# **Supporting Information**

# Copper-Catalyzed y-Selective Allyl–Alkyl Coupling between Allylic Phosphates and Alkylboranes

Hirohisa Ohmiya,\* Umi Yokobori, Yusuke Makida and Masaya Sawamura\*

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

### **Table of Contents**

| S1–S2      |
|------------|
| S2–S3      |
| S3–S7      |
| <b>S</b> 7 |
| S7–S14     |
| S15–S17    |
| S17        |
| S18–S89    |
|            |

# **Instrumentation and Chemical**

NMR spectra were recorded on a Varian Gemini 2000 spectrometer, operating at 300 MHz for <sup>1</sup>H NMR and 75.4 MHz for <sup>13</sup>C NMR, and a JEOL ECA-600, operating at 600 MHz for <sup>1</sup>H NMR, 150.9 MHz for <sup>13</sup>C NMR and 192.6 MHz for <sup>11</sup>B NMR. Chemical shift values for <sup>1</sup>H and <sup>13</sup>C are referenced to Me<sub>4</sub>Si and the residual solvent resonances, respectively. Chemical shift values for <sup>11</sup>B is referenced to BF<sub>3</sub>·OEt ( $\delta$  0 ppm). Chemical shifts are reported in  $\delta$  ppm. IR spectra were recorded on a Perkin-Elmer Spectrum One. Mass spectra were obtained with Thermo Fisher Scientific Exactive, JEOL JMS-T100 GC or JEOL JMS-T100LP at the Center for Instrumental Analysis, Hokkaido University. Elemental analysis was performed at the Center for Instrument Analysis of Hokkaido University. TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F<sub>254</sub>. Silica gel (Kanto Chemical Co., Silica gel 60 N, spherical, neutral) and aluminum oxide (Nacalai Tesuque, Alumina Activated 200) were used for column chromatography. HPLC analyses were conducted on a HITACHI ELITE LaChrom system with a HITACHI L-2400 UV detector or a Shimadzu LC-6A system with a Shimadzu SPD-10A UV detector. Gas chromatographic (GLC) analyses were conducted on a Shimadzu GC-14B equipped with a flame ionization detector. Gel permeation chromatography (GPC) was performed by LC-908 (Japan Analytical Industry Ltd., two in-line JAIGEL-2H, CHCl<sub>3</sub>, 3.5 mL/min, UV and RI **S**1

detectors).

All reactions were carried out under nitrogen or argon atmosphere. Materials were obtained from commercial suppliers or prepared according to standard procedures unless otherwise noted. *t*-BuOK (1.0 M THF solution) and CuOAc were purchased from Aldrich Chemical Co., stored under nitrogen, and used as it is. THF was purchased from Kanto Chemical Co., stored under argon. Alkenes **1a–g** was well known compounds. 20(21)-Methylene steroid **1n** was prepared from pregrenone acetate according to the reported procedure.<sup>1</sup>

### **Preparation of Allylic Phosphates**

**Preparation of Allylic Phosphates 3a, a' and 3c–e.** Allylic substrates were prepared by the phosphorylation of the corresponding allylic alcohols. The allylic alcohols were prepared by the reduction of the corresponding propargylic alcohols by  $Cp_2TiCl_2/i$ -BuMgBr according to the reported procedure.<sup>2</sup> The obtained crude allylic alcohols were purified by silica gel chromatography and GPC (CHCl<sub>3</sub>).

The preparation of **3a** is representative. To a solution of (*Z*)-1-phenyl-4-nonen-3-ol (437.7 mg, 2 mmol) in pyridine (2.2 mL, 5 mL per 1 gram of alcohol),  $(EtO)_2P(O)Cl$  (405  $\mu$ L, 2.8 mmol) and DMAP (61.1 mg, 0.5 mmol) were sequentially added at 0 °C. After being stirred at rt for 2 h, the reaction mixture was diluted with EtOAc (66 mL) and quenched with H<sub>2</sub>O (5 mL). The resulting mixture was washed with sat. CuSO<sub>4</sub> (10 mL × 3) and brine, and was dried over anhydrous MgSO<sub>4</sub>, filtered, and evaporated under reduced pressure. The residue was purified through a short plug of aluminum oxide (ether) to provide **3a** in 86% yield (612.8 mg, 1.7 mmol).

**Preparation of Allylic Phosphates 3b, 3f and 3g.** Allylic phosphate **3b** was synthesized as follows: 2,3-*O*-isopropylidene-glyceraldehyde was subjected to *Z*-selective Horner-Wadsworth-Emmons-type reaction with pentyltriphenylphosphonium bromide in the presence of NaHMDS to give the corresponding *Z*-alkene. Next, deprotection of the acetal, silylation and phosphorylation produced **3b**. Allylic substrates **3f** and **3g** were obtained by the phosphorylation of the corresponding commercial available alcohols.

**Preparation of** (*S*, *Z*)-**Diethyl 3-Octen-2-yl Phosphate** (**3h**). (*S*)-3-Octyn-2-ol was prepared by the asymmetric reduction of 3-octyn-2-one according to the reported procedure.<sup>3</sup> (*S*)-3-Octyn-2-ol was reduced with Cp<sub>2</sub>TiCl<sub>2</sub>/*i*-BuMgBr according to the reported procedure,<sup>2</sup> producing (*S*, *Z*)-3-octen-2-ol, which then was converted to the corresponding allylic phosphate (*S*)-(*Z*)-**3h**. The ee value of (*S*)-(*Z*)-**3h** (95% ee) was determined by HPLC analysis of the *p*-nitrobenzoate derivative of (*S*, *Z*)-3-octen-2-ol (CHIRALCEL<sup>®</sup> OD-3 column, 4.6 mm × 250 mm, Daicel Chemical Industries, hexane, 0.5 mL/min, 40 °C, 254 nm UV detector, retention time = 32.8 min for the *R* isomer and 34.3 min for the *S* isomer). The absolute configuration of (*S*)-(*Z*)-**3h** was determined by optical rotations of the precursor compounds, 3-octyn-2-ol.<sup>3</sup> **Preparation of Cyclic Allylic Phosphates.** Allylic substrates **3i** and **3k–m** were prepared by the phosphorylation of the corresponding known allylic alcohols. Allylic phosphate (1R,4S)-**3j** was synthesized from commercial available (1R,3S)-*cis*-4-cyclopenetene-1,3-diol 1-acetate by silylation, deacetylation and phosphorylation.

### **Characterization Data for Allylic Phosphates**

(Z)-Diethyl 1-Phenyl-4-nonen-3-yl Phosphate (3a)

Bu OP(O)(OEt)<sub>2</sub> Ph **3a** 

Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.88 (t, J = 7.2 Hz, 3H), 1.28–1.35 (m, 10H), 1.80–1.89 (m, 1H), 2.06–2.16 (m, 3H), 2.65–2.71 (m, 2H), 4.02–4.15 (m, 4H), 5.15 (dq, J = 9.0, 6.9 Hz, 1H), 5.46 (dd, J = 11.1, 9.0 Hz, 1H), 5.59 (dt, J = 11.1, 7.5 Hz, 1H), 7.18–7.21 (m, 3H), 7.26–7.31 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  13.77, 15.90 (d, J = 4.0 Hz), 16.00 (d, J = 3.4 Hz), 22.18, 27.38, 31.03, 31.48, 38.06 (d, J = 6.9 Hz), 63.40 (d, J = 5.7 Hz), 63.42 (d, J = 5.7 Hz), 74.28 (d, J = 6.3 Hz), 125.99, 128.30 (d, J = 3.4 Hz), 128.40, 128.45, 134.18, 141.44. HRMS–ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>31</sub>O<sub>4</sub>PNa, 377.18522; found, 377.18552.

#### (Z)-Diethyl 1-Phenyl-3-nonen-5-yl Phosphate (3a')



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.87 (t, *J* = 6.9 Hz, 3H), 1.17–1.43 (m, 11H), 1.64 (m, 1H), 2.40–2.52 (m, 2H), 2.56–2.81 (m, 2H), 3.98–4.14 (m, 4H), 5.03 (dq, *J* = 9.3, 6.6 Hz, 1H), 5.41 (dd, *J* = 11.1, 9.3 Hz, 1H), 5.59 (dt, *J* = 11.1, 7.5 Hz, 1H), 7.16–7.21 (m, 3H), 7.22–7.31 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  13.85, 15.93 (d, *J* = 2.9 Hz), 16.30 (d, *J* = 2.9 Hz), 22.31, 26.80, 29.52, 35.50, 35.81 (d, *J* = 6.3 Hz), 63.34 (d, *J* = 5.7 Hz), 63.36 (d, *J* = 5.7 Hz), 74.73 (d, *J* = 6.3 Hz), 126.02, 128.41, 128.59, 129.50 (d, *J* = 2.9 Hz), 132.42, 141.47. HRMS–ESI (*m*/*z*): [M+Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>31</sub>O<sub>4</sub>PNa, 377.1858; found, 377.1862.

#### (Z)-1-(*tert*-Butyldimethylsiloxy)-3-octen-2-yl Diethyl Phosphate (3b)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.06 (s, 6H), 0.88–0.92 (m, 12H), 1.28–1.40 (m, 10H), 2.12–2.16 (m, 2H), 3.61 (ddd, *J* = 10.8, 5.1, 1.8 Hz, 1H), 3.73 (dd, *J* = 10.8, 6.3 Hz, 1H), 4.02–4.17 (m, 4H), 5.12 (m, 1H), 5.40 (ddt, *J* = 10.8, 9.3, 1.2 Hz, 1H), 5.64 (dtd, *J* = 10.8, 7.5, 1.2 Hz, 1H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$ –5.56, 13.81, 15.91, 16.01, 18.25, 22.23, 25.75, 27.58, 31.57, 63.38

 $(d, J = 5.6 \text{ Hz}), 63.42 (d, J = 5.6 \text{ Hz}), 65.85 (d, J = 7.4 \text{ Hz}), 74.96 (d, J = 5.6 \text{ Hz}), 125.67 (d, J = 2.8 \text{ Hz}), 135.60. \text{HRMS-ESI} (m/z): [M+Na]^+ calcd for C_{18}H_{39}O_5PSiNa, 417.22021; found, 417.22031.$ 

(Z)-Diethyl 6-Phenyl-2-hexen-4-yl Phosphate (3c)

Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  1.28 (td, J = 6.6, 0.9 Hz, 3H), 1.30 (td, J = 6.6, 0.9 Hz, 3H), 1.70 (dd, J = 6.9, 1.5 Hz, 3H), 1.82 (m, 1H), 2.10 (m, 1H), 2.63–2.72 (m, 2H), 4.02–4.15 (m, 4H), 5.17 (m, 1H), 5.50 (ddq, J = 13.2, 9.0, 1.5 Hz, 1H), 5.70 (dq, J = 13.2, 6.9 Hz 1H), 7.17–7.21 (m, 3H), 7.27–7.31 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  13.30, 15.92 (d, J = 3.4 Hz), 16.01 (d, J = 3.4 Hz), 31.00, 37.81 (d, J = 6.9 Hz), 63.43 (d, J = 6.3 Hz), 63.45 (d, J = 6.3 Hz), 73.89 (d, J = 6.3 Hz), 126.01, 128.42, 128.45, 128.48, 129.40 (d, J = 3.4 Hz), 141.41. HRMS–ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>16</sub>H<sub>25</sub>O<sub>4</sub>PNa, 335.13881; found, 335.13924.

### (Z)-Diethyl 7-Methyl-1-phenyl-4-octen-3-yl Phosphate (3d)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.87 (d, *J* = 6.9 Hz, 3H), 0.90 (d, *J* = 6.9 Hz, 3H), 1.30 (dt, *J* = 6.9, 1.2 Hz, 3H), 1.33 (dt, *J* = 6.9, 1.2 Hz, 3H), 1.63 (septet, *J* = 6.9 Hz, 1H), 1.86 (m, 1H), 1.99 (t, *J* = 7.2 Hz, 2H), 2.10 (m, 1H), 2.61–2.77 (m, 2H), 4.02–4.17 (m, 4H), 5.16 (dt, *J* = 14.7, 7.2, 1H), 5.57 (m, 2H), 7.17–7.19 (m, 3H), 7.21–7.31 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  15.95 (d, *J* = 4.0 Hz), 16.05 (d, *J* = 4.0 Hz), 22.18, 22.21, 28.39, 31.07, 36.62, 38.12 (d, *J* = 6.3 Hz), 63.43 (d, *J* = 6.3 Hz), 63.45 (d, *J* = 6.3 Hz), 74.40 (d, *J* = 6.3 Hz), 126.02, 128.45, 128.48, 129.09 (d, *J* = 3.4 Hz), 132.90, 141.52. HRMS–ESI (*m*/*z*): [M+Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>31</sub>O<sub>4</sub>PNa, 377.18576; found, 377.18750.

### (Z)-Diethyl 2-Methyl-5-decen-4-yl Phosphate (3e)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.88–0.97 (m, 9H), 1.28–1.39 (m, 11H), 1.62–1.74 (m, 2H), 2.12–2.19 (m, 2H), 4.01–4.15 (m, 4H), 5.17 (m, 1H), 5.39 (tt, *J* = 10.8, 1.2, 1H), 5.54 (dt, *J* = 10.8, 7.5, 1H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  13.81, 15.91 (d, *J* = 3.4 Hz), 16.01 (d, *J* = 3.4 Hz), 22.24 (d, *J* = 3.4 Hz), 22.70, 24.08, 27.35, 31.54, 45.40 (d, *J* = 6.3 Hz), 63.26 (d, *J* = 5.7 Hz), 63.30 (d, *J* = 5.7 Hz), 73.35 (d, *J* = 5.7 Hz), 128.99 (d, *J* = 2.9 Hz), 133.62. HRMS–ESI (*m*/*z*): [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>31</sub>O<sub>4</sub>PNa, 329.18522; found, 329.18579.



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.90 (t, J = 7.5 Hz, 3H), 1.34 (td, J = 7.2, 1.2 Hz, 6H), 1.36–1.46 (m, 2H), 2.07 (q, J = 6.9 Hz, 2H), 4.11 (quint., J = 7.2 Hz, 4H), 4.60 (dd, J = 8.1, 6.0 Hz, 2H), 5.55–5.70 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  13.34, 15.80, 15.89, 22.25, 29.22, 62.84, 62.91, 63.51 (d, J = 5.7 Hz), 124.09 (d, J = 6.8 Hz), 135.11. HRMS–ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>10</sub>H<sub>21</sub>O<sub>4</sub>PNa, 259.10697; found, 259.10698.

### (Z)-Diethyl 3,7-Dimethylocta-2,6-dienyl Phosphate (3g)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  1.33 (t, J = 6.9 Hz, 6H), 1.60 (s, 3H), 1.68 (s, 3H), 1.77 (s, 3H), 2.05–2.15 (m, 4H), 4.10 (quint., J = 6.9 Hz, 4H), 4.54 (t, J = 7.5 Hz, 2H), 5.08 (m, 1H), 5.41 (t, J = 7.5 Hz, 1H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  15.95, 16.04, 17.53, 23.37, 25.56, 26.48, 32.01, 63.53 (d, J = 5.7 Hz), 63.71 (d, J = 5.7 Hz), 119.96 (d, J = 6.8 Hz), 123.51, 132.36, 142.74. HRMS–ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>14</sub>H<sub>27</sub>O<sub>4</sub>PNa, 313.15392; found, 313.15407.

### (S, Z)-Diethyl 3-Octen-2-yl Phosphate (3h).



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.90 (t, *J* = 6.9 Hz, 3H), 1.29–1.36 (m, 10H), 1.38 (d, *J* = 6.3 Hz, 3H), 2.09–2.16 (m, 2H), 4.02–4.14 (m, 4H), 5.31 (dq, *J* = 12.6, 6.3 Hz, 1H), 5.41–5.55 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  13.79, 15.90 (d, *J* = 1.1 Hz), 15.99 (d, *J* = 1.1 Hz), 22.17, 22.67 (d, *J* = 5.1 Hz), 27.22, 31.53, 63.55 (d, *J* = 5.7 Hz), 63.40 (d, *J* = 5.7 Hz), 71.28 (d, *J* = 5.7 Hz), 129.92 (d, *J* = 5.1 Hz), 132.76. HRMS–ESI (*m*/*z*): [M+Na]<sup>+</sup> calcd for C<sub>12</sub>H<sub>25</sub>O<sub>4</sub>PNa, 287.13881; found, 287.13795. [ $\alpha$ ]<sub>D</sub><sup>24</sup> +46.4 (*c* 1.54, CHCl<sub>3</sub>).

# cis-4-Cyclopentene-1,3-diyl Tetraethyl Diphosphate (3i)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  1.35 (t, *J* = 7.2 Hz, 12H), 2.05 (dt, *J* = 14.4, 4.5 Hz, 1H), 2.93 (dt, *J* = 14.4, 6.9 Hz, 1H), 4.12 (quint., *J* = 7.2 Hz, 8H), 5.23 (dd, *J* = 6.9, 4.5 Hz, 2H), 6.15 (s, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  16.00 (d, *J* = 5.7 Hz), 39.51, 63.81 (d, *J* = 5.7 Hz), 79.14 (d, *J* = 5.7 Hz), 135.15 (d, *J* = 5.1 Hz). HRMS–ESI (*m*/*z*): [M+Na]<sup>+</sup> calcd for C<sub>13</sub>H<sub>26</sub>O<sub>8</sub>P<sub>2</sub>Na, 395.09951; found,

# Diethyl (1R, 4S)-4-(Triisopropylsiloxy)-2-cyclopentenyl Phosphate (3j)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  1.05–1.08 (m, 21H), 1.34 (td, J = 7.2, 0.9 Hz, 6H), 1.80 (dt, J = 13.5, 5.4 Hz, 1H), 2.86 (dt, J = 13.5, 7.2 Hz, 1H), 4.11 (quint., J = 7.2 Hz, 4H), 4.75 (t, J = 5.1 Hz, 1H), 5.18 (q, J = 6.0 Hz, 1H), 5.96 (dm, J = 5.4 Hz, 1H), 6.02 (dm, J = 5.4 Hz, 1H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  11.91, 15.95, 16.04, 17.80, 17.81, 42.61 (d, J = 4.5 Hz), 63.59 (d, J = 1.2 Hz), 63.67 (d, J = 1.2 Hz), 74.54, 79.84 (d, J = 5.8 Hz), 131.84 (d, J = 5.8 Hz), 139.21. HRMS–ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>18</sub>H<sub>37</sub>O<sub>5</sub>PSiNa, 415.20401; found, 415.20462. [ $\alpha$ ]<sub>D</sub><sup>25</sup>–16.4 (c 1.1, C<sub>6</sub>H<sub>6</sub>).

# 2-Cyclohexenyl Diethyl Phosphate (3k)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  1.34 (t, J = 7.2 Hz, 6H), 1.55–2.18 (m, 6H), 4.11 (quint., J = 7.2 Hz, 4H), 4.88 (brs, 1H), 5.79 (d, J = 10.2 Hz, 1H), 5.95 (dt, J = 10.2, 3.6 Hz, 1H), <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  15.89, 15.98, 18.27, 24.56, 29.69 (d, J = 4.6 Hz), 63.38 (d, J = 5.7 Hz), 63.45 (d, J = 5.7 Hz), 72.03 (d, J = 5.7 Hz), 126.29 (d, J = 4.6 Hz), 132.73. HRMS–ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>10</sub>H<sub>19</sub>O<sub>4</sub>PNa, 257.09186; found, 257.09175.

# Diethyl 4,4-Dimethyl-2-cyclohexenyl Phosphate (3l)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.97 (s, 3H), 1.03 (s, 3H), 1.34 (td, *J* = 6.6, 1.2 Hz, 6H), 1.42 (m, 1H), 1.63 (m, 1H), 1.82–2.01 (m, 2H), 4.11 (quintet d, *J* = 7.2, 1.2 Hz, 4H), 4.82 (q, *J* = 5.4 Hz, 1H), 5.63 (s, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  15.91, 16.00, 26.90 (d, *J* = 4.0 Hz), 28.44, 28.82, 31.56, 32.88, 63.40, 63.47 (d, *J* = 6.3 Hz), 72.32 (d, *J* = 5.7 Hz), 123.75 (d, *J* = 5.1 Hz), 142.56. HRMS–ESI (*m*/*z*): [M+Na]<sup>+</sup> calcd for C<sub>12</sub>H<sub>23</sub>O<sub>4</sub>PNa, 285.12262; found, 285.12304.

# 2-Cycloheptenyl Diethyl Phosphate (3m)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  1.34 (t, J = 7.2 Hz, 6H), 1.42 (m, 1H), 1.56–1.84 (m, 3H), 1.92–2.09 (m, 3H), 2.19 (m, 1H), 4.11 (quint., J = 7.2 Hz, 4H), 5.01 (t, J = 9.0 Hz, 1H), 5.74–5.87 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  16.00, 16.06, 26.09, 26.34, 28.29, 34.37 (d, J = 4.6 Hz), 63.53 (d, J = 6.3 Hz), 63.54 (d, J = 6.3 Hz), 78.34 (d, J = 5.7 Hz), 131.71, 134.15 (d, J = 5.1 Hz). HRMS–ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>21</sub>O<sub>4</sub>PNa, 271.10751; found, 271.10732.

## Procedures for Copper-Catalyzed Allyl–Alkyl Coupling

Typical Procedure for Hydroboration/Allyl–Alkyl Coupling Sequence (Scheme 1). In a glove box,  $(9\text{-}BBN\text{-}H)_2$  (91.5 mg, 0.375 mmol) was placed in a vial containing a magnetic stirring bar. Then, the vial was sealed with a cap equipped with a Teflon-coated silicon rubber septum. The vial was removed from the glove box. THF (0.3 mL) and styrene (105  $\mu$ L, 0.9 mmol) were sequentially added, and the mixture was stirred at 60 °C for 1 hour to prepare alkylborane 2a. On the other hand, in a glove box, CuOAc (6.1 mg, 0.05 mmol) was placed in another vial. *t*-BuOK (1 M in THF, 0.5 ml, 0.5 mmol) was added to alkylborane 2a prepared in advance at 25 °C, and the mixture was stirred at 25 °C for 5 min to produce the corresponding alkylborate. Next, the alkylborate was then transferred to another vial containing Cu salt. Finally, allylic phosphate 3a (177.2 mg, 175  $\mu$ L, 0.5 mmol) was added. After 8 h stirring at 60 °C, CH<sub>2</sub>Cl<sub>2</sub> was added to the mixture. Then, the mixture was filtered through a short plug of silica gel, which was washed with diethyl ether. After the solvent was removed under reduced pressure, flash chromatography on silica gel (hexane) provided 4a (122 mg, 0.4 mmol) in 80% yield.

**Procedure for Hydroboration/Allyl–Alkyl Coupling Sequence (Scheme 2)**. In a glove box,  $(9\text{-BBN-H})_2$  (33.6 mg, 0.1375 mmol) and steroid **1n** (102.8 mg, 0.286 mmol) were placed in a vial containing a magnetic stirring bar. Then the vial was sealed with a cap equipped with a Teflon-coated silicon rubber septum. The vial was removed from the glove box. The mixture was dissolved in THF (0.37 mL) at 0 °C, and the mixture was stirred at 25 °C for 24 hour to prepare alkylborane **2n**. After the vial was brought into a glove box, *t*-BuOK (1 M in THF, 0.25 ml, 0.25 mmol) was added at 25 °C, and the mixture was stirred at 25 °C for 5 min to produce the corresponding alkylborate. Next, CuOAc (3.1 mg, 0.025 mmol) was added, and then the vial was removed from the glove box. Finally, allylic phosphate (1*R*,4*S*)-**3j** (98.1 mg, 0.25 mmol) was added. After 8 h stirring at 60 °C, CH<sub>2</sub>Cl<sub>2</sub> was added to the mixture. Then, the mixture was filtered through a short plug of silica gel, which was washed with diethyl ether. After the solvent was removed under reduced pressure, flash chromatography on silica gel (hexane) and GPC (CHCl<sub>3</sub>) provided **5** (74.1 mg, 0.125 mmol) in 50% yield.

## **Characterization Data for Coupling Products**

Coupling products  $4k^4$  and  $4m^5$  were reported in the literature.

(*E*)-5-(2-Phenylethyl)-1-phenyl-3-nonene (4aa)

Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.86 (t, J = 6.9 Hz, 3H), 1.08–1.37 (m, 6H), 1.45 (m, 1H), 1.62 (m, 1H), 1.88 (m, 1H), 2.36 (q, J = 7.2 Hz, 2H), 2.44 (ddd, J = 13.8, 10.2, 6.3 Hz, 1H), 2.57 (ddd, J = 13.8, 10.2, 5.2 Hz, 1H), 2.70 (t, J = 7.2 Hz, 2H), 5.16 (dd, J = 15.3, 8.9 Hz, 1H), 5.40 (dt, J = 15.3, 7.2 Hz, 1H), 7.12–7.20 (m, 6H), 7.24–7.30 (m, 4H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  14.00, 22.70, 29.29, 33.53, 34.30, 35.16, 36.13, 37.22, 42.45, 125.55, 125.77, 128.27, 128.31, 128.49, 128.59, 129.78, 135.51, 142.15, 143.19. Anal. Calcd for C<sub>23</sub>H<sub>30</sub>: C, 90.13; H, 9.87%. Found: C, 89.95; H, 10.07%. The regioselectivity of **4aa** was assigned on the basis of <sup>1</sup>H and <sup>13</sup>C NMR of 3-phenylpropanoic acid obtained by ozonolytic cleavage followed by Jones oxidation.

# (E)-3-(2-Phenylethyl)-1-phenyl-4-nonene (4a'a)

Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.92 (t, J = 7.2 Hz, 3H), 1.25–1.44 (m, 4H), 1.47–1.60 (m, 2H), 1.63–1.75 (m, 2H), 1.93–2.10 (m, 3H), 2.50 (ddd, J = 13.8, 10.2, 6.3 Hz, 2H), 2.64 (ddd, J = 13.8, 10.2, 5.4 Hz, 2H), 5.20 (dd, J = 15.3, 8.7 Hz, 1H), 5.43 (dt, J = 15.3, 6.9 Hz, 1H), 7.11–7.18 (m, 6H), 7.21–7.29 (m, 4H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  13.86, 22.10, 31.83, 32.27, 33.54, 37.37, 42.24, 125.61, 128.32, 128.49, 131.79, 134.08, 143.07. Anal. Calcd for C<sub>23</sub>H<sub>30</sub>: C, 90.13; H, 9.87%. Found: C, 90.10; H, 9.88%. The regioselectivity of **4a'a** was assigned on the basis of <sup>1</sup>H and <sup>13</sup>C NMR of pentanoic acid obtained by ozonolytic cleavage followed by Jones oxidation.

### (E)-1-(*tert*-Butyldimethylsiloxy)-4-(2-phenylethyl)-2-octene (4b)

Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.88 (s, 6H), 0.84–0.89 (m, 3H), 0.92 (s, 9H), 1.12–1.40 (m, 6H), 1.54 (m, 1H), 1.66 (m, 1H), 1.99 (m, 1H), 2.50 (ddd, *J* = 13.8, 10.2, 6.6 Hz, 1H), 2.63 (ddd, *J* = 13.8, 10.2, 5.4 Hz, 1H), 4.17 (d, *J* = 5.1 Hz, 2H), 5.41 (dd, *J* = 15.3, 8.4 Hz, 1H), 5.53 (dt, *J* = 15.3, 5.1 Hz, 1H), 7.15–7.18 (m, 3H), 7.24–7.30 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  –5.19, 13.98, 18.33, 22.70, 25.86, 29.26, 33.51, 34.90, 36.99, 41.96, 63.99, 125.61, 128.32, 128.48, 129.74, 135.31, 143.04. Anal. Calcd for C<sub>22</sub>H<sub>38</sub>OSi: C, 76.23; H, 11.05%. Found: C, 76.15; H, 10.94%. The regioselectivity of **4b** was assigned on the basis of <sup>1</sup>H and <sup>13</sup>C NMR of 2-(2-phenylethyl)hexanoic acid<sup>6</sup> obtained by ozonolytic cleavage followed by Jones oxidation.

(E)-5-Butyl-10-triisopropylsiloxy-1-phenyl-3-decene (4ab)

Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.87 (t, *J* = 7.2 Hz, 3H), 1.00–1.25 (s, 33H), 1.49–1.54 (m, 2H), 1.84 (m, 1H), 2.31 (td, *J* = 7.8, 6.6 Hz, 2H), 2.67 (t, *J* = 7.8 Hz, 2H), 3.66 (t, *J* = 6.6 Hz, 2H), 5.10 (dd, *J* = 15.3, 8.7 Hz, 1H), 5.34 (dt, *J* = 15.3, 6.6 Hz, 1H), 7.17–7.19 (m, 3H), 7.25–7.30 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  11.88, 14.00, 17.92, 22.70, 25.82, 26.95, 29.36, 32.95, 34.33, 35.11, 35.39, 36.18, 42.64, 63.49, 125.70, 128.26, 128.59, 129.00, 135.96, 142.27. Anal. Calcd for C<sub>29</sub>H<sub>52</sub>OSi: C, 78.31; H, 11.78%. Found: C, 78.10; H, 11.80%.

(E)-5-Butyl-10,10-trimethylenedioxy-1-phenyl-3-decene (4ac)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.86 (t, J = 6.9 Hz, 3H), 1.11–1.36 (m, 13H), 1.53–1.60 (m, 2H), 1.82 (m, 1H), 2.07 (m, 1H), 2.31 (td, J = 7.5, 6.6 Hz, 2H), 2.66 (t, J = 7.5 Hz, 2H), 3.76 (td, J = 12.0, 2.4 Hz, 2H), 4.10 (ddd, J = 12.0, 5.1, 1.2 Hz, 2H), 4.49 (t, J = 5.1 Hz, 1H), 5.09 (dd, J = 15.0, 8.7 Hz, 1H), 5.34 (dt, J = 15.0, 6.6 Hz, 1H), 7.14–7.22 (m, 3H), 7.24–7.30 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  14.01, 22.71, 23.97, 25.76, 26.93, 29.34, 34.34, 35.10, 35.16, 35.23, 36.18, 42.55, 66.88, 102.50, 125.72, 128.27, 128.59, 129.07, 135.88, 142.26. HRMS–EI (m/z): [M–H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>35</sub>O<sub>2</sub>, 343.26370; found, 343.26306.

### (E)-Methyl 6-Butyl-3,3-dimethyl-10-phenyl-7-decenoate (4ad)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.87 (t, *J* = 6.9 Hz, 3H), 0.95 (s, 6H), 1.06–1.29 (m, 10H), 1.75 (m, 1H), 2.17 (s, 2H), 2.32 (q, *J* = 7.2 Hz, 2H), 2.68 (t, *J* = 7.2 Hz, 2H), 3.64 (s, 3H), 5.09 (dd, *J* = 15.3, 8.7 Hz, 1H), 5.34 (dt, *J* = 15.3, 7.2 Hz, 1H), 7.17–7.20 (m, 3H), 7.26–7.30 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  14.00, 22.69, 27.14, 27.19, 29.33, 29.58, 33.05, 34.25, 35.12, 36.14, 39.82, 43.25, 45.74, 51.00, 125.74, 128.28, 128.58, 129.27, 135.77, 142.20, 173.09. HRMS–EI (*m*/*z*): [M]<sup>+</sup> calcd for C<sub>23</sub>H<sub>36</sub>O<sub>2</sub>, 344.27153; found, 344.24148.

(E)-1-(3,4-Dimethoxyphenyl)-7-(2-phenylethyl)-5-decene (4a'e)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.90 (t, J = 6.9 Hz, 3H), 1.18–1.69 (m, 10H), 1.92–2.06 (m, 3H), 2.43–2.53 (m, 3H), 2.64 (ddd, J = 14.1, 9.9, 5.4 Hz, 1H), 3.86 (s, 3H), 3.87 (s, 3H), 5.13 (dd, J = 15.3, 6.9 Hz, 1H), 5.39 (dd, J = 15.3, 6.9 Hz, 1H), 6.67–6.71 (m, 2H), 6.76–6.80 (m, 1H), 7.14–7.19 (m, 3H), 7.24–7.29 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  13.83, 22.07, 29.22, 31.83, 32.22, 33.55, 35.07, 35.48, 37.30, 42.32, 55.69, 55.84, 111.12, 111.72, 120.16, 125.58, 128.29, 128.49, 131.25, 134.31, 135.60, 143.12, 147.06, 148.80. Anal. Calcd for C<sub>26</sub>H<sub>36</sub>O<sub>2</sub>: C, 82.06; H, 9.53%. Found: C, 82.01; H, 9.55%.

(E)-7-(2-Phenylethyl)-12-phthalimide-5-dodecene (4a'f)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.89 (t, *J* = 6.9 Hz, 3H), 1.18–1.36 (m, 10H), 1.45 (m, 1H), 1.60–1.69 (m, 3H), 1.89 (m, 1H), 2.01 (q, *J* = 6.3 Hz, 2H), 2.48 (ddd, *J* = 13.5, 10.2, 6.6 Hz, 1H), 2.62 (ddd, *J* = 13.5, 10.2, 5.1 Hz, 1H), 3.66 (t, *J* = 7.2 Hz, 2H), 5.11 (dd, *J* = 15.0, 8.7 Hz, 1H), 5.35 (dt, *J* = 15.0, 6.6 Hz, 1H), 7.14–7.17 (m, 3H), 7.24–7.34 (m, 2H), 7.70 (dd, *J* = 6.0, 3.0 Hz, 2H), 7.84 (dd, *J* = 6.0, 3.0 Hz, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  13.83, 22.06, 26.68, 26.87, 28.50, 31.79, 32.20, 33.55, 35.27, 37.29, 38.00, 42.41, 123.21, 125.55, 128.29, 128.48, 131.14, 132.26, 133.91, 134.34, 143.18, 168.62. Anal. Calcd for C<sub>28</sub>H<sub>35</sub>NO<sub>2</sub>: C, 80.53; H, 8.45; N, 3.35%. Found: C, 80.40; H, 8.45; N, 3.31%.

### (*E*)-1-Phenyl-5-(2-phenylpropyl)-3-nonene (4ag)

Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.80 (t, J = 7.2 Hz, 0.5 × 3H), 0.88 (t, J = 7.2 Hz, 0.5 × 3H), 1.05–1.36 (m, 0.5 × 9H, 0.5 × 9H), 1.40 (m, 0.5 × 1H), 1.46–1.48 (m, 0.5 × 2H), 1.58–1.65 (m, 0.5 × 2H), 1.97 (m, 0.5 × 1H), 2.31–2.38 (m, 0.5 × 2H, 0.5 × 2H), 2.62–2.73 (m, 0.5 × 3H, 0.5 × 3H), 5.08 (dd, J = 15.5, 9.0 Hz, 0.5 × 1H), 5.08 (dd, J = 15.5, 9.0 Hz, 0.5 × 1H), 5.23 (dt, J = 15.5, 6.3 Hz, 0.5 × 1H), 5.36 (dt, J = 15.5, 6.3 Hz, 0.5 × 1H), 7.09–7.31 (m, 0.5 × 10H, 0.5 × 10H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  13.94, 13.99, 20.93, 22.67 (× 2C), 23.61, 29.13, 29.22, 34.21, 34.29, 35.30, 35.62, 36.09 (× 2C), 36.75, 37.24, 40.43, 40.52, 43.91, 44.28, 125.71, 125.74, 125.76 (× 2C), 126.98, 127.33, 128.30 (× 4C), 128.60 (× 2C), 129.41, 129.66, 135.49, 135.68, 142.21 (× 2C), 147.60, 148.78. HRMS–EI (m/z): [M]<sup>+</sup> calcd for C<sub>24</sub>H<sub>32</sub>, 320.25040; found, 320.25048. The regioselectivity of **4ag** was assigned on the basis of <sup>1</sup>H and <sup>13</sup>C NMR of 3-phenylpropanoic acid obtained by ozonolytic cleavage followed by Jones oxidation.

# (*E*)-5-Methyl-1,7-diphenyl-3-heptene (4c)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.97 (d, J = 6.9 Hz, 3H), 1.50–1.62 (m, 2H), 2.10 (septet, J = 6.9 Hz, 1H), 2.33 (q, J = 6.9 Hz, 2H), 2.46–2.61 (m, 2H), 2.69 (t, J = 7.2 Hz, 2H), 5.33 (dd, J = 15.9, 6.9 Hz, 1H), 5.43 (dt, J = 15.9, 7.2 Hz, 1H), 7.14–7.21 (m, 6H), 7.24–7.30 (m, 4H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  20.86, 33.55, 34.33, 36.09, 36.33, 38.78, 125.60, 125.78, 128.24, 128.31 (× 2C), 128.49, 128.60, 136.78, 142.20, 143.04. Anal. Calcd for C<sub>20</sub>H<sub>24</sub>: C, 90.85; H, 9.15%. Found: C, 90.81; H, 9.19%.

(E)-7-Methyl-1-phenyl-5-(2-phenylethyl)-3-octene(4d)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.79 (d, *J* = 6.6 Hz, 3H), 0.82 (d, *J* = 6.6 Hz, 3H), 1.10 (dt, *J* = 8.7, 5.7 Hz, 2H), 1.35–1.65 (m, 3H), 2.00 (m, 1H), 2.38 (m, 2H), 2.45 (ddd, *J* = 13.8, 10.2, 6.3 Hz, 1H), 2.56 (ddd, *J* = 13.8, 10.2, 5.4 Hz, 1H), 2.70 (t, *J* = 7.5 Hz, 2H), 5.12 (dd, *J* = 15.3, 9.0 Hz, 1H), 5.40 (dt, *J* = 15.3, 6.6 Hz, 1H), 7.12–7.20 (m, 6H), 7.24–7.30 (m, 4H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  21.68, 23.47, 25.08, 33.52, 34.31, 36.12, 37.60, 40.34, 44.85, 125.55, 125.77, 128.27, 128.30, 128.48, 128.61, 129.68, 135.51, 142.13, 143.19. Anal. Calcd for C<sub>23</sub>H<sub>30</sub>: C, 90.13; H, 9.87%. Found: C, 90.04; H, 9.81%. The regioselectivity of **4d** was assigned on the basis of <sup>1</sup>H and <sup>13</sup>C NMR of 3-phenylpropanoic acid obtained by ozonolytic cleavage followed by Jones oxidation.

### (E)-2-Methyl-6-(2-phenylethyl)-4-decene (4e)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.86 (t, *J* = 6.6 Hz, 3H), 0.89 (d, *J* = 6.6 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 3H), 1.13–1.39 (m, 6H), 1.41–1.72 (m, 3H), 1.89–1.94 (m, 3H), 2.51 (ddd, *J* = 13.5, 10.2, 6.6 Hz, 1H), 2.64 (ddd, *J* = 13.5, 10.2, 5.2 Hz, 1H), 5.13 (dd, *J* = 15.0, 9.0 Hz, 1H), 5.36 (dt, *J* = 15.0, 7.2 Hz, 1H), 7.13–7.18 (m, 3H), 7.24–7.30 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  14.00, 22.19, 22.22, 22.66, 28.45, 29.39, 33.66, 35.22, 37.40, 42.03, 42.59, 125.55, 128.29, 128.48, 129.59, 135.84, 143.28. Anal. Calcd for C<sub>19</sub>H<sub>30</sub>: C, 88.30; H, 11.70%. Found: C, 88.01; H, 11.85%.

3-(2-Phenylethyl)-1-hexene (4f)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 0.86 (t, *J* = 6.3 Hz, 3H), 1.24–1.37 (m, 4H), 1.57 (m, 1H), 1.68 (m, 1H), 2.00 (m, 1H), 2.51 (ddd, *J* = 13.8, 10.2, 6.3 Hz, 1H), 2.65 (ddd, *J* = 13.8, 10.2, 5.4 Hz,

1H), 4.98 (dd, J = 16.8, 2.1 Hz, 1H), 5.02 (dd, J = 10.2, 2.1 Hz, 1H), 5.57 (ddd, J = 16.8, 10.2, 9.0 Hz, 1H), 7.16–7.18 (m, 3H), 7.25–7.30 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  14.03, 20.08, 33.45, 36.76, 37.20, 43.47, 114.66, 125.63, 128.32, 128.48, 143.02, 143.20. Anal. Calcd for C<sub>14</sub>H<sub>20</sub>: C, 89.29; H, 10.71%. Found: C, 89.10; H, 10.83%.

3,7-Dimethyl-3-(2-phenyletnyl)-1,6-octadiene (4g)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  1.05 (s, 3H), 1.25–1.38 (m, 2H), 1.54–1.62 (m, 2H), 1.59 (s, 3H), 1.68 (s, 3H), 1.87–1.95 (m, 2H), 2.48–2.54 (m, 2H), 4.96 (dd, J = 17.7, 1.5 Hz, 1H), 5.06 (dd, J = 11.1, 1.5 Hz, 1H), 5.10 (m, 1H), 5.76 (dd, J = 17.7, 1.1 Hz, 1H), 7.15–7.19 (m, 3H), 7.25–7.30 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  17.49, 22.41, 22.69, 25.61, 30.63, 39.56, 40.65, 42.88, 112.06, 124.99, 125.63, 128.40 (× 2C), 131.27, 143.46, 146.97. HRMS–EI (*m*/*z*): [M]<sup>+</sup> calcd for C<sub>18</sub>H<sub>26</sub>, 242.20345; found, 242.20325.

### (*S*, *E*)-4-(2-Phenylethyl)-2-octene (4h)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.87 (d, J = 6.9 Hz, 3H), 1.18–1.35 (m, 6H), 1.53 (m, 1H), 1.69 (dd, J = 6.3, 1.5 Hz, 3H), 1.70 (m, 1H), 1.90 (m, 1H), 2.48 (ddd, J = 13.8, 10.2, 6.6 Hz, 1H), 2.63 (ddd, J = 13.8, 10.2, 5.4 Hz, 1H), 5.18 (ddq, J = 15.0, 8.7, 1.5 Hz, 1H), 5.38 (dq, J = 15.0, 6.3 Hz, 1H), 7.14–7.18 (m, 3H), 7.23–7.29 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  14.01, 17.89, 22.74, 29.36, 33.59, 35.19, 37.24, 42.49, 125.01, 125.55, 128.29, 128.49, 135.91, 143.25. Anal. Calcd for C<sub>16</sub>H<sub>24</sub>: C, 88.82; H, 11.18%. Found: C, 88.54; H, 11.17%. [ $\alpha$ ]<sub>D</sub><sup>24</sup> +1.0 (c 0.8, CHCl<sub>3</sub>). The ee value of (S)-(E)-**4h** was determined by chiral HPLC (CHIRALCEL® OD-3 column, 4.6 mm × 250 mm, Daisel Chemical Industries, hexane, 0.5 mL/min, 40 °C, 220 nm UV detector, retention time = 8.57 min for the *S* isomer and 8.98 min for the *R* isomer). The (S) absolute configuration of **4h** was determined by optical rotation of 2-(2-phenylethyl)-1-hexanol obtained in two steps from (S)-(E)-**4h**. (S)-(E)-**4h** was converted to 2-(2-phenylethyl)-1-hexanol (46% ee): [ $\alpha$ ]<sub>D</sub><sup>25</sup> +0.4 (c 1.1, CHCl<sub>3</sub>) [Lit<sup>6</sup>, (R) isomer, [ $\alpha$ ]<sub>D</sub> =-0.5 (c 3.2, CHCl<sub>3</sub>)].

Diethyl trans-2-(2-Phenylethyl)-3-cyclopentenyl Phosphate (4i)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  1.32 (td, J = 7.2, 0.9 Hz, 3H), 1.33 (td, J = 7.2, 0.9 Hz, 3H), 1.62–1.80 (m, 2H), 2.52 (m, 1H), 2.69 (t, J = 7.8 Hz, 2H ), 2.76–2.83 (m, 2H), 4.09 (quint., J = 7.2, 2.4 Hz, 4H), 4.75 (septet, J = 3.3 Hz, 1H), 5.67–5.74 (m, 2H), 7.18–7.30 (m, 5H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  15.88, 15.98, 33.50, 34.36, 39.63 (d, J = 3.9 Hz), 52.41 (d, J = 6.3 Hz), 63.51, 63.60, 82.92 (d, J = 6.3 Hz), 125.84, 127.58, 128.36, 128.38, 132.31, 141.99. HRMS–ESI (m/z): [M+Na]<sup>+</sup> calcd for C<sub>17</sub>H<sub>25</sub>O<sub>4</sub>PNa, 347.13827; found, 347.13850. The *anti* stereochemistry of **4i** was assigned on the basis of <sup>1</sup>H NMR of *trans*-2-(2-phenylethyl)-3-cyclopentenol<sup>7</sup> obtained by dephosphorylation with LiAlH<sub>4</sub>. The *cis* isomer was not detected by <sup>1</sup>H NMR.

(1*S*,5*S*)-1-Triisopropylsiloxy-5-[(4-methoxycarbonyl-3,3-dimethyl)butyl]-3-cyclopentene (4j)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.97 (s, 6H), 1.05–1.08 (m, 21H), 1.15–1.57 (m, 4H), 2.19 (s, 2H), 2.27 (m, 1H), 2.49 (m, 1H), 2.62 (m, 1H), 3.64 (s, 3H), 4.15 (dt, *J* = 6.3, 3.3 Hz, 1H), 5.62–5.69 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  12.10, 17.93, 27.07, 27.12, 27.64, 33.04, 39.99, 42.30, 45.64, 51.05, 55.45, 78.30, 127.87, 132.93, 172.94. Anal. Calcd for C<sub>22</sub>H<sub>42</sub>O<sub>3</sub>Si: C, 69.05; H, 11.06%. Found: C, 68.99; H, 10.93%. [ $\alpha$ ]<sub>D</sub><sup>24</sup> +82.1 (*c* 1.00, CHCl<sub>3</sub>). The de value of (1*S*,5*S*)-**4j** was determined by chiral HPLC analysis of the *p*-nitrobenzoate derivative obtained by desilylation followed by benzoylation from (1*S*,5*S*)-**4j**. HPLC analysis (CHIRALCEL<sup>®</sup> OD-3 column, 4.6 mm × 250 mm, Daisel Chemical Industries, hexane/2-propanol = 99:1, 0.5 mL/min, 40 °C, 254 nm UV detector, retention time = 28.4 min for the *cis* isomer and 36.7 min for the *trans* isomer) revealed that the diastereomeric excess of the *p*-nitrobenzoate derivative was 94%. The *anti* stereochemistry of **4j** was determined by comparison of the couping constants in the <sup>1</sup>H NMR for the corresponding alcohol (obtained by desilylation) with that for *trans*-2-(2-phenylethyl)-3-cyclopentenol.<sup>7</sup> The alcohol from **4j**:  $\delta$  4.11 (CHOH, dt, *J* = 6.0, 3.0 Hz).

### 4,4-Dimethyl-3-(2-phenylethyl)-1-cyclohexene (4l)



Oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.76 (s, 3H), 0.88 (s, 3H), 1.23–1.41 (m, 3H), 1.74 (m, 1H), 1.83 (m, 1H), 1.98–2.03 (m, 2H), 2.51 (ddd, *J* = 13.5, 10.5, 6.3 Hz, 1H), 2.84 (ddd, *J* = 13.5, 10.5, 4.8 Hz, 1H), 5.58–5.78 (m, 2H), 7.15–7.21 (m, 3H), 7.25–7.31 (m, 2H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  21.48, 22.96, 28.76, 31.55, 32.21, 34.19, 35.87, 44.57, 125.72, 126.01, 128.37, 128.51, 129.50, 143.02. HRMS–EI (*m*/*z*): [M]<sup>+</sup> calcd for C<sub>16</sub>H<sub>22</sub>, 214.17215; found, 214.17219. The

regioselectivity of **4** was determined on the basis of <sup>13</sup>C NMR and DEPT experiments. The chemical shift of the quaternary homoallylic carbon is diagnostic of the regiochemitry. The corresponding <sup>13</sup>C resonance appeared at higher field ( $\delta$  31.55) than that expected for the quaternary allylic carbon.

# Steroid 5



White Solid. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.68 (s, 3H), 0.87–1.23 (m, 36H), 1.43–1.60 (m, 8H), 1.79–2.05 (m, 4H), 2.03 (s, 3H), 2.22–2.32 (m, 3H), 2.59–2.64 (m, 2H), 4.05 (dt, J = 6.3, 3.3 Hz, 1H), 4.58 (m, 1H), 5.38 (m, 1H), 5.63 (dq, J = 6.0, 1.5 Hz, 1H), 5.73 (dq, J = 6.0, 1.8 Hz, 1H). <sup>13</sup>C NMR (75.4 MHz, CDCl<sub>3</sub>)  $\delta$  11.76, 12.10, 17.93, 18.31, 19.19, 20.90, 21.33, 24.11, 27.64, 28.30, 31.71, 31.77, 34.35, 36.48, 36.88, 38.01, 39.65, 40.38, 42.04, 42.33, 49.92, 52.25, 56.66, 56.89, 73.94, 79.36, 122.67, 127.74, 132.98, 139.74, 170.71. HRMS–ESI (*m*/*z*): [M+Na]<sup>+</sup> calcd for C<sub>38</sub>H<sub>64</sub>O<sub>3</sub>SiNa, 619.45169; found, 619.45145. [ $\alpha$ ]<sub>D</sub><sup>24</sup> +33.6 (*c* 2.9, CHCl<sub>3</sub>). The *anti* stereochemistry of **5** was determined by comparing the couping constants in the <sup>1</sup>H NMR of the corresponding alcohol (obtained by desilylation) with that of *trans*-2-(2-phenylethyl)-3-cyclopentenol.<sup>7</sup> The alcohol derived from **5**:  $\delta$  4.01 (CHOH, dt, J = 6.0, 3.0 Hz). The *cis* isomer was not detected by <sup>1</sup>H NMR.

### NMR Studies (Figures S1a–f, Table S1)

The mixture of  $(9\text{-BBN-H})_2$  (122.4 mg, 0.5 mmol) and styrene (109.4  $\mu$ 1, 1.05 mmol) in THF- $d_8$  (0.4 mL) was stirred at 60 °C for 1 hour to prepare alkylborane **2a** [ $\delta$  65.7 ppm (<sup>11</sup>B), Figure S1a. See also Figure S1d for the <sup>1</sup>H NMR spectrum].<sup>8</sup> Next, *t*-BuOK (1 M in THF, 1.0 ml, 1.0 mmol) was added at 25 °C, and the mixture was stirred at 25 °C for 5 min. The <sup>11</sup>B NMR spectrum of the mixture showed a peak corresponding to a tetravalent borate ( $\delta$  –1.4 ppm) (Figure S1b. See also Figure S1e for the <sup>1</sup>H NMR spectrum).<sup>9</sup> Subsequently, CuOAc (121.6 mg, 1.0 mmol, B/Cu 1:1) was added to the borate solution, and the solution was heated at 60 °C for 1 h: the peak of the borate disappered completely and a signal that corresponds to 9-BBN-O'Bu<sup>10</sup> appeared at  $\delta$  55.1 ppm as a major peak in the <sup>11</sup>B NMR spectrum (Figure S1c). Meanwhile, the formation of styrene and ethylbenzene were observed by <sup>1</sup>H NMR spectroscopy (4% and 13% NMR yields, respectively. Dibenzyl was used as an internal standard) (Figure S1f). These compounds seem to be produced by  $\beta$ -hydride elimination and protonation of an alkylcopper species. The signals for styrene and ethylbenzene did not increase furthermore with prolonged heating (60 °C, 20 h).

Figure S1a. [<sup>11</sup>B NMR spectrum (192.6 MHz, THF- $d_8$ )]



Figure S1b. [<sup>11</sup>B NMR spectrum (192.6 MHz, THF- $d_8$ )]



Figure S1c. [<sup>11</sup>B NMR spectrum (192.6 MHz, THF- $d_8$ )]



**Figure S1d.** [<sup>1</sup>H NMR spectrum (300 MHz, THF- $d_8$ )]



**Figure S1e.** [<sup>1</sup>H NMR spectrum (300 MHz, THF-*d*<sub>8</sub>)]



**Figure S1f.** [<sup>1</sup>H NMR spectrum (300 MHz, THF- $d_8$ )]



Table S1. Summary of the <sup>11</sup>B NMR Data for the Organoboron Compounds

| this work                                                                                | literature                                                                                              |                                      |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------|
| $\beta B_{Ph}$<br>$\delta 65.7 \text{ ppm (THF-}d_8)$                                    | Soderquist, J. A.; Kock, I.;<br>Estrella, M. E. Org. Process Res.<br>Dev. 2006, 10, 1076–1079.          | $\beta 72.2 \text{ ppm} (C_6 D_6)$   |
| $\overset{K^{+}}{\overbrace{B}^{-O^{*}Bu}}_{Ph}$<br>$\delta - 1.4 \text{ ppm (THF-}d_8)$ | Köster, R.; Seidel, G.; Wagner,<br>K.; Wrackmeyer, B. Chem. Ber.<br><b>1993</b> , <i>126</i> , 305–317. | $\delta - 1.5 \text{ ppm (THF-}d_8)$ |
| $\frac{1}{\delta 55.1 \text{ ppm (THF-}d_8)}$                                            | Brown, H. C.; Cha, J. S.; Nazer,<br>B. J. Org. Chem. <b>1985</b> , 50,<br>549–553.                      | $\delta$ 55.5 ppm (neat)             |

# References

- (1) Bruke, E, -J. Tetrahedron 1979, 35, 781–788.
- (2) Sato, F.; Ishikawa, H.; Sato, M. Tetarahedron Lett. 1981, 22, 85–88.
- (3) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738–8739.
- (4) Lysenko, I. L.; Kim, K.; Lee, H. G.; Cha, J. K. J. Am. Chem. Soc. 2008, 130, 15997–16002.
- (5) Langlois, J.-B.; Alexakis, A. Chem. Comm. 2009, 3868–3870.
- (6) Spino, C.; Gund, V. G.; Nadeau, C. J. Comb. Chem. 2005, 7, 345–352.
- (7) (a) Partridge, J. J.; Chadha, N. K.; Uskoković, M. R. J. Am. Chem. Soc. 1973, 95, 532–540. (b) Danheiser, R. L.; Martinez-Davila, C.; Auchus, R. J.; Kadonaga, J. T. J. Am. Chem. Soc. 1981, 103, 2443–2446.
- (8) Soderquist, J. A.; Kock, I.; Estrella, M. E. Org. Process Res. Dev. 2006, 10, 1076-1079.
- (9) (a) Köster, R.; Seidel, G.; Wagner, K.; Wrackmeyer, B. Chem. Ber. 1993, 126, 305–317. (b)
  Fry, A.; Vishwakarma, L. C. J. Org. Chem. 1980, 45, 5306–5308.
- (10) Brown, H. C.; Cha, J. S.; Nazer, B. J. Org. Chem. 1985, 50, 549–553.











| Original File:<br>Date Nov 5 09<br>Comment Nov 5 09<br>Comment Statkard Observe<br>Stick-come Tune-6.4 Match=0.4<br>Obsfue 192<br>Obsfue 192<br>Obsfue 996.3672 Hz<br>Point 32768<br>Frequecy(Span) 18761.73 Hz<br>Scan 192<br>AcqTime 1.4992 s<br>Pf 1.501 s<br>Pulsel 6.0 $\mu$ s<br>Temperature 29.0 C<br>Solvent CDC13<br>Reference 77.0 pm<br>Broad.Factor 0.2863 Hz<br>RGain 90.0 Dec/21 20:35:19<br>Operator |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bu OP(O)(OEt) <sub>2</sub><br>OTBDMS<br><b>3b</b> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                     | 1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990 |                                                   |

l




















































File C:VD0CUMENTS AND SETTINGSV北海道大学VMY D0CUMENTSVDELL NMR データ 06Q14UMI4UY-251-3004UY-288-B.FID4FID.ALS Original File: Date Nov 9 09 Comment STANDARD H 0BSERVE Bu ,OTBDMS Ph 4b E C 6.299 3. 1943 3. 215 1.9441 0. 9761 1. 7901 1. 03 1.0154 1.01 STANDARD 1H OBSERVE 9 8 6 5 3 0 7 4 δ/ppm 262959 262959 262964 17966 15395 15395 859 823 695 667 572 5555 504 4524 4012 3728 3728 ດ່ດ່ດ່ດ່ດ່ດ່ດ່ດ່ດ່ວ







File C:VD0CUMENTS AND SETTINGSV北海道大学VMY D0CUMENTSVDELL NMR データ 06Q14UM14UY-151-2004UY-198-GPC.FID4FID.ALS 0riginal File: Date Dec 8 09 Comment STANDARD HH 0BSERVE 
 Statukku III UDSEKKE

 Obsilac
 1H

 ExMode
 10N

 Desilac
 10N

 Obsilac
 10N

 Obsilac
 10N

 Obsilac
 10N

 Obsilac
 10N

 Obsilac
 10N

 Obsilac
 10N

 Point
 16384

 Scan
 16

 AcqTime
 3.4983 s

 Pulsel
 6.0 µs

 Temperature
 29.0 °C

 Solvent
 CDC1s

 Broad.Factor
 0.1373 Hz

 Gain
 20

 Printed
 200/Dec/21 10:07:48

 Operator
 20
1H NON 299.96 MHz -1.0 kHz 995.0047 Hz 16384 4500.45 Hz 1.502 s 6.0 μs 6.0 μs CDC13 0.0 ppm 0.1373 Hz 20 ₿u Ph  $\cap$ 4ac 14.2942 2875 2.5429 2. 1842 2.0737 7.9455 1.9784 1.1146 1. 0313 0.9539 ŝ 9484 1.0 Et<sub>2</sub>O STANDARD 1H OBSERVE 5 3 2 9 8 7 6 4 1 δ/ppm ]]]] III 11111 7.2977 7.202 7.2038 7.2153 7.1106 7.11706 3301-33681-33687-33687-33687-33687-33687-33687-33687-33687-33687-33687-33687-33687-33687-33687-33687-33687-33687-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11227-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-11277-112 1172 8828 8599 8361 0000 

0





| Original File:<br>Date Sep 4 09<br>Comment<br>Cl3 Statdard Observe<br>Stick=none Tune=6.4 Match=0.4                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ObsNuc    13C      DisSet    75.43 HHz      ObsSet    -1.0 kHz      ObsSite    -1.0 kHz      ObsFine    996.3872 Hz      Point    32768      Scan    1.8761.73 Hz      Scan    1.4992 s      P0    1.501 s      Pulsel    6.0 µ s      Temperature    29.0 °C      Solvent    0.2863 Hz      Reference    77.0 pm      Broad.Factor    0.2863 Hz      RGain    2009/Dec/21 20:21:42 |















| Driginal File:<br>Date Sep 4 09<br>Comment Sep 4 09<br>C13 Statdard Observe<br>Stick=none Tune=6.4 Natch=0.4<br>ObsNuc 13C<br>ExNode NON<br>ObsFereq 75.43 MHz<br>ObsFereq -1.1.0 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ph Hag Ph                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Ubsline 996.3672 Hz<br>Point 32768<br>Scan 18761.73 Hz<br>Scan 128<br>PD 1.501 s<br>Pulsel 6.0 μs<br>Emperature 29.0 ℃<br>Solvent CDCLs<br>Keference 77.0 ppm<br>Broad.Factor 0.2863 Hz<br>Koain 2009/Dec/21 21:02:09<br>Derator 2009/Dec/21 21:02:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |
| 148. 7835<br>144. 7835<br>142. 171. 60835<br>1566<br>1135. 4887<br>135. 4887<br>135. 4887<br>135. 4887<br>135. 4887<br>135. 4887<br>135. 4887<br>135. 1135<br>135. 1155<br>135. 1155<br>155. 1155<br>155. 1155. 1155. 1155. 1155. 1155. 1155. 1155. 1155. 1155. 1155. | 1325252525253535353535353535353535353535 |

File C:VD0CUMENTS AND SETTINGSV北海道大学VMY DOCUMENTSVDELL NMR データ 06Q14UM14UY-251-3004UY-279-B.FIDVFID.ALS Original File: Date Oct 30 09 Comment STANDARD H 0BSERVE












































| Original File:<br>Date Oct 26 09<br>Comment<br>C13 Statdard Observe<br>Stick=none Tune=6.4 Match=0.4                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ObsNuc 13C   ExNode NOM   ObsSet -1.0 kBz   ObsSite -1.0 kBz   ObsSite -1.0 kBz   ObsSite -1.0 kBz   ObsSite -1.0 kBz   Scan 18761.73 Bz   Scan 1.4992 s   PD 1.501 s   Pulsel 6.0 µ s   Temperature 29.0 °C   Solvent CDC1s   Reference 77.0 ppm   Broad-Factor 0.2853 Hz   RCain 2009/Dec/22.21:31:33   Operator First |











| Ontrine 1 Dite: C:VDOCHNEWEC AND CETTINCCV-Like W + MOVIN DOCHNEWECVDELL NHD 20. D OCONVENTION DEDNIVEN 211 C 2 PL                   |       |     |      |                     |      |    |     |                |        |                |     |              |       |         |
|--------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|---------------------|------|----|-----|----------------|--------|----------------|-----|--------------|-------|---------|
| 01201031 $0110$ , $1.3000$ $000013$ $0000$ $3010$ $001100$ $0000$ $32000$ $10010000$ $10010000$ $10010000$ $100100000$ $10000000000$ | FIDXf | 6-3 | -311 | 0601XUMIXCARRONXUV- | - 77 | 7- | NMR | DOCUMENTSYDELL | - #YWY | SETTINCSW 生活法+ | AND | C:XDOCUMENTS | File: | riginal |

| 10             |                    |
|----------------|--------------------|
| Date           | Dec 22 09          |
| Comment        |                    |
| C13 Statda     | rd Observe         |
| Sticksnone     | Tuporf A Match=0 4 |
| SUICK-HOHE     | Tune-0.4 Match-0.4 |
| Obelline       | 130                |
| DUSRUC         | NON                |
| Exmode         | NON                |
| ObsFreq        | 75.43 MHz          |
| ObsSet         | -1.0 kHz           |
| OhsFine        | 996.3672 Hz        |
| Point          | 32768              |
| Frequecy(Span) | 18761.73 Hz        |
| Scan           | 512                |
| AcgTime        | 1.4992 s           |
| PD             | 1.501 s            |
| Pulse1         | 6.0 µs             |
| Temperature    | 29.0 °C            |
| Solvent        | CDC 13             |
| Reference      | 77.0 ppm           |
| Broad.Factor   | 0.25 Hz            |
| RGain          | 30                 |
| Printed 2009   | /Dec/22 13:03:28   |
| Operator       |                    |



