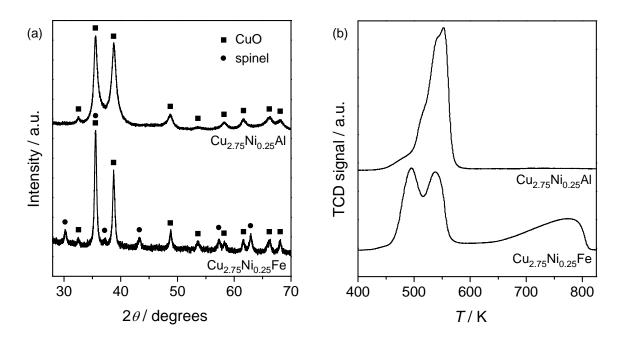
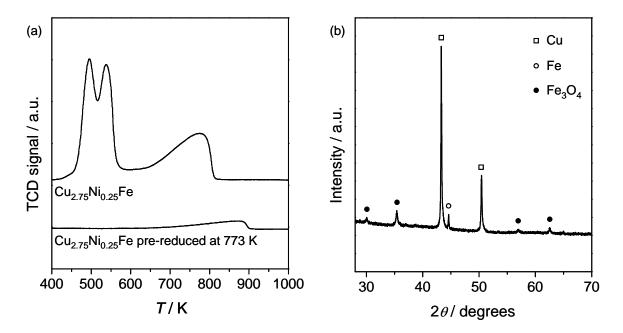

Supporting Information ja-2009-101997


Cooperative effects in ternary Cu-Ni-Fe catalysts lead to enhanced alkene selectivity in alkyne hydrogenation

Blaise Bridier and Javier Pérez-Ramírez


Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI E125, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland.

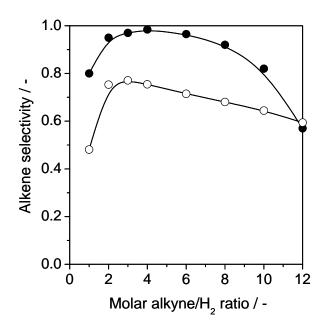

Figure SI1. X-ray diffraction patterns of the mixed $Cu_{3-x}Ni_xFe$ oxides, focusing on one of the main reflections of CuO. The position of this reflection (2 θ and d value) is indicated in each pattern. The shift to lower diffraction angles supports the formation of solid solutions $Cu(M)O_x$ with M = Fe, Ni.

Figure SI2. Characterization of the $Cu_{2.75}Ni_{0.25}Al$ and $Cu_{2.75}Ni_{0.25}Fe$ catalysts by (a) X-ray diffraction and (b) temperature-programmed reduction with H_2 .

Figure S13. Characterization of the pre-reduced $Cu_{2.75}Ni_{0.25}Fe$ catalyst by (a) temperature-programmed reduction with H_2 and (b) X-ray diffraction). The H_2 -TPR profile of the calcined catalyst is shown for comparison.

Figure SI4. Selectivity to (●) propene and (○) ethene vs. the molar H_2 /alkyne ratio in the feed over $Cu_{2.75}Ni_{0.25}Fe$. Conditions: 2.5 vol.% C_3H_4 (C_2H_2) and 2.5-30 vol.% H_2 , balance He, T = 523 K, SV = 16,800 cm³ g⁻¹ h⁻¹, and P = 1 bar.