SUPPORTING INFORMATION

Tricyclic alkaloid core structures assembled by a cyclotrimerization-coupled intramolecular nucleophilic substitution reaction

Andrew L. McIver and Alexander Deiters*
North Carolina State University, Department of Chemistry, Raleigh, NC 27695-8204, USA, alex_deiters@ncsu.edu

SYNTHETIC PROTOCOLS

General. All reagents used were commercial reagents without purification, unless otherwise stated. Dry solvents were distilled from Na and benzophenone. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 300 MHz or 400 MHz Varian NMR spectrometer, using CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ as solvent. The IR data was recorded on a Jasco FT/IR-4100. The microwave reactions were carried out in a CEM Discover microwave synthesizer at 300 W in power mode using closed vessel conditions and an IR sensor to monitor the temperature.

Representative procedure for compounds 15-18: 1,7-Octadiyne ($10.7 \mathrm{mg}, 0.1 \mathrm{mmol}$) and the corresponding nitrile (10 eq.) were added to a flame dried microwave vial and dissolved in dry toluene (2.5 mL). $\mathrm{CpCo}(\mathrm{CO})_{2}$ $(2.3 \mu \mathrm{~L}, 20 \mathrm{~mol} \%)$ was added and the vial was irradiated at 300 W for 40 minutes to $170{ }^{\circ} \mathrm{C}$ in a CEM Discover microwave synthesizer. The reaction was concentrated and the products were purified by silica gel flash chromatography, eluting with $20 \% \mathrm{MeOH} / \mathrm{DCM}$.

(15): $\mathbf{1 , 2 , 3 , 6 , 7 , 8 - H e x a h y d r o c y c l o p e n t a [f] i n d o l i z i n i u m ~ b r o m i d e ~ (1 5) : ~} 7.9 \mathrm{mg}, 33 \%$ yield, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.10-2.89(\mathrm{~m}, 4 \mathrm{H}), 2.46-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{p}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,156.0$, 143.9 , 137.3, 119.7, 58.6, 33.6, 31.9, 30.3, 25.4, 22.2; HRMS (ESI $)$ calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}^{+}$160.1121, found 160.1123.

2,3,6,7,8,9-Hexahydro-1 \boldsymbol{H}-Pyrrolo[1,2-b]isoquinolinium bromide (16): $11.3 \mathrm{mg}, 45 \%$ yield, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.92 (bs, 2H), 2.81 (bs, 2H), $2.49-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $157.6,153.5,141.3,136.6,123.8,58.4,31.7,29.8,26.1,21.90,21.2,21.2$; HRMS (ESI $)$ calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}^{+}$ 174.1277, found 174.1278.

$\mathbf{1 , 2 , 3 , 6 , 7 , 8}$-Hexahydrocyclopenta $[f]$ indolizinium methanesulfonate (17): $5.5 \mathrm{mg}, 22 \%$ yield, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 2H), $3.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,156.0,143.9,137.3,119.7,58.6,39.5,33.6,31.9,30.3,25.4,22.2$; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}^{+} 160.1121$, found 160.1123 .

2,3,6,7,8,9-Hexahydro-1 \boldsymbol{H}-pyrrolo[1,2-b]isoquinolinium methanesulfonate (18): $9.6 \mathrm{mg}, 36 \%$ yield, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 4 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.56(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 157.6, 153.5, 141.3, 136.6, 123.8, 58.4, 39.5, 31.7, 29.8, 26.1, 21.9, 21.2, 21.2; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}^{+}$174.1277, found 174.1278.

Representative procedure for compounds 21-24, 34-35: 1,7-Octadiyne ($10.4 \mathrm{mg}, 0.0983 \mathrm{mmol}$) and the corresponding nitrile (10 eq .) were added to a flame dried microwave vial and dissolved in dry toluene (2.4 $\mathrm{mL}) . \mathrm{CpCo}(\mathrm{CO})_{2}(2.25 \mu \mathrm{~L}, 20 \mathrm{~mol} \%)$ was added and the vial was irradiated at 300 W for 40 minutes in a CEM Discover microwave synthesizer (final temperature of $150^{\circ} \mathrm{C}$). The reaction was concentrated and the products were purified by silica gel flash chromatography, eluting with $5 \% \mathrm{MeOH} / \mathrm{EtOAc}$.

3-(6,7-Dihydro-5H-cyclopenta[c]pyridin-3-yl)propan-1-ol (21): $17 \mathrm{mg}, 89 \%$ yield, light yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.67(\mathrm{~s}, 4 \mathrm{H}), 2.01-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.64(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,149.1,147.1$, 130.6, 123.3, 62.3, 34.9, 32.07, 28.8, 26.0, 22.8, 22.5; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 178.1232$, found 178.1227.

3-(5,6,7,8-Tetrahydroisoquinolin-3-yl)propan-1-ol (22): $18.6 \mathrm{mg}, 90 \%$ yield, light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.76-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.06-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.62(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,149.1$, $147.1,130.6,123.3,62.3,34.9,32.1,28.8,26.0,22.8,22.5$; HRMS (ESI^{+}) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$ 192.1388, found 192.1385.

4-(6,7-Dihydro-5H-cyclopenta[c]pyridin-3-yl)butan-1-ol (23): $18 \mathrm{mg}, 94 \%$ yield, light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=12.6,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}), 2.18-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{dt}, J=12.9,6.4 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,154.7,144.8,137.6,119.2,62.6,37.4,32.8,32.3,30.1,26.3,25.3$; HRMS $\left(\mathrm{ESI}^{+}\right)$calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$192.1388, found 192.1385.

4-(5,6,7,8-Tetrahydroisoquinolin-3-yl)butan-1-ol (24): $19.1 \mathrm{mg}, 95 \%$ yield, light yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 2.80-2.63(\mathrm{~m}, 6 \mathrm{H}), 1.88$ $-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.69-1.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5,149.6,146.8,130.4,123.0,62.4$, 37.0, 32.3, 28.9, 26.2, 26.1, 22.9, 22.6; HRMS (ESI $)$ calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$206.1545, found 206.1544.

Methyl 2-(2-(6,7-dihydro-5H-cyclopenta[c]pyridin-3-yl)phenyl)acetate (34): 24.7 mg , 93% yield, yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=3.6,2.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.81$ $(\mathrm{s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{td}, J=7.5,3.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.14(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.6,157.1,154.4,144.8,141.2,138.5,132.6,131.3,130.0,128.3,127.4,120.2,52.0,39.3,32.9,30.2,25.2$; HRMS (ESI $)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$268.1338, found 268.1334.

Methyl 2-(2-(5,6,7,8-tetrahydroisoquinolin-3-yl)phenyl)acetate (35): $24.2 \mathrm{mg}, 86 \%$ yield, yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{dt}, J=5.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.67(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.74(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.6,156.2$, 149.7, 146.6, 140.8, 132.5, 131.4, 131.3, 129.9, 128.3, 127.4, 124.1, 52.0, 39.3, 29.0, 26.2, 22.8, 22.6; HRMS (ESI^{+}) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$282.1494, found 282.1493.

Representative procedure for compounds 25-28, 38-39: Piperidine polymer bound (Sigma-Aldrich, 3 $\mathrm{mmol} / \mathrm{g}, 64 \mathrm{mg}, 2 \mathrm{eq}$.$) was added to compound 21(17 \mathrm{mg})$ dissolved in dry DCM (2.4 mL) in a flame dried vial. This mixture was shaken for 5 min and then cooled to $0^{\circ} \mathrm{C}$. Methane sulfonly chloride (1.5 eq .) was added dropwise at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was shaken at room temperature for 1 h . The resin was filtered through a cotton plug and rinsed with $\mathrm{DCM}(2 \mathrm{~mL})$ and $\mathrm{MeOH}(2 \mathrm{~mL})$. The filtrate was concentrated and the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 2 \mathrm{~mL})$. The aqueous layer was concentrated to dryness to give the pure pyridinium compound.

1,2,3,6,7,8-Hexahydrocyclopenta[f]indolizinium methanesulfonate (25): $23 \mathrm{mg}, 94 \%$ yield, pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 2H), $3.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,156.0,143.9,137.3,119.7,58.6,39.5,33.6,31.9,30.3,25.4,22.2 ;$ HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}^{+} 160.1121$, found 160.1123.

2,3,6,7,8,9-Hexahydro-1 \boldsymbol{H}-pyrrolo [1,2-b]isoquinolinium methanesulfonate (26): $25 \mathrm{mg}, 100 \%$ yield, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 4 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.56(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $157.6,153.5,141.3,136.6,123.8,58.4,39.5,31.7,29.8,26.1,21.9,21.2,21.2$; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}^{+}$174.1277, found 174.1278.

2,3,6,7,8,9-Hexahydro-1 \boldsymbol{H}-cyclopenta[b]quinolizinium methanesulfonate (27): $21.3 \mathrm{mg}, 98 \%$ yield, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{p}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,153.0,143.4,141.5,123.5,55.7,39.7,33.7,30.6,28.8,25.2,21.5,18.0$; HRMS (ESI $)$ calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}^{+}$174.1277, found 174.1276.

$\mathbf{1 , 2 , 3 , 4 , 7 , 8 , 9 , 1 0 - O c t a h y d r o p y r i d o [1 , 2 - b] i s o q u i n o l i n i u m ~ m e t h a n e s u l f o n a t e ~ (2 8) : ~} 22.8 \mathrm{mg}, 93 \%$ yiekd, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.14-8.96(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.10$ (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.86-$ $1.72(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.0,150.6,145.1,136.3,127.7,54.9,39.6,29.3,27.8,25.8,21.4$, 21.3, 21.2, 17.9; HRMS (ESI $)$ calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}^{+}$188.1434, found 188.1434.

6,9,10,11-Tetrahydro-5H-cyclopenta[4,5]pyrido[2,1-a]isoquinolinium methanesulfonate (38): 9.4 $\mathrm{mg}, 93 \%$ yield, white solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.12(\mathrm{~m}, 6 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.28$ (p, J=7.7 Hz, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,146.7,144.0,142.5,136.0,133.4,128.9,128.8,126.4$, 126.4, 119.0, 54.8, 39.7, 34.1, 30.8, 27.4, 25.2; HRMS (ESI $)$ calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}^{+}$222.1277, found 222.1277.

5,6,9,10,11,12-Hexahydroisoquino[3,2-a]isoquinolinium methanesulfonate (39): $9.3 \mathrm{mg}, 100 \%$ yield, white solid; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.30-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.09-2.91(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.73(\mathrm{~m}$,
$4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.2,146.1,144.6,137.1,135.5,133.0,128.8,128.8,126.3,125.9,123.2$, 54.0, 39.6, 29.9, 27.2, 26.0, 21.3; HRMS (ESI $)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}^{+}$236.1434, found 236.1435.

Representative procedure for compounds 29-32 and 40-41: $\mathrm{NaBH}_{4}(8.5 \mathrm{mg}, 0.225 \mathrm{mmol}, 2.5 \mathrm{eq}$.) was added to a solution of $25(23 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $2.2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1: 1)$. When the bubbling subsided, the reaction mixture was refluxed for 20 min . The reaction mixture was cooled to rt , sat. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{DCM}(4 \times 3 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness. The residue was purified by flash silica gel chromatography, eluting with 10% $\mathrm{MeOH} / \mathrm{DCM}$ to deliver the amine 29.

2,3,5,6,7,8,9,9a-octahydro-1H-cyclopenta[f]indolizine (29): $12.6 \mathrm{mg}, 86 \%$ yield, yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.67(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{bs}, 1 \mathrm{H})$, $2.60(\mathrm{bs}, 1 \mathrm{H}), 2.45-2.05(\mathrm{~m}, 8 \mathrm{H}), 2.05-1.72(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{*}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 53.0,51.7,35.3,33.5$, 30.5, 29.9, 29.3, 22.8, 21.5; IR (DCM) 2927, 2703, 1640, $1457 \mathrm{~cm}^{-1} ;$ HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$ 164.1439, found 164.1434 . $*$ Not all quarternary carbon centers were visible in the spectrum.

$\mathbf{1 , 2 , 3 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 0 a - d e c a h y d r o p y r r o l o [1 , 2 - b] i s o q u i n o l i n e ~ (3 0) : ~} 6.5 \mathrm{mg}, 100 \%$ yield, yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.46(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{bs}, 1 \mathrm{H}), 2.59(\mathrm{bs}, 1 \mathrm{H})$, $2.35-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.76(\mathrm{~m}, 6 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 127.9,61.2,53.9,53.2,34.0,29.9,29.5,27.3,22.6,22.4,20.9$; IR (DCM) 2927, 2708, 1650, 1447 cm^{-1}; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$178.1596, found 178.1593.

1,2,3,4,6,7,8,9,9a,10-decahydrocyclopenta[b]quinolizine (31): $10.5 \mathrm{mg}, 70 \%$ yield, yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.39(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ $-2.17(\mathrm{~m}, 6 \mathrm{H}), 2.11(\mathrm{bs}, 2 \mathrm{H}), 1.96-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.62-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.3,58.4,55.9,55.1,35.4,33.9,33.1,32.6,29.9,25.1,23.8,22.2$; IR (DCM) 2926, 2734, 1635, $1453 \mathrm{~cm}^{-1}$; HRMS (ESI $)$ calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$178.1596, found 178.1591.

2,3,4,6,7,8,9,10,11,11a-decahydro-1H-pyrido[1,2-b]isoquinoline (32): $8 \mathrm{mg}, 100 \%$ yield, yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.07-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.78$ $(\mathrm{m}, 6 \mathrm{H}), 1.78-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.57-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 126.7$, $58.4,57.9,55.4,37.1,32.3,29.2,27.2,24.9,23.7,22.8,22.7$; IR (DCM) 2921, 2734, 1661, $1442 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{ESI}^{+}\right)$calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$192.1747, found 192.1749.

$\mathbf{5 , 6 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 2 a - O c t a h y d r o c y c l o p e n t a}[4,5] p y r i d o[2,1-a]$ isoquinoline (40): $5 \mathrm{mg}, 100 \%$ yield, light yellow solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.05(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{dd}, J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J$ $=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-2.95(\mathrm{~m}, 3 \mathrm{H}), 2.81-2.53(\mathrm{~m}, 3 \mathrm{H}), 2.45-2.25(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.83$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.8,134.2,128.9,126.1,125.6,59.8,56.3,51.6,35.6,34.5,34.0$, 30.0, 22.6; IR (DCM) 3020, 2921, 2734, 1495, $733 \mathrm{~cm}^{-1}$; HRMS (ESI^{+}) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+} 226.1596$, found 226.1594.

$\mathbf{5 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 3 a - O c t a h y d r o - 6 H}$-isoquino[3,2-a]isoquinoline (41): $6.5 \mathrm{mg}, 100 \%$ yield, light yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.05(\mathrm{~m}, 4 \mathrm{H}), 3.57-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.11$ $-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.05(\mathrm{~m}, 1 \mathrm{H})$, $1.93(\mathrm{bs}, 4 \mathrm{H}), 1.81-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.6,134.6,128.9$, $127.3,126.9,126.1,125.5,59.8,59.7,51.2,38.3,29.7,29.6,27.5,23.0,22.9$; IR (DCM) 3050, 2921, 2734, 1494, $739 \mathrm{~cm}^{-1}$; HRMS (ESI^{+}) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$240.1752, found 240.1750.

Representative procedure for compounds 36-37: $\mathrm{LiAlH}_{4}(6.5 \mathrm{mg}, 0.171 \mathrm{mmol}, 2 \mathrm{eq}$.$) was added to a solution$ of $34(24 \mathrm{mg}, 0.085 \mathrm{mmol})$ in 1.7 mL THF at $0^{\circ} \mathrm{C}$ and stirred for 30 min . Ether (1.9 mL) was added followed by the addition of $\mathrm{H}_{2} \mathrm{O}(7.9 \mu \mathrm{~L}), 4 \mathrm{M} \mathrm{NaOH}(7.9 \mu \mathrm{~L})$, and $\mathrm{H}_{2} \mathrm{O}$ again $(15.8 \mu \mathrm{~L})$ and the mixture was stirred for 30 min at rt . The mixture was filtered through celite, and the filtrate was dried over MgSO_{4} and concentrated to give the pure alcohol 38 .

2-(2-(6,7-Dihydro-5H-cyclopenta[c]pyridin-3-yl)phenyl)ethanol (37): $20 \mathrm{mg}, 91 \%$ yield, yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.94-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.5,156.0,143.2,140.3,138.9,138.9,130.7,130.0,129.0,126.5,120.9,64.4,35.5,33.0,30.2,25.3 ;$ HRMS (ESI $)$ calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$240.1388, found 240.1384.

2-(2-(5,6,7,8-Tetrahydroisoquinolin-3-yl)phenyl)ethanol (38): $21 \mathrm{mg}, 98 \%$ yield, yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 4.04-$ $3.92(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.72(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.76(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $155.5,148.2,148.0,140.0,138.9131 .8,130.8,129.9,129.0,126.4,124.8,64.4,35.5,29.1,26.1,22.7,22.5$; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 254.1545$, found 254.1542.

1-Methoxy-3-(2-methylbut-3-yn-2-yl)indolin-2-one (43): A solution of $\mathrm{NH}_{4} \mathrm{Cl}(1.01 \mathrm{~g}, 18.88 \mathrm{mmol}$ in $\left.9 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$ was added to a solution of $42(1.16 \mathrm{~g}, 4.45 \mathrm{mmol})$ in $\mathrm{MeOH}(38 \mathrm{~mL})$ followed by Zn dust (3.08 g , 47.4 mmol). The mixture was stirred at room temperature for 2 h , and filtered through a plug of celite which was subsequently washed with hot $\mathrm{MeOH}(40 \mathrm{~mL})$. The MeOH was evaporated, brine (20 mL) was added, extracted with DCM (20 mL), and the DCM layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness. The crude mixture was dissolved in dry DCM $(28 \mathrm{~mL})$ and $\mathrm{PPh}_{3}(1.48 \mathrm{~g}, 5.66 \mathrm{mmol})$ and $\mathrm{MeOH}(229 \mu \mathrm{~L}, 5.66$ $\mathrm{mmol})$ were added. The solution was cooled to $0^{\circ} \mathrm{C}$, DIAD ($1.12 \mathrm{~mL}, 5.66 \mathrm{mmol}$) was added slowly and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ until the reaction was complete as indicated by TLC (hexanes/EtOAc, 2:1). The solution was concentrated and the product was purified by flash silica gel chromatography, eluting with hexanes/EtOAc (4:1) to give 43 ($613 \mathrm{mg}, 60 \%$) as a yellow solid. The analytical data was identical with literature reports. ${ }^{1}$

1-Methoxy-3-(2-methylbut-3-yn-2-yl)-3-(3-(trimethylsilyl)prop-2-ynyl)indolin-2-one (44): A solution of compound $\mathbf{4 3}(67 \mathrm{mg}, 0.292 \mathrm{mmol})$ in DMF (1.5 mL) was added dropwise to a suspension of NaH $(60 \%, 17.5 \mathrm{mg}, 0.438 \mathrm{mmol})$ in DMF $(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$, 3-bromo-1-trimethylsilyl-1-propyne ($71 \mu \mathrm{~L}, 0.438 \mathrm{mmol}$) was added dropwise, and stirring was continued for 15 min at 0 ${ }^{\circ} \mathrm{C}$. Sat. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ was added and the aqueous layer was extracted with EtOAc (4 mL). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$ and brine (2 mL), dried over MgSO_{4}, filtered and concentrated to dryness. The residue was purified by flash silica gel chromatography, eluting with $10 \% \mathrm{EtOAc} /$ hexanes to give 44 (64 $\mathrm{mg}, 65 \%)$ as a light yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 1 \mathrm{H})$, $7.13-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H})$, $1.06(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,140.7,128.6,126.8,125.7,123.0,106.6,101.7$, 88.5, 86.9, 71.7, 63.3, 54.8, 37.4, 25.4, 24.8, 24.3, -0.2; HRMS (ESI $)$ calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$ 340.1733 , found 340.1732 .

3-(4-Hydroxybutyl)-1'-methoxy-5,5-dimethyl-5,7-dihydrospiro[cyclopenta[c]pyridine-6,3'-indol]$\mathbf{2}^{\prime}(\mathbf{1} \boldsymbol{H})$-one (45): The diyne $44(20 \mathrm{mg}, 0.059 \mathrm{mmol})$ and 5-hydroxypentanenitrile ($58 \mathrm{mg}, 0.589 \mathrm{mmol}$) were added to a flame dried microwave vial and dissolved in xylenes $(1.5 \mathrm{~mL}) . \mathrm{CpCo}(\mathrm{CO})_{2}(1.36 \mu \mathrm{~L}, 0.012 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) was added and the vial was irradiated at 300 W for 90 min to $200^{\circ} \mathrm{C}$ in a CEM Discover microwave synthesizer. The mixture was evaporated to dryness and a mixture of the silylated and non-silylated cyclotrimerization product was isolated by flash silica gel chromatography, eluting with $4: 1$ hexanes/EtOAc to $10 \% \mathrm{MeOH} / E t O A c$. The remaining TMS groups were removed through a desilylation in THF $(2 \mathrm{~mL}) / \mathrm{H}_{2} \mathrm{O}(200$
$\mu \mathrm{L}$) with KF (8 mg) under microwave irradiation at 300 W for 2 min in a CEM Discover synthesizer. The solution was dried over MgSO_{4}, filtered and concentrated to dryness. The residue was purified by flash silica gel chromatography, eluting with $10 \% \mathrm{MeOH} / \mathrm{EtOAc}$ to give $45(10.7 \mathrm{mg}, 42 \%)$ as a yellow oil that solidified over time. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.78$ $-6.70(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.4,161.4,160.5,144.8,140.1,133.3,128.7,127.9,124.1,123.0,117.0,107.5,63.7,62.4,60.2$, $51.2,37.8,37.5,32.4,26.2,24.8,24.6$; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 367.2022$, found 367.2022 .

3-(3-Hydroxypropyl)-1'-methoxy-5,5-dimethyl-5,7-dihydrospiro
[cyclopenta[c]pyridine-6,3'-indol]-2'(1'H)-one (46): The diyne $44(30 \mathrm{mg}, 0.088 \mathrm{mmol})$ and 4-hydroxybutanenitrile ($75 \mathrm{mg}, 0.881 \mathrm{mmol}$) were reacted following the same procedure to give $46(12.7 \mathrm{mg}, 41 \%)$ as an orange oil that solidified over time. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,161.5$, $160.6,144.0,140.2,128.8,127.5,124.2,123.1,117.6,107.6,63.7,62.5,60.2,51.3,37.5,35.3,31.9,29.9,24.9$, 24.8, 24.6; HRMS (ESI $)$ calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 353.1865$, found 353.1863.

1'-Methoxy-1,1-dimethyl-2'-oxo-1,1',2',3,6,7,8,9-octahydrospiro[cyclopenta[b]quinolizinium-2,3'indole] methanesulfonate (47): Compound $\mathbf{4 5}(19.5 \mathrm{mg}, 0.532 \mathrm{mmol})$ was used following the procedure for 25-28 and 38-39 to give $47(24 \mathrm{mg}, 100 \%)$ as a pale yellow oil that solidified over time. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}$, $3 \mathrm{H}), 3.67(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.26(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.14(\mathrm{~m}$, 2H), $2.12-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.0,170.8,157.9,141.9$, $140.9,140.3,130.8,127.1,125.2,124.8,123.5,109.1,64.4,61.5,57.0,52.8,39.6,37.5,29.8,26.9,22.5,21.7$, 18.9; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}$349.1911, found 349.1911.

1'-Methoxy-8,8-dimethyl-2'-oxo-1',2,2',3,6,8-hexahydro-1H-spiro[cyclopenta[f]indolizinium-7,3'indole] methanesulfonate (48): Compound $46(12.5 \mathrm{mg}, 0.035 \mathrm{mmol})$ was used following the procedure for $\mathbf{2 5 - 2 8}$ and $\mathbf{3 8 - 3 9}$ to give $\mathbf{4 8}(12.5 \mathrm{mg}, 82 \%)$ as a light green oil that solidified over time. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.02(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$
(d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.31(\mathrm{~m}$, $2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,170.6$, $157.9,140.5,140.2,137.2,129.6,126.4,123.7,123.5,117.8,107.8,63.7,60.3,59.3,51.6,39.7,37.3,32.7$, 27.1, 22.3, 21.5; HRMS (ESI $)$ calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 335.1760$, found 335.1758.

1'-Hydroxy-1,1-dimethyl-1,4,6,7,8,9,9a,10-octahydro-3H-spiro[cyclopenta[b]quinolizine-2,3'-
indol]-2'(1'H)-one (49): Compound $47(24 \mathrm{mg}, 0.054 \mathrm{mmol})$ was used following the procedure for 29-32, and 40-41 to give $49(13.6 \mathrm{mg}, 72 \%)$ as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.21(\mathrm{~m}, 1 \mathrm{H})$, 7.16 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.87$ (bs, 1H), $2.34(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{bs}, 2 \mathrm{H}), 1.99(\mathrm{bs}, 2 \mathrm{H}), 1.81(\mathrm{bs}, 2 \mathrm{H}), 1.70(\mathrm{bs}, 2 \mathrm{H}), 1.37(\mathrm{bs}, 2 \mathrm{H}), 1.19$ (s, 3H), $0.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.6,139.9,139.0,128.0,123.5,122.7,107.3,63.7,58.8$, $57.7,56.2,55.2,52.8,41.2,33.8,30.2,29.9,26.0,24.6,23.8,22.1$; IR (DCM) 3057, 2931, 2853, 1723, 1614, 1463, 1322, $754 \mathrm{~cm}^{-1}$; HRMS (ESI $\left.{ }^{+}\right)$calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 353.2229$, found 353.2228 .

1'-Hydroxy-8,8-dimethyl-2,3,6,8,9,9a-hexahydro-1H,5H-spiro[cyclopenta[f]indolizine-7,3'-indol]$\mathbf{2}^{\prime}(\mathbf{1} \boldsymbol{H})$-one (50): Compound $48(12 \mathrm{mg}, 0.028 \mathrm{mmol})$ was used following the procedure for 29-32, and $\mathbf{4 0 - 4 1}$ to give $50(7.7 \mathrm{mg}, 82 \%)$ pale yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.30-$ $7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 1.5 \mathrm{H}), 3.54(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=28.8,15.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{dd}, J=31.9,16.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.31-2.09(\mathrm{~m}$, $2 \mathrm{H}), 2.02(\mathrm{bs}, 4 \mathrm{H}), 1.61(\mathrm{bs}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 1.5 \mathrm{H}), 0.86(\mathrm{~s}, 1.5 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR* (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 128.2,128.1,125.3,123.9,123.1,122.8,107.4,107.2,63.7,63.6,60.6,59.3,53.5,52.3,52.2$, $40.9,30.2,29.9,23.6,22.6,22.4,21.8$; IR (DCM) $3062,2927,2854,1723,1614,1463,1322,733 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{ESI}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 339.2073$, found 339.2070. *Not all quarternary carbon centers were visible in the spectrum.

3-(4-Hydroxybutyl)-5,7-dihydrospiro[cyclopenta[c]pyridine-6,3'-indol]-2'(1'H)-one (52): The diyne $51^{2}(15.2 \mathrm{mg}, 0.0726 \mathrm{mmol})$ and 5-hydroxypentanenitrile ($72 \mathrm{mg}, 0.726 \mathrm{mmol}$) were added to a flame dried microwave vial and dissolved in toluene (1.8 mL) . $\mathrm{CpCo}(\mathrm{CO})_{2}(1.7 \mu \mathrm{~L}, 0.0145 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ was added and the vial was irradiated at 300 W for 60 min in a CEM Discover microwave synthesizer (final temperature of $180{ }^{\circ} \mathrm{C}$). The mixture was evaporated to dryness and the product was isolated by flash silica gel chromatography, eluting with $10 \% \mathrm{MeOH} / \mathrm{EtOAc}$ to give $52(18.7 \mathrm{mg}, 83 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=$
$12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 182.2,160.8,152.0,144.8,140.0,135.9,135.0,128.6,123.1,122.1,119.4,110.2,62.6,54.4,43.9,41.7,37.6$, 32.4, 26.3; HRMS (ESI ${ }^{+}$) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 309.1598$, found 309.1594.

${ }^{1}$ H NMR Spectra for Compounds 15-18, 21-32, 34-41, and 44-50

All spectra were recorded at 300 MHz in CDCl_{3} unless noted otherwise.

(in $\mathrm{CD}_{3} \mathrm{OD}$)

21

22

23

24

[^0]

25

26

36

29

30

31

32

1				,	1	1		1	1	I		,	1			
7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	$\begin{aligned} & 3.5 \\ & \mathrm{f}(\mathrm{ppm}) \end{aligned}$	3.0	2.5	2.0	1.5	1.0	0.5	0.0	

${ }^{13} \mathrm{C}$ NMR Spectra for Compounds 15-18, 21-32, 34-41, and 44-50
All spectra were recorded at 75 MHz in CDCl_{3} unless noted otherwise.

21

22

23

24

35

25

26

ppm	$\underset{160}{1}$	140	120	100	18	16	10	10	1	

37

38

ppm	16	140	12	10	80	${ }_{60}$	40	1	0

39

29

30

ppm'	140	${ }_{120}$	${ }_{100}$	${ }_{80}$	60	40	20	0

31

ppm	140	${ }_{120}$	100	${ }_{80}$	60	40	20	0

32

41

ppp ${ }^{\text {co }}$	160	${ }_{140}$	${ }_{120}$	100	${ }_{80}$	${ }_{60}$	10	10	0

-

ppm	$\stackrel{1}{160}$	140	120	100	80	${ }_{60}$	40	1	0

ppm	180	${ }_{160}$	140	${ }_{120}^{1}$	100	${ }_{80}$	${ }_{60}$	10	10	0

References

1. Somei, M.; Sato, H.; Komura, N.; Kaneko, C. Heterocycles 1985, 23 (5), 1101-1106.
2. Reisch, J.; Bathe, A. Arch. Pharm. (Weinheim, Ger.) 1987, 320 (8), 737-42.

[^0]: | 1 | | | | | | | | | | | | | | | | | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | 8.0 | 7.5 | 7.0 | 1 | 1.5 | 6.0 | 5.5 | 5.0 | 4.5 | $\begin{array}{c}4.0 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$ | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 |

