Supporting Information

Copper-Catalyzed γ-Selective Allyl-Alkyl Coupling between Allylic Phosphates and Alkylboranes

Hirohisa Ohmiya,* Umi Yokobori, Yusuke Makida and Masaya Sawamura*
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

Table of Contents

Instrumentation and Chemicals S1-S2
Preparation of Allylic Phosphates S2-S3
Characterization Data for Allylic Phosphates S3-S7
Procedures for Copper-Catalyzed Allyl-Alkyl Coupling S7
Characterization Data for Coupling Products S7-S14
NMR Studies S15-S17
References S17
NMR Spectra S18-S89

Instrumentation and Chemical

NMR spectra were recorded on a Varian Gemini 2000 spectrometer, operating at 300 MHz for ${ }^{1} \mathrm{H}$ NMR and 75.4 MHz for ${ }^{13} \mathrm{C}$ NMR, and a JEOL ECA-600, operating at 600 MHz for ${ }^{1} \mathrm{H}$ NMR, 150.9 MHz for ${ }^{13} \mathrm{C}$ NMR and 192.6 MHz for ${ }^{11} \mathrm{~B}$ NMR. Chemical shift values for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are referenced to $\mathrm{Me}_{4} \mathrm{Si}$ and the residual solvent resonances, respectively. Chemical shift values for ${ }^{11} \mathrm{~B}$ is referenced to $\mathrm{BF}_{3} \cdot \mathrm{OEt}(\delta 0 \mathrm{ppm})$. Chemical shifts are reported in $\delta \mathrm{ppm}$. IR spectra were recorded on a Perkin-Elmer Spectrum One. Mass spectra were obtained with Thermo Fisher Scientific Exactive, JEOL JMS-T100 GC or JEOL JMS-T100LP at the Center for Instrumental Analysis, Hokkaido University. Elemental analysis was performed at the Center for Instrument Analysis of Hokkaido University. TLC analyses were performed on commercial glass plates bearing $0.25-\mathrm{mm}$ layer of Merck Silica gel $60 \mathrm{~F}_{254}$. Silica gel (Kanto Chemical Co., Silica gel 60 N , spherical, neutral) and aluminum oxide (Nacalai Tesuque, Alumina Activated 200) were used for column chromatography. HPLC analyses were conducted on a HITACHI ELITE LaChrom system with a HITACHI L-2400 UV detector or a Shimadzu LC-6A system with a Shimadzu SPD-10A UV detector. Gas chromatographic (GLC) analyses were conducted on a Shimadzu GC-14B equipped with a flame ionization detector. Gel permeation chromatography (GPC) was performed by LC-908 (Japan Analytical Industry Ltd., two in-line JAIGEL-2H, $\mathrm{CHCl}_{3}, 3.5 \mathrm{~mL} / \mathrm{min}$, UV and RI
detectors).
All reactions were carried out under nitrogen or argon atmosphere. Materials were obtained from commercial suppliers or prepared according to standard procedures unless otherwise noted. t-BuOK (1.0 M THF solution) and CuOAc were purchased from Aldrich Chemical Co., stored under nitrogen, and used as it is. THF was purchased from Kanto Chemical Co., stored under argon. Alkenes 1a-g was well known compounds. 20(21)-Methylene steroid 1n was prepared from pregrenone acetate according to the reported procedure. ${ }^{1}$

Preparation of Allylic Phosphates

Preparation of Allylic Phosphates 3a, a' and 3c-e. Allylic substrates were prepared by the phosphorylation of the corresponding allylic alcohols. The allylic alcohols were prepared by the reduction of the corresponding propargylic alcohols by $\mathrm{Cp}_{2} \mathrm{TiCl}_{2} / i-\mathrm{BuMgBr}$ according to the reported procedure. ${ }^{2}$ The obtained crude allylic alcohols were purified by silica gel chromatography and GPC (CHCl_{3}).

The preparation of 3a is representative. To a solution of (Z)-1-phenyl-4-nonen-3-ol (437.7 mg, 2 $\mathrm{mmol})$ in pyridine ($2.2 \mathrm{~mL}, 5 \mathrm{~mL}$ per 1 gram of alcohol), (EtO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}(405 \mu \mathrm{~L}, 2.8 \mathrm{mmol})$ and DMAP ($61.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) were sequentially added at $0{ }^{\circ} \mathrm{C}$. After being stirred at rt for 2 h , the reaction mixture was diluted with $\mathrm{EtOAc}(66 \mathrm{~mL})$ and quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The resulting mixture was washed with sat. $\mathrm{CuSO}_{4}(10 \mathrm{~mL} \times 3)$ and brine, and was dried over anhydrous MgSO_{4}, filtered, and evaporated under reduced pressure. The residue was purified through a short plug of aluminum oxide (ether) to provide 3a in 86% yield ($612.8 \mathrm{mg}, 1.7 \mathrm{mmol}$).

Preparation of Allylic Phosphates 3b, 3f and 3g. Allylic phosphate 3b was synthesized as follows: 2,3-O-isopropylidene-glyceraldehyde was subjected to Z-selective Horner-Wadsworth-Emmons-type reaction with pentyltriphenylphosphonium bromide in the presence of NaHMDS to give the corresponding Z-alkene. Next, deprotection of the acetal, silylation and phosphorylation produced 3b. Allylic substrates $\mathbf{3 f}$ and $\mathbf{3 g}$ were obtained by the phosphorylation of the corresponding commercial available alcohols.

Preparation of (S, Z)-Diethyl 3-Octen-2-yl Phosphate (3h). (S)-3-Octyn-2-ol was prepared by the asymmetric reduction of 3-octyn-2-one according to the reported procedure. ${ }^{3}$ (S)-3-Octyn-2-ol was reduced with $\mathrm{Cp}_{2} \mathrm{TiCl}_{2} / i-\mathrm{BuMgBr}$ according to the reported procedure, ${ }^{2}$ producing (S, $Z)$-3-octen-2-ol, which then was converted to the corresponding allylic phosphate $(S)-(Z)-\mathbf{3 h}$. The ee value of $(S)-(Z)-\mathbf{3 h}(95 \%$ ee) was determined by HPLC analysis of the p-nitrobenzoate derivative of (S, Z)-3-octen-2-ol (CHIRALCEL ${ }^{\circledR}$ OD-3 column, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, Daicel Chemical Industries, hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, 254 \mathrm{~nm}$ UV detector, retention time $=32.8 \mathrm{~min}$ for the R isomer and 34.3 min for the S isomer). The absolute configuration of $(S)-(Z)-\mathbf{3 h}$ was determined by optical rotations of the precursor compounds, 3-octyn-2-ol. ${ }^{3}$

Preparation of Cyclic Allylic Phosphates. Allylic substrates $\mathbf{3 i}$ and $\mathbf{3 k} \mathbf{k} \mathbf{m}$ were prepared by the phosphorylation of the corresponding known allylic alcohols. Allylic phosphate ($1 R, 4 S$)-3j was synthesized from commercial available ($1 R, 3 S$)-cis-4-cyclopenetene-1,3-diol 1-acetate by silylation, deacetylation and phosphorylation.

Characterization Data for Allylic Phosphates

(Z)-Diethyl 1-Phenyl-4-nonen-3-yl Phosphate (3a)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.35(\mathrm{~m}, 10 \mathrm{H}), 1.80-1.89(\mathrm{~m}$, $1 \mathrm{H}), 2.06-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.71(\mathrm{~m}, 2 \mathrm{H}), 4.02-4.15(\mathrm{~m}, 4 \mathrm{H}), 5.15(\mathrm{dq}, J=9.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (dd, $J=11.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dt}, J=11.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.77,15.90(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 16.00(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 22.18,27.38$, $31.03,31.48,38.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 63.40(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 63.42(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 74.28(\mathrm{~d}, J=6.3$ $\mathrm{Hz}), 125.99,128.30(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 128.40,128.45,134.18$, 141.44. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{PNa}, 377.18522$; found, 377.18552.

(Z)-Diethyl 1-Phenyl-3-nonen-5-yl Phosphate (3a')

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.43(\mathrm{~m}, 11 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H})$, $2.40-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.81(\mathrm{~m}, 2 \mathrm{H}), 3.98-4.14(\mathrm{~m}, 4 \mathrm{H}), 5.03(\mathrm{dq}, J=9.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}$, $J=11.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dt}, J=11.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.85,15.93(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 16.30(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 22.31,26.80,29.52$, $35.50,35.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 63.34(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 63.36(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 74.73(\mathrm{~d}, J=6.3 \mathrm{~Hz})$, 126.02, 128.41, $128.59,129.50(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 132.42,141.47$. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{PNa}, 377.1858$; found, 377.1862.
(Z)-1-(tert-Butyldimethylsiloxy)-3-octen-2-yl Diethyl Phosphate (3b)

3b
Oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.88-0.92(\mathrm{~m}, 12 \mathrm{H}), 1.28-1.40(\mathrm{~m}, 10 \mathrm{H})$, $2.12-2.16(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{ddd}, J=10.8,5.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=10.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.17$ $(\mathrm{m}, 4 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{ddt}, J=10.8,9.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dtd}, J=10.8,7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}) $\delta-5.56,13.81,15.91,16.01,18.25,22.23,25.75,27.58,31.57,63.38$
$(\mathrm{d}, J=5.6 \mathrm{~Hz}), 63.42(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 65.85(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 74.96(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 125.67(\mathrm{~d}, J=2.8$ $\mathrm{Hz})$, 135.60. $\mathrm{HRMS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{PSiNa}, 417.22021$; found, 417.22031.

(Z)-Diethyl 6-Phenyl-2-hexen-4-yl Phosphate (3c)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.28(\mathrm{td}, J=6.6,0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{td}, J=6.6,0.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.70(\mathrm{dd}, J=6.9,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.72(\mathrm{~m}, 2 \mathrm{H}), 4.02-4.15(\mathrm{~m}, 4 \mathrm{H})$, $5.17(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{ddq}, J=13.2,9.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dq}, J=13.2,6.9 \mathrm{~Hz} 1 \mathrm{H}), 7.17-7.21(\mathrm{~m}$, $3 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.30,15.92(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 16.01(\mathrm{~d}, J=$ $3.4 \mathrm{~Hz}), 31.00,37.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 63.43(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 63.45(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 73.89(\mathrm{~d}, J=6.3$ $\mathrm{Hz}), 126.01,128.42,128.45,128.48,129.40(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 141.41 . \operatorname{HRMS}-E S I(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{PNa}, 335.13881$; found, 335.13924 .

(Z)-Diethyl 7-Methyl-1-phenyl-4-octen-3-yl Phosphate (3d)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{dt}, J$ $=6.9,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{dt}, J=6.9,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.63($ septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.77(\mathrm{~m}, 2 \mathrm{H}), 4.02-4.17(\mathrm{~m}, 4 \mathrm{H}), 5.16(\mathrm{dt}, J=14.7,7.2,1 \mathrm{H})$, $5.57(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 15.95(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}), 16.05(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 22.18,22.21,28.39,31.07,36.62,38.12(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 63.43(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}), 63.45(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 74.40(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 126.02,128.45,128.48,129.09(\mathrm{~d}, J=3.4 \mathrm{~Hz})$, 132.90, 141.52. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{PNa}$, 377.18576; found, 377.18750.

(Z)-Diethyl 2-Methyl-5-decen-4-yl Phosphate (3e)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88-0.97(\mathrm{~m}, 9 \mathrm{H}), 1.28-1.39(\mathrm{~m}, 11 \mathrm{H}), 1.62-1.74(\mathrm{~m}, 2 \mathrm{H})$, $2.12-2.19(\mathrm{~m}, 2 \mathrm{H}), 4.01-4.15(\mathrm{~m}, 4 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{tt}, J=10.8,1.2,1 \mathrm{H}), 5.54(\mathrm{dt}, J=10.8$, $7.5,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.81,15.91(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 16.01(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 22.24$ $(\mathrm{d}, J=3.4 \mathrm{~Hz}), 22.70,24.08,27.35,31.54,45.40(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 63.26(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 63.30(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}), 73.35(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 128.99(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.62 . \mathrm{HRMS}-E S I(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{PNa}, 329.18522$; found, 329.18579.

(Z)-Diethyl 2-Hexenyl Phosphate (3f)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 6 \mathrm{H})$, $1.36-1.46(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.11$ (quint., $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.60(\mathrm{dd}, J=8.1,6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.55-5.70(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.34,15.80,15.89,22.25,29.22,62.84$, $62.91,63.51(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 124.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 135.11$. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{PNa}$, 259.10697; found, 259.10698.

(Z)-Diethyl 3,7-Dimethylocta-2,6-dienyl Phosphate (3g)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.33(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}$, 3 H), 2.05-2.15 (m, 4H), 4.10 (quint., $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 4.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.95,16.04,17.53,23.37,25.56,26.48,32.01$, $63.53(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 63.71(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 119.96(\mathrm{~d}, J=6.8 \mathrm{~Hz})$, 123.51, 132.36, 142.74 . HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{PNa}, 313.15392$; found, 313.15407.

(S, Z)-Diethyl 3-Octen-2-yl Phosphate (3h).

(S)-(2)-3h

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.36(\mathrm{~m}, 10 \mathrm{H}), 1.38(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}), 2.09-2.16(\mathrm{~m}, 2 \mathrm{H}), 4.02-4.14(\mathrm{~m}, 4 \mathrm{H}), 5.31(\mathrm{dq}, J=12.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.55(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.79,15.90(\mathrm{~d}, J=1.1 \mathrm{~Hz}), 15.99(\mathrm{~d}, J=1.1 \mathrm{~Hz}), 22.17,22.67(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}), 27.22,31.53,63.55(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 63.40(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 71.28(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 129.92$ $(\mathrm{d}, J=5.1 \mathrm{~Hz})$, 132.76. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{PNa}$, 287.13881; found, 287.13795. $[\alpha]_{D}{ }^{24}+46.4\left(c 1.54, \mathrm{CHCl}_{3}\right)$.

cis-4-Cyclopentene-1,3-diyl Tetraethyl Diphosphate (3i)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H}), 2.05(\mathrm{dt}, J=14.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (dt, $J=14.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.12 (quint., $J=7.2 \mathrm{~Hz}, 8 \mathrm{H}$), $5.23(\mathrm{dd}, J=6.9,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.00(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 39.51,63.81(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 79.14(\mathrm{~d}, J=5.7$ $\mathrm{Hz}), 135.15(\mathrm{~d}, J=5.1 \mathrm{~Hz}) . \mathrm{HRMS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Na}, 395.09951$; found,

Diethyl (1R, 4S)-4-(Triisopropylsiloxy)-2-cyclopentenyl Phosphate (3j)

Oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05-1.08(\mathrm{~m}, 21 \mathrm{H}), 1.34(\mathrm{td}, J=7.2,0.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.80(\mathrm{dt}, J$ $=13.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dt}, J=13.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (quint., $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.75(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dm}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dm}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75.4$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.91,15.95,16.04,17.80,17.81,42.61(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 63.59(\mathrm{~d}, J=1.2 \mathrm{~Hz})$, $63.67(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 74.54,79.84(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 131.84(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 139.21$. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{PSiNa}, 415.20401$; found, 415.20462. $[\alpha]_{\mathrm{D}}{ }^{25}-16.4\left(c\right.$ 1.1, $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right)$.

2-Cyclohexenyl Diethyl Phosphate (3k)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$), $1.55-2.18(\mathrm{~m}, 6 \mathrm{H}), 4.11$ (quint., $J=$ $7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.88(\mathrm{brs}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dt}, J=10.2,3.6 \mathrm{~Hz}, 1 \mathrm{H})$,. ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.89,15.98,18.27,24.56,29.69(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 63.38(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 63.45$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}), 72.03(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 126.29(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 132.73$. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{PNa}$, 257.09186; found, 257.09175.

Diethyl 4,4-Dimethyl-2-cyclohexenyl Phosphate (31)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{td}, J=6.6,1.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.42$ $(\mathrm{m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.82-2.01(\mathrm{~m}, 2 \mathrm{H}), 4.11$ (quintet d, $J=7.2,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.82(\mathrm{q}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.91,16.00,26.90(\mathrm{~d}, J=4.0 \mathrm{~Hz}$), 28.44, 28.82, $31.56,32.88,63.40,63.47(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 72.32(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 123.75(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 142.56$. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{PNa}$, 285.12262; found, 285.12304.

2-Cycloheptenyl Diethyl Phosphate (3m)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.84(\mathrm{~m}, 3 \mathrm{H})$, $1.92-2.09(\mathrm{~m}, 3 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 4.11$ (quint., $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.01(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.87$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 16.00,16.06,26.09,26.34,28.29,34.37(\mathrm{~d}, J=4.6 \mathrm{~Hz})$, $63.53(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 63.54(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 78.34(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 131.71,134.15(\mathrm{~d}, J=5.1 \mathrm{~Hz})$. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{PNa}, 271.10751$; found, 271.10732.

Procedures for Copper-Catalyzed Allyl-Alkyl Coupling

Typical Procedure for Hydroboration/Allyl-Alkyl Coupling Sequence (Scheme 1). In a glove box, $(9-\mathrm{BBN}-\mathrm{H})_{2}(91.5 \mathrm{mg}, 0.375 \mathrm{mmol})$ was placed in a vial containing a magnetic stirring bar. Then, the vial was sealed with a cap equipped with a Teflon-coated silicon rubber septum. The vial was removed from the glove box. THF (0.3 mL) and styrene ($105 \mu \mathrm{~L}, 0.9 \mathrm{mmol}$) were sequentially added, and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 hour to prepare alkylborane 2a. On the other hand, in a glove box, $\mathrm{CuOAc}(6.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ was placed in another vial. t - BuOK (1 M in THF, $0.5 \mathrm{ml}, 0.5 \mathrm{mmol}$) was added to alkylborane 2a prepared in advance at $25^{\circ} \mathrm{C}$, and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 5 min to produce the corresponding alkylborate. Next, the alkylborate was then transferred to another vial containing Cu salt. Finally, allylic phosphate 3a ($177.2 \mathrm{mg}, 175 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$) was added. After 8 h stirring at $60{ }^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the mixture. Then, the mixture was filtered through a short plug of silica gel, which was washed with diethyl ether. After the solvent was removed under reduced pressure, flash chromatography on silica gel (hexane) provided $\mathbf{4 a}$ ($122 \mathrm{mg}, 0.4 \mathrm{mmol}$) in 80% yield.

Procedure for Hydroboration/Allyl-Alkyl Coupling Sequence (Scheme 2). In a glove box, $(9-\mathrm{BBN}-\mathrm{H})_{2}(33.6 \mathrm{mg}, 0.1375 \mathrm{mmol})$ and steroid $\mathbf{1 n}(102.8 \mathrm{mg}, 0.286 \mathrm{mmol})$ were placed in a vial containing a magnetic stirring bar. Then the vial was sealed with a cap equipped with a Teflon-coated silicon rubber septum. The vial was removed from the glove box. The mixture was dissolved in THF $(0.37 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 hour to prepare alkylborane $\mathbf{2 n}$. After the vial was brought into a glove box, t-BuOK (1 M in THF, $0.25 \mathrm{ml}, 0.25$ mmol) was added at $25{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 5 min to produce the corresponding alkylborate. Next, $\mathrm{CuOAc}(3.1 \mathrm{mg}, 0.025 \mathrm{mmol})$ was added, and then the vial was removed from the glove box. Finally, allylic phosphate ($1 R, 4 S$) $\mathbf{- 3 j}(98.1 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added. After 8 h stirring at $60^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the mixture. Then, the mixture was filtered through a short plug of silica gel, which was washed with diethyl ether. After the solvent was removed under reduced pressure, flash chromatography on silica gel (hexane) and GPC $\left(\mathrm{CHCl}_{3}\right)$ provided 5 ($74.1 \mathrm{mg}, 0.125 \mathrm{mmol}$) in 50% yield.

Characterization Data for Coupling Products

Coupling products $\mathbf{4} \mathbf{k}^{4}$ and $\mathbf{4 m}{ }^{5}$ were reported in the literature.

(E)-5-(2-Phenylethyl)-1-phenyl-3-nonene (4aa)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~m}, 1 \mathrm{H})$, $1.62(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{ddd}, J=13.8,10.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (ddd, $J=13.8,10.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{dd}, J=15.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dt}$, $J=15.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.00$, $22.70,29.29,33.53,34.30,35.16,36.13,37.22,42.45,125.55,125.77,128.27,128.31,128.49$, $128.59,129.78,135.51,142.15,143.19$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30}: \mathrm{C}, 90.13 ; \mathrm{H}, 9.87 \%$. Found: C, $89.95 ; \mathrm{H}, 10.07 \%$. The regioselectivity of 4aa was assigned on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3-phenylpropanoic acid obtained by ozonolytic cleavage followed by Jones oxidation.

(E)-3-(2-Phenylethyl)-1-phenyl-4-nonene (4a'a)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.63-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.50(\mathrm{ddd}, J=13.8,10.2,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{ddd}, J=$ $13.8,10.2,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.20(\mathrm{dd}, J=15.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (dt, $J=15.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.18$ $(\mathrm{m}, 6 \mathrm{H}), 7.21-7.29(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.86,22.10,31.83,32.27,33.54$, 37.37, 42.24, 125.61, 128.32, 128.49, 131.79, 134.08, 143.07. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30}$: C, 90.13 ; H, 9.87%. Found: C, $90.10 ; \mathrm{H}, 9.88 \%$. The regioselectivity of $\mathbf{4 a} \mathbf{a}$ was assigned on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of pentanoic acid obtained by ozonolytic cleavage followed by Jones oxidation.
(E)-1-(tert-Butyldimethylsiloxy)-4-(2-phenylethyl)-2-octene (4b)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{~s}, 6 \mathrm{H}), 0.84-0.89(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 1.12-1.40(\mathrm{~m}$, $6 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=13.8,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{ddd}, J$ $=13.8,10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{dd}, J=15.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dt}, J=$ $15.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-5.19$, $13.98,18.33,22.70,25.86,29.26,33.51,34.90,36.99,41.96,63.99,125.61,128.32,128.48,129.74$, 135.31, 143.04. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{OSi}$ C, $76.23 ; \mathrm{H}, 11.05 \%$. Found: C, $76.15 ; \mathrm{H}, 10.94 \%$. The regioselectivity of $\mathbf{4 b}$ was assigned on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 2-(2-phenylethyl)hexanoic acid^{6} obtained by ozonolytic cleavage followed by Jones oxidation.

(E)-5-Butyl-10-triisopropylsiloxy-1-phenyl-3-decene (4ab)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-1.25(\mathrm{~s}, 33 \mathrm{H}), 1.49-1.54(\mathrm{~m}$, $2 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{td}, J=7.8,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.10(\mathrm{dd}, J=15.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dt}, J=15.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.30(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.88,14.00,17.92,22.70,25.82,26.95,29.36,32.95,34.33$, $35.11,35.39,36.18,42.64,63.49,125.70,128.26,128.59,129.00,135.96,142.27$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{52} \mathrm{OSi}: \mathrm{C}, 78.31 ; \mathrm{H}, 11.78 \%$. Found: C, $78.10 ; \mathrm{H}, 11.80 \%$.

(E)-5-Butyl-10,10-trimethylenedioxy-1-phenyl-3-decene (4ac)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.36(\mathrm{~m}, 13 \mathrm{H}), 1.53-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{td}, J=7.5,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{td}, J$ $=12.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{ddd}, J=12.0,5.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=$ $15.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dt}, J=15.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}) $\delta 14.01,22.71,23.97,25.76,26.93,29.34,34.34,35.10,35.16,35.23,36.18$, 42.55, 66.88, 102.50, 125.72, 128.27, 128.59, 129.07, 135.88, 142.26. HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}-\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{2}, 343.26370$; found, 343.26306.

(E)-Methyl 6-Butyl-3,3-dimethyl-10-phenyl-7-decenoate (4ad)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H}), 1.06-1.29(\mathrm{~m}, 10 \mathrm{H})$, $1.75(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 5.09(\mathrm{dd}$, $J=15.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dt}, J=15.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.00,22.69,27.14,27.19,29.33,29.58,33.05,34.25,35.12,36.14$, 39.82, 43.25, 45.74, 51.00, 125.74, 128.28, 128.58, 129.27, 135.77, 142.20, 173.09. HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{2}, 344.27153$; found, 344.24148.
(E)-1-(3,4-Dimethoxyphenyl)-7-(2-phenylethyl)-5-decene (4a'e)

4a'e

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.69(\mathrm{~m}, 10 \mathrm{H}), 1.92-2.06(\mathrm{~m}$, $3 \mathrm{H}), 2.43-2.53(\mathrm{~m}, 3 \mathrm{H}), 2.64(\mathrm{ddd}, J=14.1,9.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 5.13(\mathrm{dd}, J$ $=15.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=15.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.80(\mathrm{~m}, 1 \mathrm{H})$, 7.14-7.19 (m, 3H), 7.24-7.29 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.83,22.07,29.22,31.83$, $32.22,33.55,35.07,35.48,37.30,42.32,55.69,55.84,111.12,111.72,120.16,125.58,128.29$, $128.49,131.25,134.31,135.60,143.12,147.06,148.80$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{2}: \mathrm{C}, 82.06 ; \mathrm{H}$, 9.53%. Found: C, 82.01 ; H, 9.55%.

(\boldsymbol{E})-7-(2-Phenylethyl)-12-phthalimide-5-dodecene (4a'f)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.36(\mathrm{~m}, 10 \mathrm{H}), 1.45(\mathrm{~m}, 1 \mathrm{H})$, $1.60-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{ddd}, J=13.5,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.62 (ddd, $J=13.5,10.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{dd}, J=15.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ (dt, $J=15.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.84(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.83,22.06,26.68,26.87,28.50$, $31.79,32.20,33.55,35.27,37.29,38.00$, 42.41 , $123.21,125.55,128.29,128.48,131.14,132.26$, 133.91, 134.34, 143.18, 168.62. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{2}$: C, 80.53; H, 8.45; N, 3.35\%. Found: C, 80.40; H, 8.45; N, 3.31\%.

(E)-1-Phenyl-5-(2-phenylpropyl)-3-nonene (4ag)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.5 \times 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.5 \times 3 \mathrm{H})$, $1.05-1.36(\mathrm{~m}, 0.5 \times 9 \mathrm{H}, 0.5 \times 9 \mathrm{H}), 1.40(\mathrm{~m}, 0.5 \times 1 \mathrm{H}), 1.46-1.48(\mathrm{~m}, 0.5 \times 2 \mathrm{H}), 1.58-1.65(\mathrm{~m}, 0.5$ $\times 2 \mathrm{H}), 1.97(\mathrm{~m}, 0.5 \times 1 \mathrm{H}), 2.31-2.38(\mathrm{~m}, 0.5 \times 2 \mathrm{H}, 0.5 \times 2 \mathrm{H}), 2.62-2.73(\mathrm{~m}, 0.5 \times 3 \mathrm{H}, 0.5 \times 3 \mathrm{H})$, $5.08(\mathrm{dd}, J=15.5,9.0 \mathrm{~Hz}, 0.5 \times 1 \mathrm{H}), 5.08(\mathrm{dd}, J=15.5,9.0 \mathrm{~Hz}, 0.5 \times 1 \mathrm{H}), 5.23(\mathrm{dt}, J=15.5,6.3$ $\mathrm{Hz}, 0.5 \times 1 \mathrm{H}), 5.36(\mathrm{dt}, J=15.5,6.3 \mathrm{~Hz}, 0.5 \times 1 \mathrm{H}), 7.09-7.31(\mathrm{~m}, 0.5 \times 10 \mathrm{H}, 0.5 \times 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}) $\delta 13.94,13.99,20.93,22.67(\times 2 \mathrm{C}), 23.61,29.13,29.22,34.21,34.29,35.30$, $35.62,36.09(\times 2 \mathrm{C}), 36.75,37.24,40.43,40.52,43.91,44.28,125.71,125.74,125.76(\times 2 \mathrm{C})$, $126.98,127.33,128.30(\times 4 \mathrm{C}), 128.60(\times 2 \mathrm{C}), 129.41,129.66,135.49,135.68,142.21(\times 2 \mathrm{C})$, 147.60, 148.78. HRMS-EI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{32}, 320.25040$; found, 320.25048. The regioselectivity of $\mathbf{4 a g}$ was assigned on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3-phenylpropanoic acid obtained by ozonolytic cleavage followed by Jones oxidation.

(E)-5-Methyl-1,7-diphenyl-3-heptene (4c)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.62(\mathrm{~m}, 2 \mathrm{H}), 2.10$ (septet, $J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{dd}, J=$ $15.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dt}, J=15.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}) $\delta 20.86,33.55,34.33,36.09,36.33,38.78,125.60,125.78,128.24,128.31$ (× 2C), 128.49, 128.60, 136.78, 142.20, 143.04. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24}: \mathrm{C}, 90.85 ; \mathrm{H}, 9.15 \%$. Found: C, 90.81; H, 9.19\%.

(E)-7-Methyl-1-phenyl-5-(2-phenylethyl)-3-octene(4d)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{dt}, J$ $=8.7,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.65(\mathrm{~m}, 3 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{ddd}, J=13.8,10.2,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56$ (ddd, $J=13.8,10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.12$ (dd, $J=15.3,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.40 (dt, $J=15.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.68,23.47,25.08,33.52,34.31,36.12,37.60,40.34,44.85,125.55,125.77,128.27$, 128.30, 128.48, 128.61, 129.68, 135.51, 142.13, 143.19. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30}: \mathrm{C}, 90.13 ; \mathrm{H}, 9.87 \%$. Found: C, $90.04 ; \mathrm{H}, 9.81 \%$. The regioselectivity of 4 d was assigned on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 3-phenylpropanoic acid obtained by ozonolytic cleavage followed by Jones oxidation.

(E)-2-Methyl-6-(2-phenylethyl)-4-decene (4e)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.41-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.94(\mathrm{~m}, 3 \mathrm{H}), 2.51(\mathrm{ddd}, J=13.5,10.2$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{ddd}, J=13.5,10.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=15.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dt}, J=$ $15.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.00$, $22.19,22.22,22.66,28.45,29.39,33.66,35.22,37.40,42.03,42.59,125.55,128.29,128.48,129.59$, 135.84, 143.28. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30}$: C, $88.30 ; \mathrm{H}, 11.70 \%$. Found: C, $88.01 ; \mathrm{H}, 11.85 \%$.

3-(2-Phenylethyl)-1-hexene (4f)

$4 f$
Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H})$, $1.68(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{ddd}, J=13.8,10.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{ddd}, J=13.8,10.2,5.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.98(\mathrm{dd}, J=16.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=10.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{ddd}, J=16.8,10.2,9.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.16-7.18 (m, 3H), 7.25-7.30 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}) $\delta 14.03,20.08$, $33.45,36.76,37.20,43.47,114.66,125.63,128.32,128.48,143.02,143.20$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20}$: C, $89.29 ;$ H, 10.71%. Found: C, $89.10 ;$ H, 10.83%.

3,7-Dimethyl-3-(2-phenyletnyl)-1,6-octadiene (4g)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}$, $3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.95(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.54(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{dd}, J=17.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}$, $J=11.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=17.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.30$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.49,22.41,22.69,25.61,30.63,39.56,40.65,42.88$, 112.06, 124.99, 125.63, $128.40(\times 2 \mathrm{C}), 131.27,143.46,146.97$. HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{26}, 242.20345$; found, 242.20325.

(S, E)-4-(2-Phenylethyl)-2-octene (4h)

(S)-(E)-4h

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.53(\mathrm{~m}, 1 \mathrm{H})$, 1.69 (dd, $J=6.3,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=13.8,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.63 (ddd, $J=13.8,10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{ddq}, J=15.0,8.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dq}, J=15.0,6.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.14-7.18 (m, 3H), 7.23-7.29 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.01,17.89$, 22.74, 29.36, 33.59, 35.19, 37.24, 42.49, 125.01, 125.55, 128.29, 128.49, 135.91, 143.25. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24}: \mathrm{C}, 88.82 ; \mathrm{H}, 11.18 \%$. Found: C, $88.54 ; \mathrm{H}, 11.17 \%$. $[\alpha]_{\mathrm{D}}{ }^{24}+1.0\left(c 0.8, \mathrm{CHCl}_{3}\right)$. The ee value of $(S)-(E)-4 h$ was determined by chiral HPLC (CHIRALCEL ${ }^{\circledR}$ OD-3 column, $4.6 \mathrm{~mm} \times$ 250 mm , Daisel Chemical Industries, hexane, $0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, 220 \mathrm{~nm}$ UV detector, retention time $=8.57 \mathrm{~min}$ for the S isomer and 8.98 min for the R isomer). The (S) absolute configuration of 4h was determined by optical rotation of 2-(2-phenylethyl)-1-hexanol obtained in two steps from $(S)-(E)-\mathbf{4 h} .(S)-(E)-\mathbf{4 h}$ was converted to 2-(2-phenylethyl)-1-hexanol according to ozonolytic cleavage followed by reduction with NaBH_{4}. (S)-2-(2-phenylethyl)-1-hexanol (46% ee): $[\alpha]_{D}{ }^{25}+0.4$ (c 1.1, CHCl_{3}) $\left[\mathrm{Lit}^{6},(R)\right.$ isomer, $\left.[\alpha]_{\mathrm{D}}-0.5\left(c 3.2, \mathrm{CHCl}_{3}\right)\right]$.

Diethyl trans-2-(2-Phenylethyl)-3-cyclopentenyl Phosphate (4i)

$4 i$

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.32(\mathrm{td}, J=7.2,0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{td}, J=7.2,0.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.62-1.80(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.83(\mathrm{~m}, 2 \mathrm{H}), 4.09$ (quint., $J=7.2$, $2.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.75$ (septet, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.74(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.30(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.4 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.88,15.98,33.50,34.36,39.63(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 52.41(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 63.51$, $63.60,82.92(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 125.84,127.58,128.36,128.38,132.31,141.99$. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{PNa}, 347.13827$; found, 347.13850 . The anti stereochemistry of $\mathbf{4 i}$ was assigned on the basis of ${ }^{1} \mathrm{H}$ NMR of trans-2-(2-phenylethyl)-3-cyclopentenol ${ }^{7}$ obtained by dephosphorylation with LiAlH_{4}. The cis isomer was not detected by ${ }^{1} \mathrm{H}$ NMR.
(1S,5S)-1-Triisopropylsiloxy-5-[(4-methoxycarbonyl-3,3-dimethyl)butyl]-3-cyclopentene (4j)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97(\mathrm{~s}, 6 \mathrm{H}), 1.05-1.08(\mathrm{~m}, 21 \mathrm{H}), 1.15-1.57(\mathrm{~m}, 4 \mathrm{H}), 2.19(\mathrm{~s}$, $2 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{dt}, J=6.3,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.62-5.69 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}) $\delta 12.10,17.93,27.07,27.12,27.64,33.04,39.99$, $42.30,45.64,51.05,55.45,78.30,127.87,132.93,172.94$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 69.05 ; \mathrm{H}$, 11.06%. Found: C, 68.99 ; H, $10.93 \% .[\alpha]_{\mathrm{D}}{ }^{24}+82.1\left(c 1.00, \mathrm{CHCl}_{3}\right)$. The de value of $(1 S, 5 S)-\mathbf{4} \mathbf{j}$ was determined by chiral HPLC analysis of the p-nitrobenzoate derivative obtained by desilylation followed by benzoylation from ($1 S, 5 S$)-4j. HPLC analysis (CHIRALCEL ${ }^{\circledR}$ OD-3 column, $4.6 \mathrm{~mm} \times$ 250 mm , Daisel Chemical Industries, hexane/2-propanol = 99:1, $0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, 254 \mathrm{~nm}$ UV detector, retention time $=28.4 \mathrm{~min}$ for the cis isomer and 36.7 min for the trans isomer) revealed that the diastereomeric excess of the p-nitrobenzoate derivative was 94%. The anti stereochemistry of $\mathbf{4} \mathbf{j}$ was determined by comparison of the couping constants in the ${ }^{1} \mathrm{H}$ NMR for the corresponding alcohol (obtained by desilylation) with that for trans-2-(2-phenylethyl)-3-cyclopentenol. ${ }^{7}$ The alcohol from 4j: $\delta 4.11(\mathrm{CHOH}, \mathrm{dt}, J=6.0,3.0 \mathrm{~Hz})$.

4,4-Dimethyl-3-(2-phenylethyl)-1-cyclohexene (4I)

Oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.76(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H})$, $1.83(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{ddd}, J=13.5,10.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{ddd}, J=13.5,10.5$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.78(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.48,22.96,28.76,31.55,32.21,34.19,35.87,44.57,125.72,126.01,128.37,128.51$, 129.50, 143.02. HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{22}, 214.17215$; found, 214.17219. The
regioselectivity of 41 was determined on the basis of ${ }^{13} \mathrm{C}$ NMR and DEPT experiments. The chemical shift of the quaternary homoallylic carbon is diagnostic of the regiochemitry. The corresponding ${ }^{13} \mathrm{C}$ resonance appeared at higher field ($\delta 31.55$) than that expected for the quaternary allylic carbon.

Steroid 5

White Solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.68(\mathrm{~s}, 3 \mathrm{H}), 0.87-1.23(\mathrm{~m}, 36 \mathrm{H}), 1.43-1.60(\mathrm{~m}, 8 \mathrm{H})$, $1.79-2.05(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.59-2.64(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{dt}, J=6.3,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{dq}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dq}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.76,12.10,17.93,18.31,19.19,20.90,21.33,24.11,27.64,28.30$, $31.71,31.77,34.35,36.48,36.88,38.01,39.65,40.38,42.04,42.33,49.92,52.25,56.66,56.89$, 73.94, 79.36, 122.67, 127.74, 132.98, 139.74, 170.71. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{64} \mathrm{O}_{3} \mathrm{SiNa}, 619.45169$; found, 619.45145. $[\alpha]_{\mathrm{D}}^{24}+33.6\left(c \quad 2.9, \mathrm{CHCl}_{3}\right)$. The anti stereochemistry of $\mathbf{5}$ was determined by comparing the couping constants in the ${ }^{1} \mathrm{H}$ NMR of the corresponding alcohol (obtained by desilylation) with that of trans-2-(2-phenylethyl)-3-cyclopentenol. ${ }^{7}$ The alcohol derived from 5: $\delta 4.01(\mathrm{CHOH}, \mathrm{dt}, J=6.0,3.0 \mathrm{~Hz})$. The cis isomer was not detected by ${ }^{1} \mathrm{H}$ NMR.

NMR Studies (Figures S1a-f, Table S1)

The mixture of $(9-B B N-H)_{2}(122.4 \mathrm{mg}, 0.5 \mathrm{mmol})$ and styrene $(109.4 \mu 1,1.05 \mathrm{mmol})$ in THF- d_{8} $(0.4 \mathrm{~mL})$ was stirred at $60{ }^{\circ} \mathrm{C}$ for 1 hour to prepare alkylborane 2a [$\delta 65.7 \mathrm{ppm}\left({ }^{11} \mathrm{~B}\right)$, Figure S1a. See also Figure S1d for the ${ }^{1} \mathrm{H}$ NMR spectrum]. ${ }^{8} \mathrm{Next}, t$-BuOK (1 M in THF, $1.0 \mathrm{ml}, 1.0 \mathrm{mmol}$) was added at $25{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 5 min . The ${ }^{11} \mathrm{~B}$ NMR spectrum of the mixture showed a peak corresponding to a tetravalent borate ($\delta-1.4 \mathrm{ppm}$) (Figure S1b. See also Figure S1e for the ${ }^{1} \mathrm{H}$ NMR spectrum). ${ }^{9}$ Subsequently, CuOAc ($121.6 \mathrm{mg}, 1.0 \mathrm{mmol}, \mathrm{B} / \mathrm{Cu} 1: 1$) was added to the borate solution, and the solution was heated at $60{ }^{\circ} \mathrm{C}$ for 1 h : the peak of the borate disappered completely and a signal that corresponds to $9-\mathrm{BBN}^{\prime} \mathrm{O}^{\prime} \mathrm{Bu}^{10}$ appeared at $\delta 55.1 \mathrm{ppm}$ as a major peak in the ${ }^{11} \mathrm{~B}$ NMR spectrum (Figure S1c). Meanwhile, the formation of styrene and ethylbenzene were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (4% and 13% NMR yields, respectively. Dibenzyl was used as an internal standard) (Figure S1f). These compounds seem to be produced by β-hydride elimination and protonation of an alkylcopper species. The signals for styrene and ethylbenzene did not increase furthermore with prolonged heating ($60^{\circ} \mathrm{C}, 20 \mathrm{~h}$).

Figure S1a. [${ }^{11}$ B NMR spectrum (192.6 MHz , THF- d_{8})]

Figure S1b. [${ }^{11} \mathrm{~B}$ NMR spectrum (192.6 MHz, THF- d_{8})]

Figure S1c. [${ }^{11}$ B NMR spectrum (192.6 MHz, THF- d_{8})]

Figure S1d. [${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz, THF- d_{8})]

Figure S1e. [${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz, THF- d_{8})]

Figure S1f. [${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}\right.$, THF- $\left.\left.d_{8}\right)\right]$

Table S1. Summary of the ${ }^{11} \mathrm{~B}$ NMR Data for the Organoboron Compounds

this work	literature	
	Soderquist, J. A.; Kock, I.; Estrella, M. E. Org. Process Res. Dev. 2006, 10, 1076-1079.	$\underbrace{\mathrm{B}}_{\delta 72.2 \mathrm{ppm}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)}$

	Brown, H. C.; Cha, J. S.; Nazer, B. J. Org. Chem. 1985, 50,	
$\delta 55.1 \mathrm{ppm}\left(\mathrm{THF}-d_{8}\right)$	549-553.	$\delta 55.5 \mathrm{ppm}$ (neat)

References

(1) Bruke, E, -J. Tetrahedron 1979, 35, 781-788.
(2) Sato, F.; Ishikawa, H.; Sato, M. Tetarahedron Lett. 1981, 22, 85-88.
(3) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738-8739.
(4) Lysenko, I. L.; Kim, K.; Lee, H. G.; Cha, J. K. J. Am. Chem. Soc. 2008, 130, 15997-16002.
(5) Langlois, J.-B.; Alexakis, A. Chem. Comm. 2009, 3868-3870.
(6) Spino, C.; Gund, V. G.; Nadeau, C. J. Comb. Chem. 2005, 7, 345-352.
(7) (a) Partridge, J. J.; Chadha, N. K.; Uskoković, M. R. J. Am. Chem. Soc. 1973, 95, 532-540. (b) Danheiser, R. L.; Martinez-Davila, C.; Auchus, R. J.; Kadonaga, J. T. J. Am. Chem. Soc. 1981, 103, 2443-2446.
(8) Soderquist, J. A.; Kock, I.; Estrella, M. E. Org. Process Res. Dev. 2006, 10, 1076-1079.
(9) (a) Köster, R.; Seidel, G.; Wagner, K.; Wrackmeyer, B. Chem. Ber. 1993, 126, 305-317. (b) Fry, A.; Vishwakarma, L. C. J. Org. Chem. 1980, 45, 5306-5308.
(10) Brown, H. C.; Cha, J. S.; Nazer, B. J. Org. Chem. 1985, 50, 549-553.

Date ${ }^{4 \text { fid }}$ d/Aug/2025 00:00:00
Coment

3a


```
Mritinal File: Sep 1509
    N
lol
```


3a


```
Oriminal File: Nov 509 
```


$\mathrm{Bu} \quad \mathrm{OP}(\mathrm{O})(\mathrm{OEt})_{2}$
 3b

$\mathrm{Bu} \quad \mathrm{OP}(\mathrm{O})(\mathrm{OEt})_{2}$
 OTBDMS

3b

$\underbrace{\mathrm{Me}}_{3 \mathbf{P}}$


```
Original File: Nov 509
    *)
M,
My.
M
\begin{subarray}{c}{\mathrm{ Scan lime}}\\{\mathrm{ Acq}}\\{\mathrm{ PD Ime }}\end{subarray}
M
\
M,
```


3d


```
\Mininal File: Nov 2609 
Myyyy
M,
M,
```



```
Original File: Jun 509
```



```
lol
```



```
Original File: Nov 26 09
    \,
Maslol
M
```



```
Scan (anm
Mylsel
M,
%
Crinted (an/Dec/21 20:46:00
```


3g

(S)-(Z)-3h


```
Oritinal File: Nay 2809
    \
Myyyy
Masmen
\begin{subarray}{c}{\mathrm{ Frrequecy(Span)}}\\{\mathrm{ Scan (Silm}}\end{subarray}
```



```
MPlsel
\
\
M,
M,
```

$\underbrace{\mathrm{Bu}}_{\mathrm{Me}} \mathrm{OP}(\mathrm{O})(\mathrm{OEt})_{2}$
(S)-(Z)-3h


```
lol
```



```
Mriginal File: Nov 1709
    \
lol
```

$\mathrm{OP}(\mathrm{O})(\mathrm{OEt})_{2}$
（1R，4S）－3j
OTIPS
180
160
OM

120
100

20
б ppm

べージッシ


```
Mriginal File: Sep 1509
    \
lol
```

(O2)


```
Mrithinal File: Aug 27 09
    \
Mashol
Mcan
M,
Mmperaure
Meference
C0Cl3.0 C
M,
```



```
c
    *)
\c
M,
MFO
Mequecy(Span)
M, man ime
MP!sel
\
\
M,
M,
Mrinted
```



```
Mriginal File: Aug 31
    N
lol
```



```
M,
    Cl3 Statdard Observe
lol
```


Date
Coment


```
Original File: Dec 809
    Cl
My.
Mus,
Moint (a)
Can (Span) }\begin{array}{r}{18761.73 \textrm{mz}}
M Scan ime
MP!sel
M
M
lal
```



```
M
    Cl
M,
lol
Montmy(Span)
Scancecy(Span) 
c
\
\
```



```
Main
rinted 2009/Dec/21 20:21:42
```



```
M Original File: Nov 909
    \
lol
Tenperature
Solvent
Eeference
road.
roactor
raid
```


$$
\begin{aligned}
& \begin{array}{l}
00.45 \mathrm{~Hz} \\
16 \\
3.483 \mathrm{~s} \\
1.502 \mathrm{~s} \\
1.0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{0}^{0.0}{ }^{\mathrm{ppm}} \mathrm{Fz}
\end{aligned}
$$

6

なouncor

Date
$\begin{array}{c}\text { Doten } \\ \text { Coment } \\ \text { THNARD } \\ \text { IH OBSERVE }\end{array}$

4ag

NNNNNNNVN,

```
M
    *)
Moshluc
Mosset 
Mcan
```



```
\
% %2768.3672
tecy(Span)
c
M,
*)
```


[^0]

```
M
    \
lol
```



```
N
```



```
M\mathrm{ Oritinal File: Sep 709}
    c
Moslol
Mset
M Scancey(mpan)
M
\
lol
Mrinted 2009/Dec/21 21:20:12
Hinted 2009/Dec/21 21:20:12
```



```
M
    N
Mabsluc
```


(S)-(E)-4h

60


```
Criginal File: Sep 1809
c
lol
```



```
Mriginal File: Nov 1909
    l
Moslol
MF
Ccal
\begin{subarray}{c}{\mathrm{ Temperature}}\\{\mathrm{ Solvent }}\end{subarray}
\
```



```
M,
lol
```


4k

$$
\begin{aligned}
& \begin{array}{l}
\text { Original File: } \\
\text { Date } 1209 \\
\text { Comenent }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\substack{\text { RCain } \\
\text { Printed } \\
\text { Operator }}}{\text { Ren }}
\end{aligned}
$$


```
Original File: }\mp@subsup{\}{0ct}{0.609
cc
Cl
Mcan (ime 
Scan
Acq ine
Acp
Pulsel
Pat
ulsel
emperature
solvent
Imperature
oferente
```



```
M,
Myyyy
M,
M,
```


[^0]:

