characterized by frequency calculations in order to verify that they have the right number of negative eigenvalues. The intrinsic reaction coordinates (IRC) ${ }^{14}$ were followed to verify the energy profiles connecting each TS to the correct local minima. The gas-phase energies reported in this work include zero-point and thermal corrections and are not scaled. Solvent effects were included by means of single-point calculations with the self-consistent reaction field (SCRF) based on the IEF-PCM solvation model $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, as solvent, $\varepsilon=8.93$, Pauling radii) on the previously gas-phase optimized structures. ${ }^{15}$ The transition states shown in the Text correspond to the Diels-Alder reaction of α '-hydroxy enone 1 with cyclopentadiene, in the absence of any external acid and in the presence of one molecule of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ or $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$.

Reaction of 1 and cyclopentadiene

For the catalytic Diels-Alder reaction of 1 and cyclopentadiene a range of ternary TS geometries were evaluated. Among them those with the lowest energy values were further considered for more refined calculations and correspond to structures depicted in Figure 7 of the Article. Coordinates and geometries of such structures are shown below. In Figure S6, several other structures are depicted, which were subsequently discarded because of the considerably higher energy.

[^8]

Figure S6. Pool of structures also computed at the outset. Their contribution was subsequently discarded because of the comparatively high energy.

Coordinates of the most plausible TS structures for the Diels-Alder reaction between hydroxyenone 1 and cyclopentadiene in the presence of $\mathbf{T f O H}$.

For the non-catalyzed reaction between $\mathbf{1}$ and cyclopentadiene, the four possible diastereoisomers with an intramolecular hydrogen bond (Figure S7) were computed. The comparison of $\Delta \mathrm{G}^{\ddagger}$ predicts an endolexo selectivity of 4.4:1 and a diastereoselectivity greater than 100:1.

endo-major
26.8

exo-major
27.7

endo-minor
31.7

exo-minor
30.5

Figure S7. Diastereomeric transition structures for the non-catalyzed reaction between $\mathbf{1}$ and cyclopentadiene. Values of $\Delta \mathrm{G}^{\ddagger}$ are given in $\mathrm{kcal} / \mathrm{mol}$.

After introduction of one molecule of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, different activation options arise for each diastereoisomer, whose main difference is based on the hydrogen bond network formed between acid activator, diene and dienophile. As an example, the overall lowest in energy for the endo approach are depicted in Figure S8.

$\Delta G^{\ddagger}=22.4$

$\Delta G^{\ddagger}=23.4$

$\Delta G^{\ddagger}=24.7$

$\Delta G^{\ddagger}=26.7$

$\Delta G^{\ddagger}=27.7$

Figure S8

TS hydroxyenone 1+CP (endo) (trifluoromethanesulfonic acid)
Atomic Coordinates (Ångstroms)

Type	X	YZ
C	-4.0390	-1.3978	0.6065
C	-3.2288	-2.7126	0.4206
C	-2.6126	-3.2750	1.7174
C	-3.2088	-1.4915	-1.6700
C	-2.2184	-2.0501	-0.6037
C	-1.1403	-2.9546	-1.1862
C	-2.9576	-0.3935	1.0502
C	-4.0592	-3.8653	-0.1845
C	-4.4452	-1.0289	-0.8402
C	-1.7761	1.5382	-1.0122
C	-1.1435	0.3153	-0.7082
C	-1.6912	-0.7849	0.2202
C	-1.1365	2.4868	-1.8032
H	-0.4450	-3.3182	-0.4244
H	-4.8805	-1.4601	1.3045
H	-3.4717	-2.2840	-2.3769
H	-2.7723	-0.6870	-2.2691
H	-4.6445	0.0440	-0.9437
H	-5.3568	-1.5482	-1.1509
H	-3.2813	0.6411	0.9168
H	-2.6946	-0.5082	2.1038
H	-1.6045	-3.8272	-1.6597
H	-0.5488	-2.4484	-1.9565
H	-1.9717	-2.5721	2.2457
H	-3.4144	-3.5991	2.3932
H	-4.8303	-4.1743	0.5316
H	-3.4259	-4.7402	-0.3703
H	-2.0049	-4.1600	1.4932
H	-4.5652	-3.6205	-1.1208
H	-2.7392	1.7597	-0.5753
H	-1.6816	3.3734	-2.1119
H	-0.3118	2.1909	-2.4384
H	0.1247	-1.4684	0.7522
O	0.0092	0.1404	-1.2885
O	-0.6707	-1.0700	1.1682
C	-0.7604	3.8261	0.7231
C	-0.4087	2.6271	1.5535
C	0.1786	3.6810	-0.4583
C	0.7435	2.0612	1.0874

endo

C	1.1310	2.7273	-0.1212
H	-0.4917	4.7402	1.2781
H	-1.8234	3.9158	0.4798
H	-0.9545	2.3201	2.4384
H	0.3436	4.4709	-1.1834
H	1.2736	1.2241	1.5273
H	2.0147	2.4633	-0.6916
H	0.6260	-0.6212	-0.9505
O	1.5977	-1.5969	-0.3512
S	2.8833	-0.9051	0.1158
O	3.2380	0.2394	-0.7396
O	2.9219	-0.7081	1.5713
C	4.1464	-2.2207	-0.2529
F	4.1745	-2.4841	-1.5645
F	5.3568	-1.7981	0.1285
F	3.8529	-3.3467	0.4070

$\mathrm{HF}=-1813.559623$ (including sum of electronic and thermal free energies)
Freq: -224.4
TS hydroxyenone 1+CP (exo)(trifluoromethanesulfonic acid)
Atomic Coordinates (Ångstroms)

Type	X	Y	Z
C	-3.3770	-1.6775	0.7567
C	-2.6055	-2.9328	0.2586
C	-1.7351	-3.6188	1.3308
C	-3.0163	-1.4765	-1.6320
C	-1.8273	-2.1217	-0.8570
C	-0.8816	-2.9188	-1.7469
C	-2.2405	-0.6934	1.0947
C	-3.5275	-4.0363	-0.3021
C	-4.0695	-1.1602	-0.5267
C	-1.4978	1.4985	-0.8903
C	-0.8087	0.2742	-0.8954
C	-1.1614	-0.9409	-0.0110
C	-1.1095	2.6135	-1.6390
H	-0.0441	-3.3462	-1.1887
H	-4.0602	-1.8487	1.5951
H	-3.4039	-2.1878	-2.3672
H	-2.7167	-0.5910	-2.2002
H	-4.3010	-0.0909	-0.4590
H	-5.0172	-1.6744	-0.7130
H	-2.5965	0.3367	1.1585
H	-1.7702	-0.9224	2.0531
H	-1.4254	-3.7448	-2.2194
H	-0.4615	-2.3087	-2.5531
H	-1.0158	-2.9566	1.8080
H	-2.3806	-4.0553	2.1038
H	-4.1446	-4.4412	0.5091
H	-2.9350	-4.8682	-0.6992
H	-1.1674	-4.4435	0.8833
H	-4.2058	-3.7086	-1.0933
H	-2.3530	1.5935	-0.2371
H	-1.8225	3.4176	-1.7846
H	-0.3770	2.4910	-2.4298
H	0.7286	-1.6186	0.0685
O	0.1817	0.1668	-1.7428
O	0.0309	-1.2958	0.6808
C	1.2212	2.6522	-0.0871
C	0.2720	3.7708	-0.4489
C	0.6115	2.1007	1.1539
C	-0.5017	4.0315	0.6850

C	-0.3372	2.9811	1.6270
H	2.1989	3.0890	0.1800
H	1.4512	1.9075	-0.8492
H	0.4963	4.5169	-1.2044
H	0.9407	1.1772	1.6155
H	-1.1841	4.8682	0.7993
H	-0.8922	2.8807	2.5531
H	0.8640	-0.5932	-1.5853
O	1.9514	-1.6127	-1.2861
S	3.3114	-1.0107	-0.9147
O	4.3016	-1.1050	-1.9862
O	3.1648	0.2768	-0.2088
C	3.8587	-2.2104	0.3988
F	4.0202	-3.4352	-0.1125
F	5.0172	-1.8078	0.9321
F	2.9380	-2.2737	1.3763

$\mathrm{HF}=-1813.555917$ (including sum of electronic and thermal free energies)
Freq: - 259.9

Reaction of methyl vinyl ketone and cyclopentadiene

From the calculations involving the Brønsted acid-promoted Diels-Alder reaction of camphorderived α^{\prime}-hydroxy enone $\mathbf{1}$ and cyclopentadiene (Figure 7, Main Text), the existence of a secondary $\mathrm{CH} \cdots \mathrm{O}$ hydrogen bond (between 2.3 and $2.5 \AA$) was observed, which involves a basic atom of the Brønsted acid and a hydrogen atom at the sp^{2} hybridized carbons of the diene. In order to ascertain whether this particular interaction is specific to the mentioned system or more general, we conducted a computational study on a simple system, namely the Diels-Alder reaction of cyclopentadiene (CP) and methyl vinyl ketone (MVK) in the presence of $\mathrm{HCN}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$. While MVK is monodentate and thus lacks an additional point for hydrogen bond interaction, the model would serve to establish whether or not Brønsted acids are able to build an efficient H -bonding network with these simple systems.

Among the Brønsted acids examined (Table S1) there is a good correlation between the pKa of the acid and the activation energy, in the gas-phase and in solvent. Triflic acid showed the largest activation effect (energy decreasing of $\Delta \Delta \mathrm{E}^{*}=9.0 \mathrm{kcal} / \mathrm{mol}$) resulting in 10^{6}-fold faster reaction as compared with the non-catalyzed reaction. The activation barrier for the endo approach was lower than that of the exo approach, and the endolexo gap for TFA (entry 3, Table S1) and TfOH (entry 4) is higher than for the weaker HCN (entry 2) or in the absence of added acid (entry 1). As expected, the activation values measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent are lower than those of the gas-phase due to the higher charge separation during the TS over the initial reactants. Nonetheless, the incorporation of the solvent effect does not alter the general reactivity-selectivity trends.

Table S1. Activation energies ${ }^{\text {a }}$ for the DA reaction between MVK and CP in the presence of one molecule of the BA promoter, and calculated endolexo selectivities.

entry	BA	$\mathrm{pK}_{\mathrm{a}}{ }^{\mathrm{b}}$	$\Delta \mathrm{E}^{\ddagger}$ (endo)	$\Delta \mathrm{E}^{\ddagger}$ (exo)	endo/exo $^{\mathrm{c}}$
1	No acid	---	$18.6(17.0)$	$18.8(17.4)$	$1.3: 1$
2	HCN	9.1	$16.5(11.0)$	$17.0(11.0)$	$2.3: 1$
3	$\mathrm{~F}_{3} \mathrm{CCOOH}$	-0.2	$13.1(12.9)$	$14.3(14.0)$	$7.7: 1$
4	$\mathrm{~F}_{3} \mathrm{CSO}_{3} \mathrm{H}$	-14.0	$9.6(2.7)$	$10.7(3.7)$	$6.1: 1$

[a] $\Delta \mathrm{E}^{\ddagger}$ energies in $\mathrm{kcal} / \mathrm{mol}$, computed at B3LYP/6-31+G**. IEF-PCM $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ single-point values are shown in parenthesis. [b] Reported pK_{a} values in water (from: Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456-463, and http://www.chem.wisc.edu/areas/reich/pkatable/index.htm). [c] Based on the gas-phase activation energies.

An analysis of the calculated transition state geometries for the acid-promoted reaction is also noteworthy. The reduction in the activation barrier for the acid-promoted reaction as compared to the uncatalyzed process is accompanied by a shortening of the r_{1} distance (Figure S9), and the magnitude of this shortening correlates well with the acid strength of the Brønsted acid involved. For instance, whereas HCN presents the larger r_{1} distance $(1.90 \AA$, entry 1, Table S2) and the lowest catalytic activity, the r_{1} value for stronger acids (TFA, $\mathrm{TfOH})$ falls below $1.5 \AA$. The very short r_{1} distance for triflic acid ($1.07 \AA$) corresponds to an essentially covalent $\mathrm{O}-\mathrm{H}$ bond, reflecting the capacity of triflic acid for extensive proton transfer to the carbonyl group during the transition state.

endo

exo

Figure S9. Hydrogen-bond interactions in the calculated endo and exo TS for the Brønsted acid-promoted Diels-Alder reaction between MVK and cyclopentadiene. O-H represents a Brønsted acid with a basic oxygen atom.

Table S2. Computed values (B3LYP/6-31+G** level) in \AA for the r_{1} and r_{2} distances as defined in Figure S9 for selected Brønsted acids.

Entry	Acid	r1 (endo)	r2 (endo)	r1 (exo)	r2 (exo)
1	HCN	1.90	---	1.92	---
2	$\mathrm{~F}_{3} \mathrm{CCOOH}$	1.48	2.47	1.49	2.94
3	$\mathrm{~F}_{3} \mathrm{CSO}_{3} \mathrm{H}$	1.07	2.31	1.05	2.38

Actually, for $\mathrm{CF}_{3} \mathrm{COOH}$ and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, a second electrostatic positive interaction r_{2} was also observed, which involves a basic atom of the Brønsted acid and a hydrogen atom at the sp^{2} hybridized carbon of the diene. In sharp contrast, HCN did not lead to any appreciable secondary interaction (Figure S9). ${ }^{16}$ Although this secondary hydrogen-bond interaction is weak ($2.3 \AA<r_{2}<2.5 \AA$, Table S2), it contributes to both the diminishing of the activation barrier of the reaction and the increasing of the degree of order of the TS. Noteworthy, whilst TfOH presents similar interactions in the endo and exo trajectories, TFA shows a stronger interaction in the endo approach, which might contribute to the slightly higher endolexo selectivity of the latter. Although solvent effects are expected to weaken hydrogen bonds, the transition state in the presence of formic acid was optimized in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ model (PCM), leading to a structure that retains the r_{2} secondary interaction in the endo approach ($2.60 \AA$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.44 \AA$ in gas-phase), whilst it is completely lost in the exo approach ($>3.50 \AA$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.76 \AA$ in gas-phase). The corresponding refined activation energies are 13.9 $\mathrm{kcal} / \mathrm{mol}$ (endo) and $15.5 \mathrm{kcal} / \mathrm{mol}$ (exo), corresponding to $15: 1$ selectivity, slightly higher than in the gas-phase.

Representative geometries of the computed transition states (MVK + Cyclopentadiene)

Figure S10 shows the transition state geometry of two instructive examples which involve HCN and TFA-promoted Diels-Alder reactions. While the $\mathrm{H}-\mathrm{O}-\mathrm{C}=\mathrm{O}$ angularity in TFA

[^9]molecule can effectively accommodate the double H -bond interaction, the lack of oxygen atoms and the linearity of the $\mathrm{H}-\mathrm{C}-\mathrm{N}$ system in HCN seemingly prevent second interaction to be effective.

HCN
$\Delta \mathrm{H}^{\ddagger}=+15.6 \mathrm{kcal} / \mathrm{mol}$
endo

$\Delta \mathrm{H}^{\ddagger}=+16.1 \mathrm{kcal} / \mathrm{mol}$ exo

$\mathrm{CF}_{3} \mathrm{COOH}$ $\Delta \mathrm{H}^{\ddagger}=+12.2 \mathrm{kcal} / \mathrm{mol} \quad \Delta \mathrm{H}^{\ddagger}=+13.4 \mathrm{kcal} / \mathrm{mol}$ exo

Figure S10
5. Coordinates and structures for the non-catalyzed Diels-Alder reaction between cyclopentadiene and 3-buten-2-one at B3LYP/6-311+G**

$\mathrm{TS}_{\mathrm{A} 1}$ Atomic	Coordinates (Ångstroms)		
Type	X	Y	Z
C	2.1535	0.7750	-1.2655
C	2.9855	-0.2550	-0.4475
C	3.3525	-1.5280	-1.2345
C	1.6955	1.0860	1.0935
C	1.8685	-0.4000	0.6645
C	2.1455	-1.3480	1.8215
C	0.8255	0.0220	-1.5095
C	4.3195	0.3080	0.0835
C	1.8735	1.8880	-0.2305
H	4.2235	1.2160	0.6775
H	2.2835	-2.3730	1.4715

H	2.6245	1.1300	-2.1855
H	2.4615	1.3490	1.8255
H	0.7355	1.2700	1.5765
H	0.9855	2.4710	-0.4945
H	2.7025	2.5950	-0.1645
H	0.0075	0.7060	-1.7385
H	0.8995	-0.6830	-2.3385
H	3.0475	-1.0460	2.3615
H	1.3175	-1.3500	2.5375
H	2.5065	-2.0250	-1.6985
H	3.8305	-2.2580	-0.5745
H	4.0795	-1.2710	-2.0135
H	4.9825	0.5350	-0.7575
H	4.8285	-0.4380	0.7005
C	0.5915	-0.7960	-0.2025
C	-0.7425	-0.5580	0.5565
C	-1.4805	0.6760	0.5035
C	-2.6095	0.8320	1.3255
H	-1.1375	1.4910	-0.1175
H	-2.9665	1.8430	1.4955
H	-2.6685	0.1850	2.1935
H	0.0325	-2.5950	0.1675
O	-1.1755	-1.5150	1.2215
O	0.5955	-2.1890	-0.5135
C	-3.9465	0.8410	-0.9775
C	-3.0635	-0.1860	-1.6195
C	-4.2005	0.1980	0.3785
C	-3.2545	-1.3940	-0.9885
C	-3.9905	-1.1860	0.1935
H	-4.9005	0.8740	-1.5255
H	-3.5485	1.8550	-0.9565
H	-2.5135	-0.0300	-2.5375
H	-4.9825	0.5640	1.0355
H	-2.8295	-2.3390	-1.2975
H	-4.2475	-1.9560	0.9075

Sum of electronic and thermal Free Energies $=-851.798340$ Freq: -384.9

$\mathbf{T S}_{\mathbf{A} 2}$			
Atomic	Coordinates $($ Angstroms $)$		
Type	X	Y	Z
C	4.3140	-0.6450	-0.3845
C	1.6440	-0.5510	-1.5535
C	2.3870	1.8670	-1.0495
C	0.7290	0.5930	0.5165
C	3.5320	0.4380	1.6785
C	1.9730	0.5210	-0.4755
C	0.8390	-0.7680	1.2705
C	2.0780	-1.4540	0.6535
C	-0.6080	0.9000	-0.2185
C	-2.5600	0.1430	-1.5695
C	-1.4740	-0.1460	-0.7265
C	3.0400	-0.2590	0.3965
C	1.6980	-1.9020	-0.7765
H	4.2010	-0.2380	2.2225
H	2.6260	2.5800	-0.2585

H	1.5890	2.3020	-1.6595
H	-1.1780	-1.1740	-0.5835
H	4.9300	-1.3120	0.2255
H	-2.6230	1.1600	-1.9445
H	-2.8750	-0.6160	-2.2755
H	4.1310	-1.1490	-1.3335
H	4.9150	0.2440	-0.5945
H	3.2690	1.7570	-1.6875
H	2.4830	-2.2550	1.2775
H	-0.0560	-1.3840	1.1775
H	0.9740	-0.5530	2.3305
H	0.7450	-2.4370	-0.7925
H	2.4440	-2.5800	-1.1985
H	4.1120	1.3310	1.4275
H	2.7370	0.7540	2.3465
O	-0.8980	2.0980	-0.3405
C	-4.3750	-1.1150	-0.0235
C	-3.5470	-1.3390	1.0865
C	-4.2200	0.2220	-0.4515
C	-2.9360	-0.1450	1.4445
C	-3.6160	0.9710	0.7195
H	-3.3570	-2.3030	1.5415
H	-4.9210	0.6960	-1.1305
H	-4.9300	-1.8790	-0.5535
H	-2.2560	-0.0040	2.2735
H	-2.9830	1.8210	0.4705
H	-4.4420	1.3370	1.3495
H	2.3940	-0.5160	-2.3465
H	0.6820	-0.3760	-2.0365
O	0.8810	1.6570	1.4565
H	$0 .-\ldots 020$	2.4070	1.0665
S	$-2 .-20$	-20	

Sum of electronic and thermal Free Energies $=-851.731987$
Freq: -418.1

TS $_{\mathbf{A 3}}$			
Atomic	Coordinates (Angstroms)		
Type	X	Y	Z
C	2.2475	1.0290	-1.1530
C	3.2075	0.1400	-0.3130
C	4.3325	0.9310	0.3850
C	0.9725	-0.8910	-0.3280
C	2.0545	-0.3300	0.6670
C	2.4625	-1.2730	1.7920
C	1.6375	1.9720	-0.0920
C	3.9135	-0.9610	-1.1280
C	1.1425	0.0350	-1.5700
C	-2.7895	-1.7010	-0.2930
C	1.5095	1.0460	1.1540
C	-0.4725	-1.0250	0.2350
C	-1.5615	-1.1720	-0.7200
H	0.2205	0.5520	-1.8370
H	1.4365	-0.5770	-2.4240
H	0.6745	2.3730	-0.4190
H	2.2855	2.8300	0.1050
H	1.6065	-1.5190	2.4240
H	3.9855	1.7460	1.0200
H	4.9405	0.2660	1.0040
H	4.9975	1.3650	-0.3690
H	2.8875	-2.2040	1.4030
H	4.4925	-1.6140	-0.4670

H	3.2395	-1.5950	-1.6960
H	3.2255	-0.8090	2.4230
H	2.7075	1.5450	-1.9990
H	4.6245	-0.4970	-1.8210
H	-1.3515	-1.0620	-1.7750
H	-3.4105	-2.1840	-1.0400
H	-2.7985	-2.1800	0.6790
H	0.4915	0.9620	1.5290
O	-0.6675	-1.1530	1.4460
C	-3.6845	0.6450	-1.1340
C	-4.0505	-0.2220	0.0600
C	-2.5125	1.3280	0.7710
C	-3.5085	0.4290	1.1890
C	-2.4595	1.3340	-0.6100
H	-4.4775	1.3970	-1.2660
H	-1.7985	1.9390	-1.2150
H	-4.9975	-0.7490	0.1070
H	-1.8385	1.8560	1.4300
H	-3.7235	0.1750	2.2180
H	-3.5635	0.1230	-2.0820
H	2.1155	1.4100	1.9870
O	1.2585	-2.2430	-0.7650
H	1.1645	-2.8300	-0.0060

Sum of electronic and thermal Free Energies $=-851.724930$ Freq: -420.5

TS ${ }_{\text {A } 4}$			
Atomic	Coordinates (Ångstroms)		
Type	X	Y	Z
C	-4.1970	1.1005	-0.5700
C	-3.2100	1.7385	0.1950
C	-4.1370	-0.2935	-0.3320
C	-2.5920	0.7995	1.0070
C	-3.3910	-0.4605	0.9790
H	-4.8030	1.5755	-1.3310
H	-2.9290	2.7805	0.1120
H	-4.9520	-0.9545	-0.6060
H	-1.8050	1.0015	1.7190
H	-4.1290	-0.4225	1.7970
H	-2.8140	-1.3785	1.0860
C	3.0590	0.2905	-0.1640
C	1.5830	-0.7135	-1.8070
C	4.0210	-0.9105	-0.0870
C	1.0110	-1.0525	-0.3870
C	1.5600	-0.1465	1.9880
C	0.9630	1.4625	0.0650
C	3.8520	1.4905	0.3950
C	1.6220	0.1215	0.4920
C	1.5280	1.7375	-1.3610
C	2.4690	0.5325	-1.5840
H	3.6280	-1.8255	-0.5180
H	4.2770	-1.1305	0.9540
H	4.9520	-0.6525	-0.6020
H	3.2070	0.6845	-2.3750
H	1.2520	2.2485	0.7650
H	-0.1230	1.4175	0.0920
H	0.7480	1.7865	-2.1260
H	2.0680	2.6865	-1.4040
H	0.8010	-0.5285	-2.5470
H	2.1550	-1.5765	-2.1480

H	4.1940	1.2785	1.4130
H	3.3020	2.4305	0.4220
H	4.7470	1.6535	-0.2140
H	0.7660	-2.7805	0.4130
H	2.0480	-1.0895	2.2390
H	2.0480	0.6575	2.5470
H	0.5240	-0.2095	2.3380
O	1.5350	-2.2965	0.0580
C	-2.7070	-0.8925	-1.5320
C	-1.4590	-0.3965	-1.0970
C	-0.5450	-1.2485	-0.3600
H	-1.0790	0.5115	-1.5410
H	-2.8690	-1.9565	-1.3930
H	-3.0940	-0.5085	-2.4680
O	-0.9560	-2.2515	0.2400

Sum of electronic and thermal Free Energies $=-851.727378$
Freq: -411.0

TS $_{\text {B1 }}$			
Atomic	Coordinates (Ångstroms)		
Type	X	Y	Z
C	2.1535	0.7750	-1.2655
C	2.9855	-0.2550	-0.4475
C	3.3525	-1.5280	-1.2345
C	1.6955	1.0860	1.0935
C 0.6775			
H	2.2835	-2.3730	1.4715
H	2.6245	1.1300	-2.1855
H	2.4615	1.3490	1.8255
H	0.7355	1.2700	1.5765
H	0.9855	2.4710	-0.4945
H	2.7025	2.5950	-0.1645
H	0.0075	0.7060	-1.7385
H	0.8995	-0.6830	-2.3385
H	3.0475	-1.0460	2.3615
H	1.3175	-1.3500	2.5375
H	2.5065	-2.0250	-1.6985
H	3.8305	-2.2580	-0.5745
H	4.0795	-1.2710	-2.0135
H	4.9825	0.5350	-0.7575
H	4.8285	-0.4380	0.7005
C	0.5915	-0.7960	-0.2025
C	-0.7425	-0.5580	0.5565
C	-1.4805	0.6760	0.5035
C	-2.6095	0.8320	1.3255
H	-1.1375	1.4910	-0.1175
H	-2.9665	1.8430	1.4955
H	-2.6685	0.1850	2.1935
H	0.0325	-2.5950	0.1675
O	-1.1755	-1.5150	1.2215
O	0.5955	-2.1890	-0.5135
C	-3.9465	0.8410	-0.9775
C	-3.0635	-0.1860	-1.6195
C	-4.2005	0.1980	0.3785
C	-3.2545	-1.3940	-0.9885
C	-3.9905	-1.1860	0.1935
H	-4.9005	0.8740	-1.5255
H	-3.5485	1.8550	-0.9565

```
H}\quad-2.5135 -0.0300 -2.537
H
H
H
```

Sum of electronic and thermal Free Energies $=-851.798340$
Freq: -405.3

TS ${ }_{\text {B2 }}$			
Atomic	Coordin	nates (Ån	ngstroms)
Type	X	Y	Z
C	4.3140	-0.6450	-0.3845
C	1.6440	-0.5510	-1.5535
C	2.3870	1.8670	-1.0495
C	0.7290	0.5930	0.5165
C	3.5320	0.4380	1.6785
C	1.9730	0.5210	-0.4755
C	0.8390	-0.7680	1.2705
C	2.0780	-1.4540	0.6535
C	-0.6080	0.9000	-0.2185
C	-2.5600	0.1430	-1.5695
C	-1.4740	-0.1460	-0.7265
C	3.0400	-0.2590	0.3965
C	1.6980	-1.9020	-0.7765
H	4.2010	-0.2380	2.2225
H	2.6260	2.5800	-0.2585
H	1.5890	2.3020	-1.6595
H	-1.1780	-1.1740	-0.5835
H	4.9300	-1.3120	0.2255
H	-2.6230	1.1600	-1.9445
H	-2.8750	-0.6160	-2.2755
H	4.1310	-1.1490	-1.3335
H	4.9150	0.2440	-0.5945
H	3.2690	1.7570	-1.6875
H	2.4830	-2.2550	1.2775
H	-0.0560	-1.3840	1.1775
H	0.9740	-0.5530	2.3305
H	0.7450	-2.4370	-0.7925
H	2.4440	-2.5800	-1.1985
H	4.1120	1.3310	1.4275
H	2.7370	0.7540	2.3465
O	-0.8980	2.0980	-0.3405
C	-4.3750	-1.1150	-0.0235
C	-3.5470	-1.3390	1.0865
C	-4.2200	0.2220	-0.4515
C	-2.9360	-0.1450	1.4445
C	-3.6160	0.9710	0.7195
H	-3.3570	-2.3030	1.5415
H	-4.9210	0.6960	-1.1305
H	-4.9300	-1.8790	-0.5535
H	-2.2560	-0.0040	2.2735
H	-2.9830	1.8210	0.4705
H	-4.4420	1.3370	1.3495
H	2.3940	-0.5160	-2.3465
H	0.6820	-0.3760	-2.0365
O	0.8810	1.6570	1.4565
H	0.4020	2.4070	1.0665

Sum of electronic and thermal Free Energies $=-851.731987$
Freq: -405.3

$\mathbf{T S}_{\text {B4 }}$			
Atomic	Coordinates (Ångstroms)		
Type	X	Y	Z
C	4.3140	-0.6450	-0.3845
C	1.6440	-0.5510	-1.5535
C	2.3870	1.8670	-1.0495
C	0.7290	0.5930	0.5165
C	3.5320	0.4380	1.6785
C	1.9730	0.5210	-0.4755
C	0.8390	-0.7680	1.2705
C	2.0780	-1.4540	0.6535
C	-0.6080	0.9000	-0.2185
C	-2.5600	0.1430	-1.5695
C	-1.4740	-0.1460	-0.7265
C	3.0400	-0.2590	0.3965
C	1.6980	-1.9020	-0.7765
H	4.2010	-0.2380	2.2225
H	2.6260	2.5800	-0.2585
H	1.5890	2.3020	-1.6595
H	-1.1780	-1.1740	-0.5835
H	4.9300	-1.3120	0.2255
H	-2.6230	1.1600	-1.9445
H	-2.8750	-0.6160	-2.2755
H	4.1310	-1.1490	-1.3335
H	4.9150	0.2440	-0.5945
H	3.2690	1.7570	-1.6875
H	2.4830	-2.2550	1.2775
H	-0.0560	-1.3840	1.1775
H	0.9740	-0.5530	2.3305
H	0.7450	-2.4370	-0.7925
H	2.4440	-2.5800	-1.1985
H	4.1120	1.3310	1.4275
H	2.7370	0.7540	2.3465
O	-0.8980	2.0980	-0.3405
C	-4.3750	-1.1150	-0.0235
C	-3.5470	-1.3390	1.0865
C	-4.2200	0.2220	-0.4515
C	-2.9360	-0.1450	1.4445
C	-3.6160	0.9710	0.7195
H	-3.3570	-2.3030	1.5415
H	-4.9210	0.6960	-1.1305
H	-4.9300	-1.8790	-0.5535
H	-2.2560	-0.0040	2.2735
H	-2.9830	1.8210	0.4705
H	-4.4420	1.3370	1.3495
H	2.3940	-0.5160	-2.3465
H	0.6820	-0.3760	-2.0365
O	0.8810	1.6570	1.4565
H	0.4020	2.4070	1.0665

Sum of electronic and thermal Free Energies $=-851.731987$
Freq: - 405.3
$\mathbf{T S}_{\text {C1 }}$
Atomic Coordinates (Ångstroms)

Type	X	\ldots	Y	Z
C	2.1535	0.7750	-1.2655	
C	2.9855	-0.2550	-0.4475	
C	3.3525	-1.5280	-1.2345	
C	1.6955	1.0860	1.0935	

C0.6775			
H	2.2835	-2.3730	1.4715
H	2.6245	1.1300	-2.1855
H	2.4615	1.3490	1.8255
H	0.7355	1.2700	1.5765
H	0.9855	2.4710	-0.4945
H	2.7025	2.5950	-0.1645
H	0.0075	0.7060	-1.7385
H	0.8995	-0.6830	-2.3385
H	3.0475	-1.0460	2.3615
H	1.3175	-1.3500	2.5375
H	2.5065	-2.0250	-1.6985
H	3.8305	-2.2580	-0.5745
H	4.0795	-1.2710	-2.0135
H	4.9825	0.5350	-0.7575
H	4.8285	-0.4380	0.7005
C	0.5915	-0.7960	-0.2025
C	-0.7425	-0.5580	0.5565
C	-1.4805	0.6760	0.5035
C	-2.6095	0.8320	1.3255
H	-1.1375	1.4910	-0.1175
H	-2.9665	1.8430	1.4955
H	-2.6685	0.1850	2.1935
H	0.0325	-2.5950	0.1675
O	-1.1755	-1.5150	1.2215
O	0.5955	-2.1890	-0.5135
C	-3.9465	0.8410	-0.9775
C	-3.0635	-0.1860	-1.6195
C	-4.2005	0.1980	0.3785
C	-3.2545	-1.3940	-0.9885
C	-3.9905	-1.1860	0.1935
H	-4.9005	0.8740	-1.5255
H	-3.5485	1.8550	-0.9565
H	-2.5135	-0.0300	-2.5375
H	-4.9825	0.5640	1.0355
H	-2.8295	-2.3390	-1.2975
H	-4.2475	-1.9560	0.9075

Sum of electronic and thermal Free Energies $=-851.798340$ Freq: - 405.3
$\mathbf{T S}_{\mathrm{C} 2}$
Atomic Coordinates (Ångstroms)
Type \quad X \quad Y................. Z
C $\quad 4.3140 \quad-0.6450-0.3845$
C $\quad 1.6440 \quad-0.5510-1.5535$
$\begin{array}{lllll}\text { C } & 2.3870 & 1.8670 & -1.0495\end{array}$
$\begin{array}{lllll}\text { C } & 0.7290 & 0.5930 & 0.5165\end{array}$
$\begin{array}{lllll}\text { C } & 3.5320 & 0.4380 & 1.6785\end{array}$
$\begin{array}{lllll}\text { C } & 1.9730 & 0.5210 & -0.4755\end{array}$
$\begin{array}{lllll}\text { C } & 0.8390 & -0.7680 & 1.2705\end{array}$
$\begin{array}{lllll}\text { C } & 2.0780 & -1.4540 & 0.6535\end{array}$
C $\quad-0.6080 \quad 0.9000-0.2185$
C $\quad-2.5600 \quad 0.1430 \quad-1.5695$
C $\quad-1.4740-0.1460-0.7265$
$\begin{array}{lllll}\text { C } & 3.0400 & -0.2590 & 0.3965\end{array}$
$\begin{array}{lllll}\text { C } & 1.6980 & -1.9020 & -0.7765\end{array}$

H	4.2010	-0.2380	2.2225
H	2.6260	2.5800	-0.2585
H	1.5890	2.3020	-1.6595
H	-1.1780	-1.1740	-0.5835
H	4.9300	-1.3120	0.2255
H	-2.6230	1.1600	-1.9445
H	-2.8750	-0.6160	-2.2755
H	4.1310	-1.1490	-1.3335
H	4.9150	0.2440	-0.5945
H	3.2690	1.7570	-1.6875
H	2.4830	-2.2550	1.2775
H	-0.0560	-1.3840	1.1775
H	0.9740	-0.5530	2.3305
H	0.7450	-2.4370	-0.7925
H	2.4440	-2.5800	-1.1985
H	4.1120	1.3310	1.4275
H	2.7370	0.7540	2.3465
O	-0.8980	2.0980	-0.3405
C	-4.3750	-1.1150	-0.0235
C	-3.5470	-1.3390	1.0865
C	-4.2200	0.2220	-0.4515
C	-2.9360	-0.1450	1.4445
C	-3.6160	0.9710	0.7195
H	-3.3570	-2.3030	1.5415
H	-4.9210	0.6960	-1.1305
H	-4.9300	-1.8790	-0.5535
H	-2.2560	-0.0040	2.2735
H	-2.9830	1.8210	0.4705
H	-4.4420	1.3370	1.3495
H	2.3940	-0.5160	-2.3465
H	0.6820	-0.3760	-2.0365
O	0.8810	1.6570	1.4565
H	0.4020	2.4070	1.0665

Sum of electronic and thermal Free Energies $=-851.731987$
Freq: - 405.3
$\mathrm{TS}_{\mathrm{C} 3}$
Atomic Coordinates (Ångstroms)

Type	X	\ldots	Y
C	2.1535	0.7750	-1.2655
C	2.9855	-0.2550	-0.4475
C	3.3525	-1.5280	-1.2345
C	1.6955	1.0860	1.0935
C	1.8685	-0.4000	0.6645
C	2.1455	-1.3480	1.8215
C	0.8255	0.0220	-1.5095
C	4.3195	0.3080	0.0835
C	1.8735	1.8880	-0.2305
H	4.2235	1.2160	0.6775
H	2.2835	-2.3730	1.4715
H	2.6245	1.1300	-2.1855
H	2.4615	1.3490	1.8255
H	0.7355	1.2700	1.5765
H	0.9855	2.4710	-0.4945
H	2.7025	2.5950	-0.1645
H	0.0075	0.7060	-1.7385
H	0.8995	-0.6830	-2.3385
H	3.0475	-1.0460	2.3615
H	1.3175	-1.3500	2.5375
H	2.5065	-2.0250	-1.6985

H	3.8305	-2.2580 -0.5745
H	4.0795	-1.2710-2.0135
H	4.9825	$0.5350-0.7575$
H	4.8285	-0.4380 0.7005
C	0.5915	-0.7960-0.2025
C	-0.7425	-0.5580 0.5565
C	-1.4805	$0.6760 \quad 0.5035$
C	-2.6095	0.83201 .3255
H	-1.1375	$1.4910-0.1175$
H	-2.9665	1.84301 .4955
H	-2.6685	$0.1850 \quad 2.1935$
H	0.0325	-2.5950 0.1675
O	-1.1755	-1.5150 1.2215
O	0.5955	$-2.1890-0.5135$
C	-3.9465	0.8410-0.9775
C	-3.0635	-0.1860-1.6195
C	-4.2005	$\begin{array}{lll}0.1980 & 0.3785\end{array}$
C	-3.2545	-1.3940-0.9885
C	-3.9905	$-1.18600 .1935$
H	-4.9005	0.8740-1.5255
H	-3.5485	$1.8550-0.9565$
H	-2.5135	-0.0300-2.5375
H	-4.9825	0.56401 .0355
H	-2.8295	-2.3390-1.2975
H	-4.2475	$-1.95600 .9075$

Sum of electronic and thermal Free Energies $=-851.798340$ Freq: - 405.3

TS $_{\mathbf{C 4}}$			
Atomic	Coordinates (Ångstroms)		
Type	X	Y	Z
C	4.3140	-0.6450	-0.3845
C	1.6440	-0.5510	-1.5535
C	2.3870	1.8670	-1.0495
C	0.7290	0.5930	0.5165
C	3.5320	0.4380	1.6785
C	1.9730	0.5210	-0.4755
C	0.8390	-0.7680	1.2705
C	2.0780	-1.4540	0.6535
C	-0.6080	0.9000	-0.2185
C	-2.5600	0.1430	-1.5695
C	-1.4740	-0.1460	-0.7265
C	3.0400	-0.2590	0.3965
C	1.6980	-1.9020	-0.7765
H	4.2010	-0.2380	2.2225
H	2.6260	2.5800	-0.2585
H	1.5890	2.3020	-1.6595
H	-1.1780	-1.1740	-0.5835
H	4.9300	-1.3120	0.2255
H	-2.6230	1.1600	-1.9445
H	-2.8750	-0.6160	-2.2755
H	4.1310	-1.1490	-1.3335
H	4.9150	0.2440	-0.5945
H	3.2690	1.7570	-1.6875
H	2.4830	-2.2550	1.2775
H	-0.0560	-1.3840	1.1775
H	0.9740	-0.5530	2.3305
H	0.7450	-2.4370	-0.7925
H	2.4440	-2.5800	-1.1985

H	4.1120	1.3310	1.4275
H	2.7370	0.7540	2.3465
O	-0.8980	2.0980	-0.3405
C	-4.3750	-1.1150	-0.0235
C	-3.5470	-1.3390	1.0865
C	-4.2200	0.2220	-0.4515
C	-2.9360	-0.1450	1.4445
C	-3.6160	0.9710	0.7195
H	-3.3570	-2.3030	1.5415
H	-4.9210	0.6960	-1.1305
H	-4.9300	-1.8790	-0.5535
H	-2.2560	-0.0040	2.2735
H	-2.9830	1.8210	0.4705
H	-4.4420	1.3370	1.3495
H	2.3940	-0.5160	-2.3465
H	0.6820	-0.3760	-2.0365
O	0.8810	1.6570	1.4565
H	0.4020	2.4070	1.0665

Sum of electronic and thermal Free Energies $=-851.731987$ Freq: -405.3

MVK + CP

TS endo (acid free)
Table S1, entry 1

Atomic Coordinates (Ångstroms)				
Type	X	Y	Z	
C	-0.2331	1.6796	0.4817	
C	0.8197	0.7522	0.4189	
C	1.0413	-0.1703	1.5233	
C	2.2879	-1.0434	1.5016	-1-
O	0.2508	-0.2418	2.4743	,1...-
H	-0.1761	2.5565	-0.1587	
H	-0.6605	1.8588	1.4632	endo
H	1.5411	0.7793	-0.3916	end
H	2.0602	-2.0198	1.9372	
H	3.0575	-0.5756	2.1277	
H	2.6993	-1.1705	0.4959	
C	-0.5984	-1.0056	-1.0099	
C	-1.8213	0.8851	-0.4160	
C	-1.3992	-1.3236	0.0730	
C	-2.1830	-0.2024	0.4112	
C	-1.0980	0.2776	-1.6102	
H	0.1109	-1.6684	-1.4918	
H	-2.4609	1.7570	-0.5244	
H	-1.3598	-2.2455	0.6406	
H	-2.8515	-0.1454	1.2620	
H	-0.3399	0.9077	-2.0787	
H	-1.8510	0.0356	-2.3787	
$\mathrm{HF}=-425.164652 ; \quad$ Freq: -405.3				

TS exo (acid free)
s-cis enone

Table S1, entry 1

Atomic Coordinates (Ångstroms)

Type	X	Y	Z

| C | -2.6211 | 0.0979 | -0.6551 |
| :--- | :--- | :--- | :--- | :--- |

| C | -1.9979 | 1.3030 | -0.2871 |
| :--- | :--- | :--- | :--- | :--- | :--- |

C $\quad-1.9545-0.9764-0.0210$
C $\quad-1.0015 \quad 1.0303 \quad 0.6463$
C $\quad-1.1876 \quad-0.37191 .1402$
$\mathrm{H} \quad-3.3862 \quad-0.0042 \quad-1.4173$

H $\quad \begin{array}{llll}-2.2036 & 2.2746 & -0.7229\end{array}$
H $\quad-2.3796 \quad-1.97470 .0319$

H $\quad-$	-0.3746	1.7681	1.1335

H $\quad-1.8618-0.34442 .0132$

H $\quad-0.2741 \quad-0.89181 .4341$
C $\quad-0.3473-1.2701-1.2176$
C $\quad 0.4921 \quad-0.1512-1.0875$

| C | 1.6593 | -0.1569 | -0.2049 |
| :--- | :--- | :--- | :--- | :--- |

O $\quad 1.8629-1.0477 \quad 0.6286$
$\begin{array}{lllll}\text { C } & 2.6653 & 0.9735 & -0.3722\end{array}$
H $\quad-0.8685-1.4195-2.1571$
H $\quad-0.0129 \quad-2.1843-0.7330$
$\begin{array}{lllll}\mathrm{H} & 0.4096 & 0.6697 & -1.7921\end{array}$
$\begin{array}{lllll}\mathrm{H} & 3.2244 & 1.1087 & 0.5562\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.3786 & 0.7007 & -1.1603\end{array}$
H $\quad 2.1903 \quad 1.9143-0.6673$
$H F=-425.164401 ; \quad$ Freq: -419.5

TS endo (cyanhidric acid)
Table S2, entry 5
Atomic Coordinates (Ångstroms)

Type	\ldots	X	\ldots
C	2.0041	0.1902	-1.6677
C	1.5366	1.0975	-0.7017
C	0.1808	1.0023	-0.2154
C	-0.3444	2.0623	0.7368
H	2.8875	0.4689	-2.2368
H	1.2497	-0.3458	-2.2349
H	2.1568	1.9193	-0.3602
H	-0.8057	1.5838	1.6063
H	-1.1280	2.6384	0.2315
H	0.4340	2.7520	1.0734
O	-0.5650	0.0664	-0.5718
C	2.5408	-0.4132	1.3716
C	-3.3359	-0.9755	-0.1627
C	2.8492	-1.3509	-0.7427
N	-4.3882	-1.4350	-0.0030
C	1.5721	-1.3776	1.1758
H	-2.3461	-0.5429	-0.3023
C	1.7802	-1.9921	-0.0783
C	3.6088	-0.5840	0.3313
H	2.6293	0.2335	2.2368
H	3.3659	-1.8224	-1.5741

H	0.7333	-1.5761	1.8320
H	1.1406	-2.7520	-0.5115
H	4.1015	0.3339	0.0059
H	4.3882	-1.2500	0.7377
$\mathrm{HF}=-518.590477 ;$	Freq: -379.6		

TS endo (trifluoroacetic acid)
Table S2, entry 10
Atomic Coordinates (Ångstroms)
Type X Y Z
$\begin{array}{lllll}\mathrm{C} & 3.1842 & 0.0608 & -1.5378\end{array}$
$\begin{array}{lllll}\text { C } & 2.6171 & 0.9022 & -0.5656\end{array}$
$\begin{array}{llll}\text { C } & 1.1962 & 1.0142 & -0.4514\end{array}$
$\begin{array}{lllll}\text { C } & 0.5808 & 1.9492 & 0.5659\end{array}$
$\begin{array}{lllll}\mathrm{O} & 0.4475 & 0.3257 & -1.2004\end{array}$
H $\quad 4.2375 \quad 0.1944-1.7708$
H $\quad 2.5605$-0.1958 -2.3878
$\begin{array}{llll}\mathrm{H} & 3.2399 & 1.4875 & 0.1019\end{array}$

H	-0.0726	1.3828	1.2377

H $\quad-0.0420 \quad 2.6880 \quad 0.0493$

H	1.3355	2.4737	1.1566

C $\quad 2.6572-1.20341 .3712$

| C | 3.3867 | -1.7765 | -0.7746 |
| :--- | :--- | :--- | :--- | :--- |

C $\quad 1.6123-1.80660 .7074$
C $\quad 2.0616-2.2140-0.5726$
C $\quad 3.9269 \quad-1.42110 .6040$
H $\quad \begin{array}{llll} & 2.6107 & -0.7623 & 2.3602\end{array}$
H $\quad 4.0221-2.2183-1.5372$
H $\quad 0.5897 \quad-1.87391 .0597$
$\begin{array}{lllll}\mathrm{H} & 1.4430 & -2.6947 & -1.3215\end{array}$
H $\quad 4.6424 \quad-0.59720 .6417$
$\begin{array}{lllll}\mathrm{H} & 4.4352 & -2.3112 & 1.0102\end{array}$
O $\quad-2.0419 \quad 0.0198 \quad-0.9440$
C $\quad-2.3961-0.56650 .1692$
O $\quad-1.6901 \quad-0.9160 \quad 1.0959$
C $\quad-3.9335-0.79530 .2068$
F $\quad-4.3113-1.3755 \quad 1.3557$
F $\quad-4.3245-1.5944-0.8119$
F $\quad-4.59930 .3762 \quad 0.0935$
$\begin{array}{lllll}\mathrm{H} & -1.0110 & 0.1704 & -1.0038\end{array}$
HF= -951.974944
Freq: -358.9
$1.5 \AA$

endo

TS exo (trifluoroacetic acid)

Table S2, entry 10

Atomic Type	Coordinates (Ångstroms)		
	X	Y	Z
C	-2.2228	-3.2849	-1.4027
C	-2.0930	-3.0468	-0.0195
C	-1.8780	-2.1120	-2.1131
C	-1.7857	-1.7094	0.1807
C	-1.9508	-0.9757	-1.1085
H	-2.4259	-4.2502	-1.8543
H	-2.1659	-3.8004	0.7565
H	-2.1515	-1.9711	-3.1550
H	-1.6206	-1.2189	1.1329
H	-2.9717	-0.5591	-1.1383
H	-1.2565	-0.1480	-1.2608
C	0.1115	-2.2356	-2.2690
C	0.6825	-2.1375	-0.9857
C	1.1416	-0.8986	-0.4280
O	0.9735	0.1991	-1.0282
C	1.8514	-0.9080	0.9087
H	0.1802	-3.1878	-2.7847
H	0.2206	-1.3672	-2.9141
H	0.8674	-3.0367	-0.4089
H	2.8206	-0.4086	0.8070
H	2.0079	-1.9187	1.2922
H	1.2613	-0.3378	1.6343
O	0.8818	2.4518	0.1194
C	0.0399	2.4434	1.1211
O	-0.5821	1.5009	1.5726
H	0.9632	1.5142	-0.3212
C	-0.1105	3.8662	1.7284
F	-0.8885	3.8485	2.8211
F	-0.6725	4.7076	0.8301
F	1.0901	4.3763	2.0798

$\mathrm{HF}=-951.973022$
Freq: - 372.7

TS endo (trifluoromethanesulfonic acid)
Table S2, entry 13
Atomic Coordinates (Ångstroms)
Type X

S $\quad-2.2803-1.1375-0.6924$
O $\quad-1.7314-0.0395-1.5886$
O $\quad-1.4016-1.3801 \quad 0.4757$
O $\quad-2.8002-2.3019-1.4097$
C $\quad-3.7897 \quad-0.28680 .0335$
F $\quad-4.4136-1.1049 \quad 0.8954$
F $\quad-4.65630 .0632-0.9277$
F $\quad \begin{array}{llll}-3.4268 & 0.8289 & 0.7013\end{array}$
$\begin{array}{lllll}\text { C } & 3.4103 & 0.6405 & -1.2760\end{array}$
$\begin{array}{llll}\text { C } & 2.5358 & 1.1925 & -0.3319\end{array}$
$\begin{array}{lllll}\text { C } & 1.1392 & 1.0697 & -0.4696\end{array}$
$\begin{array}{lllll}\text { C } & 0.1758 & 1.6534 & 0.5167\end{array}$
$\begin{array}{llll}\mathrm{O} & 0.6888 & 0.4263 & -1.5011\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.4580 & 0.9227 & -1.2369\end{array}$
$\begin{array}{lllll}\mathrm{H} & 3.0278 & 0.4188 & -2.2653\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.9133 & 1.7059 & 0.5446\end{array}$
H $\quad-0.43840 .8546 \quad 0.9470$
$\begin{array}{llll}\mathrm{H} & -0.5081 & 2.3402 & 0.0062\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.6983 & 2.1878 & 1.3117\end{array}$
H $\quad-0.3636 \quad 0.2522 \quad-1.5145$
C $\quad 2.5687-1.3965 \quad 1.2461$
$\begin{array}{lllll}\text { C } & 3.8116 & -1.3566 & -0.7405\end{array}$
C $\quad 1.7959 \quad-1.9275 \quad 0.2456$
C $\quad 2.5684 \quad-1.9628-0.9524$
C $\quad 3.9735-1.20470 .7620$
H $\quad 2.2467$-1.2151 2.2653
H $\quad 4.6563-1.5007-1.4065$
$\begin{array}{lllll}\mathrm{H} & 0.7500 & -2.2017 & 0.3287\end{array}$
H $\quad 2.2108$-2.3402 -1.9038
H $\quad 4.4560$-0.2863 1.1053
$\begin{array}{llll}\mathrm{H} & 4.5932 & -2.0404 & 1.1263\end{array}$
HF=-1387.201898
Freq: -289.6

TS exo (trifluoromethanesulfonic acid)

Table S2, entry 13

Atomic Coordinates (Ångstroms)

Type	X	Y	Z
C	-2.8118	-2.5930	-1.4284
C	-1.9462	-1.7327	-2.1552
C	-3.0653	-2.0509	-0.1640
C	-1.7298	-0.5904	-1.4185
C	-2.5937	-0.6124	-0.2044
H	-3.1565	-3.5634	-1.7725
H	-1.5099	-1.9586	-3.1219
H	-3.8822	-2.3835	0.4689
H	-1.1030	0.2567	-1.6705
H	-3.4676	0.0352	-0.3901
H	-2.1135	-0.2221	0.6946
C	-1.4947	-2.8980	0.9619
C	-0.2644	-2.4471	0.4682
C	0.3793	-1.2858	0.9295
O	-0.1760	-0.5881	1.8742
C	1.7024	-0.8482	0.3780
H	-1.7725	-3.9341	0.8008
H	-1.8661	-2.4625	1.8846
H	0.2379	-3.0058	-0.3135
H	2.4017	-0.6455	1.1960
H	2.1254	-1.6029	-0.2881
H	1.5714	0.0917	-0.1691
O	0.7290	1.7288	2.0903
O	-0.1268	1.8220	-0.2374
H	0.2486	0.3758	1.9987
S	0.2809	2.6199	0.9453
C	1.8951	3.3875	0.4298
O	-0.5801	3.7345	1.3384
F	1.7031	4.2058	-0.6115
F	2.4361	4.0850	1.4327
F	2.7671	2.4301	0.0582

$\mathrm{HF}=-1387.200199$
Freq: -290.3

NMR spectra of new compounds

2

12a

13

13

14

15

17

18

19

H

26

27

28

33

42

42

44

[^0]: ${ }^{1}$ Palomo, C.; Oiarbide, M.; García, J.M.; González, A.; Lecumberri, A.; Linden, A.; J. Am. Chem. Soc. 2002, 124, 10288.

[^1]: ${ }^{2}$ Palomo, C.; Oiarbide, M.; Arceo, E.; García, J. M.; González, A.; Linden, A. Angew. Chem. Int. Ed. 2005, 44, 6187.

[^2]: ${ }^{3}$ Pfeiffer, M.W.B.; Phillips, A. J. Am. Chem. Soc. 2005, 127, 5334-5335.

[^3]: ${ }^{4}$ These procedures have been previously described in the literature. See: Palomo, C.; Oiarbide, M.; García, J.M.; González, A.; Arceo, E.; J. Am. Chem. Soc. 2003, 125, 13942.
 ${ }^{5}$ Adapted from: a) Zimmer, R. Synthesis 1993, 165-178. b) Hoff, S.; Brandsma, L.; Arens, J. F. Recl. Trav. Chim. Pays-Bas 1968, 87, 1179-1184

[^4]: ${ }^{6}$ Adapted from: (a) P. Sampson, V. Roussis, G. J. Drtina, F. L. Koerwitz, D. F. Wiemer, J. Org. Chem. 1986, 51, 2525-2529. (b) D. G. McCarthy, C. C. Collins, J. P. O’Driscoll, S. E. Lawrence, J. Chem. Soc., Perkin Trans. 1 1999, 3667-3675

[^5]: ${ }^{7}$ Procedure adapted from: (a) Hayasi, T.; Fujiwa, T.; Okamoto, Y.; Katsuro, X.; Kumada, M. Synthesis 1981, 1001-1003. (b) Liu, H. J.; Feng, W. M.; Kim, J. B.; Browne, E. N. C. Can. J. Chem. 1994, 72, 2163-2175.

[^6]: ${ }^{8}$ The procedure described by Evans was followed: Evans D.A.; Barnes D.M.; Johnson J.S.; Lectka T.; Von Matt P.; Miller S.J.; Murry J.A.; Norcross R.D.; Shaughnessy E.A.; Campos K.R. J. Am. Chem. Soc. 1999, 121, 7582-7594.

[^7]: ${ }^{9}$ Adapted from Ahrendt K.A.; Borths J.; MacMillan D.W.C. J. Am. Chem. Soc. 2000, 122, 4243-4244.
 ${ }^{10}$ Adapted from Kinsman A.C.; Kerr M.A. J. Am. Chem. Soc. 2003, 125, 14120-14125.

[^8]: ${ }^{11}$ (a) Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B 1988, 37, 785. (b) Becke, A.D. J. Chem. Phys. 1993, $98,5648$. (c) Kohn, W.; Becke, A.D.; Parr, R.G. J. Phys. Chem. 1996, 100, 12974.
 ${ }^{12}$ See Full Reference 22 in this page.
 ${ }^{13}$ (a) Goldstein, E.; Beno, B.; Houk, K.N. J. Am. Chem. Soc. 1996, 118, 6036. (b) Wiest, O.; Montiel, D.C.; Houk, K.N. J. Phys. Chem. A 1997, 101, 8378. (c) García, J.I.; Martínez-Merino, V.; Mayoral, J.A.; Salvatella, L. J. Am. Chem. Soc. 1998, 120, 2415. (d) Birney, D.M. J. Am. Chem. Soc. 2000, 122, 10917.
 ${ }^{14}$ Gonzalez, C.; Schlegel, H.B. J. Phys. Chem. 1990, 94, 5523.
 ${ }^{15}$ (a) Cancès, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032-3047. (b) Cossi, M.; Barone, V.; Mennuci, B.; Tomasi, J. Chem. Phys. Lett. 1998, 286, 253-260. (c) Tomasi, J.; Mennucci, B.; Cancès, E. J. Mol. Struct. (Theochem), 1999, 464, 211-226.

[^9]: ${ }^{16}$ The unsuitability of HCN to engage in such secondary hydrogen-bond interaction was tentatively ascribed to the lack of highly hydrophilic basic sites (primarily oxygen atoms) and in part to geometrical restrictions imparted by the linearity of this Brønsted acid.

