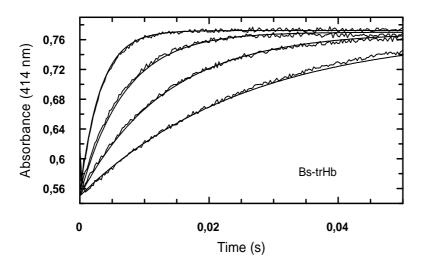
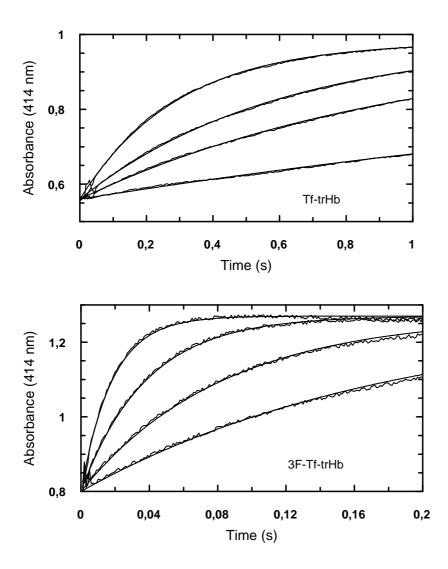
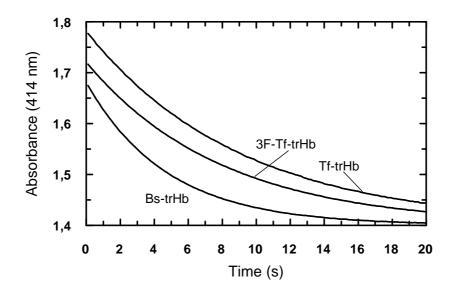
SUPPLEMENTARY MATERIALS


Sulfide binding properties of truncated hemoglobins.

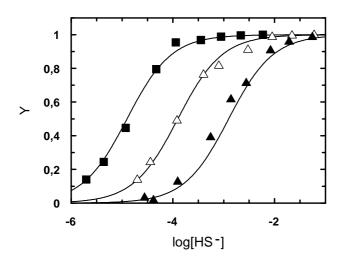

Francesco P. Nicoletti, Alessandra Comandini, Alessandra Bonamore, Alessandro Feis, Giulietta Smulevich,

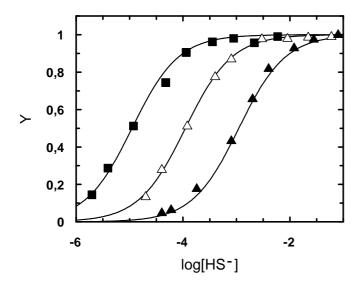
and Alberto Boffi

Azide binding kinetics

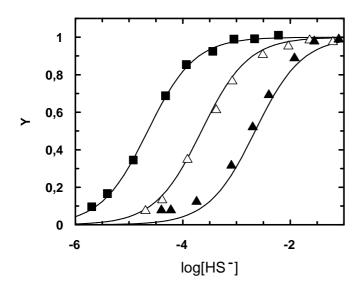

Azide binding kinetics were carried out by mixing the hemoglobin solutions (Bs-trHb, 6.2 μ M; Tf-trHb, 7 μ M; 3F-Tf-trHb, 9.5 μ M) with increasing azide concentrations (from top to bottom, 1 mM, 0.5 mM, 0.025 mM and 0.125 mM), in 0.1 M phosphate buffer at pH 7.0 and 25 °C. Each curve was fitted to a single exponential with the standard software provided by Applied Photophysics. Second order plot yielded k_{N3}- values of $2.9\pm0.22\times10^5$ M⁻¹s⁻¹ for Bs-trHb; for $3.4\pm0.2\times10^3$ M⁻¹s⁻¹ Tf-trHb, $5.5\pm0.4\times10^4$ M⁻¹s⁻¹ for 3F-Tf-trHb.

Azide dissociation kinetics


Proteins were saturated with 10 mM sodium azide and mixed with 1 mM sodium sulfide solutions in a stopped flow apparatus. The signal decrease at 414 nm (the peak of the azide adduct) is a first order process corresponding to azide release. Control experiments at 425 nm (not shown) reveal a rise in absorbance with identical time course. Experiments were carried out in 0.1 M phosphate buffer at pH 7.0 and 25 °C. First order rates rates were 0.21 ± 0.03 s⁻¹ for Bs-trHb 0.11 ± 0.02 s⁻¹ for Tf-trHb and 0.125 ± 0.02 s⁻¹ for 3F-Tf-trHb.


Azide/sulfide equilibrium displacement titrations

Protein solutions (3 ml, 10-12 μ M) containing 1 mM (black triangles), 0.1 mM (white triangles) or 0.001 mM (black squares) sodium azide in 0.1 M phosphate buffer at pH 7.0 were placed in a 1 cm quartz cuvette in a HP 8453 diode array spectrophotometer equipped with magnetic stirring and a Peltier thermostatted cell holder. A few μ l of a sodium sulfide nonhydrate stock solutions (10 mM or 0.1 mM) were added and the absorption spectrum was recorded after 5 minutes. Absorbance changes were transformed into fractional saturation by standard procedures. Experimental data sets relative to each protein were fitted simultaneously to simple ligand binding curves (see Materials and methods) by a least squares fitting method based on the Matlab program (South Natick, MA, USA).


Bs-trHb

Tf-trHb

3F-Tf-trHb

