## **Supporting information**

Cooperative binding of Bifunctionalized and Click Synthesized Silver Nanoparticles for Colorimetric Co<sup>2+</sup> Sensing

Yao, Yao; Demei Tian; Haibing Li\*

General procedure for the synthesis of 4-(prop-2-ynyloxy)pyridine: A suspension of 4-hydroxy pyridine (0.57 g, 6 mmol) and anhydrous potassium carbonate (1.66 g, 12 mmol) in acetone (20 mL) was stirred for 0.5 h at room temperature. Then a solution of 3-bromopropyne (1.3 mL, 12 mmol) dissolved in acetone (5 mL) was slowly added. The reaction mixture was stirred for 2 h at 50 °C. The cooled reaction mixture was filtered and washed with acetone. The filtrate were removed under vacuum and the residue was further purified by column chromatography eluting with ethyl acetate/methanol (v/v = 5:1); Yield: 90%. <sup>1</sup>HNMR(600 MHz, CDCl<sub>3</sub>):  $\delta$  7.45 (d, *J*=7.2 Hz, 2H), 6.42 (d, *J*=7.2 Hz, 2H), 4.60 (s, 2H), 2.65 (s,1H).



Scheme 1 Synthesis of 4-(prop-2-ynyloxy)pyridine

<sup>\*</sup>Corresponding author. Tel.: +86-27-67866423

E-mail address: <a href="https://www.uhina.com">https://www.uhina.com</a>,

General procedure for the synthesis of 2-azidoethanol: A suspension of 2-chloroethanol (1.61 g, 0.02mol) and NaN<sub>3</sub> (2.60 g, 0.04 mmol) in DMF (20 mL) was stirred for 5 h at 50 °C. The mixture was cooled and then diluted with ethyl acetate (20 mL) and washed with water (3 × 10 mL). The organic phase was dried over magnesium sulphate, filtered and the solvent was removed under reduced pressure. The azide was sufficiently pure to use without further work up; IR 3,  $2110(-N_3)$ , 2935, 2874 cm<sup>-1</sup> (-CH<sub>2</sub>-).

 $CICH_2CH_2OH + NaN_3 \xrightarrow{DMF} N_3CH_2CH_2OH$ 

Scheme 2 Synthesis of 2-chloroethanol



**Figure.S1** Scheme of the arrangement between thioacetic acid and 4-(prop-2-ynyloxy)pyridine molecules.

**Preparation of triazole-Ag NPs:** 100 mL of silver nitrate (AgNO<sub>3</sub>, 1.0 mL,  $10^{-2}$  M) aqueous solution of was reduced by sodium borohydride (12mg) at room temperature to yield yellow colloidal silver particles. 4-(prop-2-ynyloxy) pyridine aqueous solution (1.0 mL,  $10^{-3}$  mol/L) were added into above solution, stirring for 2h at room temperature. Alkynyl-Ag NPs were obtained in water. 2-azidoethanol (1.0 mL,  $10^{-3}$  mol/L) was added into alkynyl-Ag NPs solution, stirring for 10 mins. Finally, the mixture of copper sulfate ( $10^{-6}$  M) and sodium ascorbic acid ( $10^{-7}$  M) were added into pyridine Ag NPs solution, stirring for 3h at 60 °C. The mixture has been placed into high intensity ultrasound bath for 10 mins. The synthesized triazole-Ag NPs were purified by repeating centrifugation and redispersion in water. The finally dispersed triazole-Ag NPs can be used for metal ions detection.



Figure.S2 FT-IR spectra of (A) alkynyl-Ag NPs (B) 2-azidoethanol (C) triazole-Ag NPs



Figure. S3 Effect of pH on the triazole-carboxyl Ag NPs solution





**Figure.S4** The photographic images (A) and UV-*vis* absorption spectra (B) of triazolecarboxyl Ag NPs solution after adding transition metal ions (10  $\mu$ M) for 5 mins. Typically, 0.5 mL of 50  $\mu$ M various transition metal ions were added into 2 mL triazole-Ag NPs solutions and the combined solution mixed well for 5 mins and then tested.





**Figure S5** The photographic image (A) and UV-*vis* absorption spectra (B) of 2-mercaptoacetic acid modified Ag NPs (carboxyl-Ag NPs) solution after adding transition metal ions (50  $\mu$ M) for 5 mins. Typically, 0.5 mL of 50 $\mu$ M various transition metal ions were added into 2 mL carboxyl-Ag NPs solutions and the combined solution mixed well for 5 mins and then tested.





**Figure. S6** The photographic images (A) and UV-*vis* absorption spectra (B) of triazole-Ag NPs solution after adding transition metal ions (10  $\mu$ M) for 5 mins. Typically, 0.5 mL of 50  $\mu$ M various transition metal ions were added into 2 mL triazole-Ag NPs solutions and the combined solution mixed well for 5 mins and then tested.



**Figure.S7** The UV-*vis* absorption spectra and photographic images (inset) of triazole-carboxyl Ag NPs solution in the presence of 10  $\mu$ M different metal ions. Typically, 0.5 mL of 50  $\mu$ M various transition metal ions were added into 2 mL triazole-carboxyl Ag NPs solutions and the combined solution mixed well for 5 mins and then tested.



**Figure. S8** The photographic image (A) and UV-*vis* absorption spectra (B) of alkynyl-carboxyl Ag NPs solution after adding transition metal ions (10  $\mu$ M) for 5 mins. Typically, 0.5 mL of 50  $\mu$ M various transition metal ions were added into 2 mL alkynyl-carboxyl Ag NPs solutions and the combined solution mixed well for 5 mins and then tested.



**Figure. S9** Selectivity of the sensor for  $Co^{2+}$  in the mixture of metal ions (M): A) triazole-carboxyl Ag NPs +  $Co^{2+}$ ; B) triazole-carboxyl Ag NPs + M +  $Co^{2+}$ ; C) triazole-carboxyl Ag NPs + M; D) triazole-carboxyl Ag NPs + H<sub>2</sub>O. M is the mixture of metal ions (Fe<sup>2+</sup>, Mn<sup>2+</sup>, Hg<sup>2+</sup>, Ni<sup>2+</sup>, Cd<sup>2+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup> and Pb<sup>2+</sup>). [Co<sup>2+</sup>] = 10  $\mu$ M, [Fe<sup>2+</sup>] = [Mn<sup>2+</sup>] = [Hg<sup>2+</sup>] = [Ni<sup>2+</sup>] = [Cd<sup>2+</sup>] = [Cu<sup>2+</sup>] = [Zn<sup>2+</sup>] = [Pb<sup>2+</sup>] = 50  $\mu$ M.



**Figure. S10** (A) Photo images of triazole-carboxyl Ag NPs solution in the presence of other competitive ions (M) and various concentrations of  $\text{Co}^{2+}$  .The concentrations of  $\text{Co}^{2+}$  is: (1)7.5× 10<sup>-4</sup> M; (2) 5.0× 10<sup>-4</sup> M; (3) 2.5 × 10<sup>-4</sup> M; (4) 1.0× 10<sup>-4</sup> M; (5)7.5 × 10<sup>-5</sup> M; (6) 5.0 × 10<sup>-5</sup> M; (7)1.0 × 10<sup>-5</sup> M; (8) 7..5 × 10<sup>-6</sup> M; (9) 5.0 × 10<sup>-6</sup> M; (10) 0 M.(B)The UV-*vis* adsorption spectra of the triazole-carboxyl Ag NPs solution with various concentrations of  $\text{Co}^{2+}$ . Typically, 0.5 mL of various concentrations of  $\text{Co}^{2+}$  and 0.05 mM (M) were added into 2.0 mL triazole-carboxyl Ag NPs solutions, and the combined solution mixed well for 5mins and then tested. (M) is the mixture of metal ions solution, including 0.05 mM each of Fe<sup>2+</sup>, Mn<sup>2+</sup>, Hg<sup>2+</sup>, Ni<sup>2+</sup>, Cd<sup>2+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup> and Pb<sup>2+</sup>. The linear equation is  $R = 1.32877 + (0.23638 \times \log [C])$  with a linearity coefficient of 0.99431. The colorimetric detection for Co<sup>2+</sup> is 7.5 × 10<sup>-6</sup> M.



**Figure. S11** Photo images and UV-*vis* adsorption spectra of f triazole-carboxyl Ag NPs solution with various concentrations of  $Co^{2+}$  in drinking water. The concentrations of  $Co^{2+}$  in drinking water is: (1) 0 M; (2)  $1.0 \times 10^{-4}$  M; (3)  $2.0 \times 10^{-5}$  M; (4)  $1.0 \times 10^{-5}$  M; (5)  $2.0 \times 10^{-6}$  M; (6)  $1.0 \times 10^{-6}$  M. Typically, 0.5 mL of various concentrations of  $Co^{2+}$  in drinking water were added into 2.0 mL triazole-carboxyl Ag NPs solutions, and the combined solution mixed well for 5mins and then tested.