Supporting Information

Synthesis of Biotinylated α-D-Mannoside or N-Acetyl β-D-Glucosaminoside Decorated Gold Nanoparticles – Study of Their Biomolecular Recognition with Con A and WGA Lectins

Xiaoze Jiang, ¹ Abdelghani Housni, ¹ Guillaume Gody, ^{2,3} Paul Boullanger, ³ Marie-Thérèse Charreyre, ^{2*} Thierry Delair, ² and Ravin Narain ^{1*}

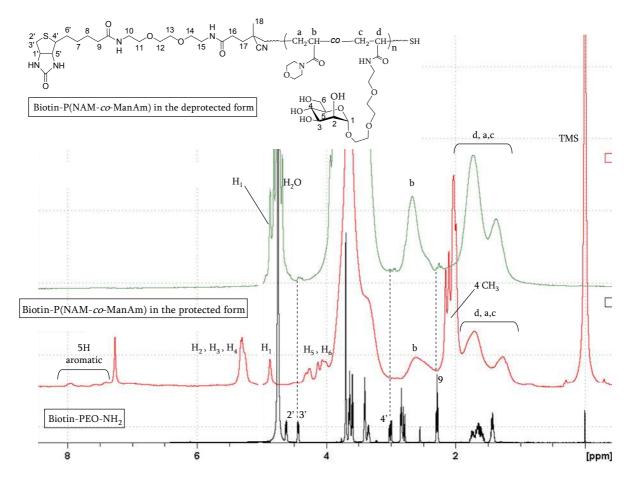
Materials. All chemicals were purchased from Sigma-Aldrich or Acros Chemicals.

EZ-Link™ Biotin PEO-Amine, ((+)-Biotinyl-3,6-dioxaoctanediamine, Pierce), and other materials were used without further purification.

Synthesis of *N*-[8-((+)-biotinamido)-3,6-dioxaoctyl]-2-[[2-phenyl-1-thioxo]thio]-4-cyanopentanoate (BCBDBA). The biotin-CTA (BCBDBA) was synthesized from a precursor RAFT agent, the succinimido-4-[[2-phenyl-1-thioxo]thio]-4-cyanopentanoate(*1*,*2*), and a commercial biotin derivative, EZ-Link™ Biotin PEO-Amine. In a 100 mL round-bottomed flask equipped with a magnetic stirrer, the precursor RAFT agent (0.113 g, 0.300 mmol) was dissolved in chloroform (20 mL). A solution of EZ-Link™ Biotin PEO-Amine (0.112 g, 0.300 mmol) in 25 mL of chloroform was prepared. The latter was added dropwise to the solution of RAFT agent during 2 h at 30°C. Then, the organic phase was washed five times with 60 mL of distilled water

and dried over anhydrous magnesium sulfate. After solvent removal, a column chromatography (Silica gel 60, Merk) was performed (dichloromethane/ethanol: 90/10 v/v) to afford a very viscous red oil (0,093 g, yield 49%).

Fast Atom Bombardment (FAB) mass spectrometry: characteristic ion $[M + Na^{\dagger}]$: $C_{29}H_{41}N_5NaO_5S_3$; calculated 658.22; found 658.21.


¹H NMR 500MHz (CDCl₃, RT, ppm) (see structure below for proton assignment): 7.90 (2 H, d, H₁₉); 7.55 (1 H, dd, H₂₁); 7.39 (2 H, dd, H₂₀); 7.11 (1 H, t, H₂); 6.61 (1 H, t, H₃); 6.36 (1 H, d, H_β); 5,37 (1 H, s, H_α); 4.47, 4.30 (2 H, ddd, H₂ and H₃); 3.64-3.43 (12 H, m, from H₁₀ to H₁₅); 3.13 (1 H, dt, H₄); 2.88 (1 H, ddd, H₁); 2.72 (1 H, dd, H₅); 2.58 (2 H, t, H₁₆); 2.42 (2 H, t, H₁₇); 2.22 (2 H, t, H₉); 1.94 (3 H, s, H₁₈); 1.71-1.64 (4 H, m, H₇ and H₈); 1.44 (2 H, dt, H₆).

References.

- (1) Bathfield, M., D'Agosto, F., Spitz, R., Charreyre, M.-T., and Delair, T. (2006)

 Versatile precursors of functional RAFT agents. application to the synthesis of bio-related end-functionalized polymers. *J. Am. Chem. Soc. 128*, 2546-2547.
- (2) Gody, G., Boullanger, P., Ladavière, C., Charreyre, M.-T., and Delair, T. (2008) Biotin α-end-functionalized gradient glycopolymers synthesized by RAFT copolymerization. *Macromol. Rapid Commun.* 29, 511-519.

Figure S1. Synthetic route to the preparation of N-[8-((+)-biotinamido)-3,6-dioxaoctyl]-2-[[2-phenyl-1-thioxo]thio]-4-cyanopentanoate (BCBDBA).

Figure S2. Comparison of the NMR spectra before (CDCl₃) and after (D₂O) deprotection of the P(NAM-co-ManAm) copolymer with that of Biotin-PEO-amine (D₂O).