Elucidation of the Structure of the Membrane Anchor of PenicillinBinding Protein 5 of Escherichia coli

Peter I. O'Daniel, Jaroslav Zajicek, Weilie Zhang, Qicun Shi, Jed F. Fisher and Shahriar Mobashery *

423 Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.

CH Sepharose 4B resin, Triton X-100, ampicillin, kanamycin, sodium dodecylsulfate (SDS) and [3-(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) were purchased from Sigma. All restriction enzymes and other DNA-modifying enzymes were either from New England Biolabs or Stratagene. Isopropyl- β-D-thiogalactoside (IPTG) were purchased from Fisher Scientific. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1, 1',2,2'-tetraoleoyl cardiolipin (CL) and dodecylphosphocholine (DPC) were from Avanti Polar Lipids, Inc. (Alabaster, AL). Phospholipid concentrations were measured by phosphate analysis (29). The Liposofast microextruder and $100-\mathrm{nm}$ polycarbonate filters were purchased from Avestin (Ottawa, Ontario). Urea and octyl glucoside were from Fisher Scientific. Pioneer L1 sensor chip was purchased from Biacore AB (Piscataway, NJ).

Table S1. NMR and refinement statistics for protein structures.

	PBP 5 Anchor
NMR distance and dihedral constraints	
Distance constraints	422
Total NOE	117
Intra-residue	305
Inter-residue	238
Sequential $(\|i-j\|=1)$	168
\quad Medium-range $(\|i-j\|<4)$	16
\quad Long-range $(\|i-j\|>5)$	
\quad Intermolecular	10
\quad Hydrogen bonds	38
Total dihedral angle restraints	19
ϕ	19
ψ	
\quad	
Structure statistics	0.176 ± 0.097
Violations (mean and s.d.)	10.30 ± 3.62
Distance constraints (\AA)	10.36 ± 3.62
Dihedral angle constraints $\left({ }^{\circ}\right)$	0.178 ± 0.097
Max. dihedral angle violation $\left({ }^{\circ}\right)$	
Max. distance constraint violation (\AA)	
Average pairwise r.m.s. deviation** (\AA)	0.52 ± 0.11
Heavy	0.32 ± 0.17
Backbone	

Table S2. ${ }^{1}$ H NMR chemical shifts δ for the PBP 5 anchor peptide in an aqueous buffered solution pH 7.4 in the presence of DPC micelles.

Residue	NH	H α	H β	H γ or H2,6	H δ or H3,5	$\mathrm{H} \varepsilon$ or H4
Glu-1	8.384	4.186	1.995,1.877	2.226,2.219		
Gly-2	8.554	3.891				
Asn-3	8.32	4.746	2.896,2.817	7.037,7.672		
Phe-4	8.755	4.187	3.207,2.837	6.953	7.124	7.038
Phe-5	8.601	4.107	3.138,3.043	7.245	7.14	6.953
Gly-6	8.072	3.865,3.642				
Lys-7	7.705	4.088	1.838,1.694	1.494,1.387	1.663,1.583	2.878
Ile-8	7.59	3.63	1.948	0.824/1.476,0.878	0.643	
Ile-9	7.951	3.521	1.928	0.852/1.448,1.021	0.666	
Asp-10	8.105	4.311	2.72,2.501			
Tyr-11	7.939	4.219	3.138/3.035	6.952	6.68	
Ile-12	8.407	3.581	2.035	0.856/1.111	0.796	
Lys-13	8.503	3.814	1.934,1.853	1.202,1.709	1.705	2.821,2.770
Leu-14	7.838	4.079	1.715	1.563	0.819/0.782	
Met-15	8.157	4.053	1.949	2.247,2.086		
Phe-16	8.661	4.295	3.214,3.137	6.953	7.05	7.14
His-17	8.362	4.238	3.242	6.963 (4)	7.954 (2)	
His-18	8.232	4.219	3.019	6.362 (4)	7.789 (2)	
Trp-19	8.153	4.225	2.871,	$6.842 \quad 10.471$	$7.362 \quad 7.00$	$7.234 \quad 6.874$
Phe-20	8.161	4.438	3.026,2.394	7.137	7.062	7.01
Gly-21	7.689	3.820,3.762				
NH_{2}	$\begin{aligned} & 7.157, \\ & 7.090 \\ & \hline \end{aligned}$					

Table S3. ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts δ for the PBP 5 anchor peptide in an aqueous buffered solution pH 7.4 in the presence of DPC micelles.

Residue	N	C α	$\mathrm{C} \beta$	$\mathrm{C} \gamma$ or C2,6	$\mathrm{C} \delta$ or C3,5	$\mathrm{C} \varepsilon$ or C 4
Glu-1	126.422	54.19	27.68	33.58		
Gly-2	109.81	42.832				
Asn-3	118.735	50.401	36.317	112.785		
Phe-4	122.708	58.638	36.921	129.211	128.231	126.44
Phe-5	117.326	58.467	35.874	128.335	126.547	129.551
Gly-6	106.074	44.675				
Lys-7	120.36	56.159	29.44	22.48	26.57	39.317
Ile-8	119.297	62.385		14.811/26.049	10.82	
Ile-9	119.527	62.138		15.10/26.17	9.34	
Asp-10	119.391	55.106	37.54			
Tyr-11	120.959	59.071	35.86	129.798	115.32	
Ile-12	119.653	62.939	34.763	15.063/30.96	10.94	
Lys-13	118.827	58.47	29.8	23.655	27.285	39.136
Leu-14	120.142	55.54	39.31	24.08	21.915/21.957	
Met-15	118.735	54.949		29.45		
Phe-16	119.251	59.265	36.491	129.213	128.894	128.123
His-17	118.24	57.138	27.167	117.435	135.283	
His-18	118.738	56.563	27.67	116.445	135.788	
Trp-19	117.611	59.190	27.12	$122.547 \quad 129.424$	$111.74 \quad 121.01$	$117.71 \quad 118.38$
Phe-20	114.139	55.576	37.141	128.118	128.901	126.812
Gly-21	108.505	42.624				
NH2	106.546					

Table S4. PBP 5 anchor hydrogen bonding vs. hydrogen/deuterium exchange.

Hydrogen donor	Hydrogen acceptor	Distance Á	$t_{1 / 2}$ Exchange time
Gly6 NH	Asn3 CO	2.3	$<15 \mathrm{~min}$
Lys7 NH	Asn3 CO	2.5	$<15 \mathrm{~min}$
lle8 NH	Phe4 CO	2.5	$<15 \mathrm{~min}$
Ile9 NH	Gly6 CO	2.2	38 min
Lys13 NH	Asp10 CO	1.9	15 min
Met15 NH	Tyr11 CO	1.8	15 min
Phe16 NH	Lys13 CO	2.7	204 min
His17 NH	Leu14 CO	2.8	$<15 \mathrm{~min}$
Trp19 NH	Met15 CO	2.1	$<15 \mathrm{~min}$
Trp19 NH	Phe16 CO	2.5	$<15 \mathrm{~min}$
Phe20 NH	Phe16 CO	1.9	$<15 \mathrm{~min}$
Gly21 NH	Phe16 CO	2.1	$<15 \mathrm{~min}$
His18 imidazole H	Met15 CO	2.3	-
Tyr11 NH	Asp10 $\gamma \mathrm{CO} 2$	1.9	-
Asp10 NH	a		15 min
Leu14 NH	b		15 min
Ile12 NH	c		63.5 h

${ }^{\text {a }}$ Asp10 H_{N} is in the bend region of the peptide and the backbone is twisted and the residue is $2.0 \AA$ away from Lys7 but out of orientation for H-bonding. ${ }^{\text {b }}$ Leu14 H_{N} is just before the sharp turn in the backbone and is within 2.8 and $2.0 \AA$ of Asp10 or Tyr11 respectively but is also not orientated to properly H-bond with either residue. ${ }^{\text {c }} \mathrm{Ile} 12 \mathrm{H}_{\mathrm{N}}$ is inserted into the membrane but is oriented towards the bend with residues too far away to hydrogen bond with any residue.

Table S5. NOE interactions between the PBP 5 anchor peptide and DPC micelle protons. ${ }^{\text {a }}$

Residue	NH	$\mathrm{H} \alpha$	H β	H γ or H2,6	H δ or H3,5	$\mathrm{H} \varepsilon$ or H4
Glu-1	8.384	4.186	1.995,1.877	2.226,2.219		
Gly-2	8.554	3.891				
Asn-3	8.32	4.746	2.896,2.817			
Phe-4	8.755	4.187	3.207,2.837	6.953	7.124	7.038
Phe-5	8.601	4.107	3.138,3.043	7.245	7.14	6.953
Gly-6	8.072	3.865,3.642				
Lys-7	7.705	4.088	1.838,1.694	1.494,1.387	1.663,1.583	2.878
Ile-8	7.59	3.63	1.948	0.824/1.476,0.878	0.643	
Ile-9	7.951	3.521	1.928	0.852/1.448,1.021	0.666	
Asp-10	8.105	4.311	2.72,2.501			
Tyr-11	7.939	4.219	3.138/3.035	6.952	6.68	
Ile-12	8.407	3.581	2.035	0.856/1.111	0.796	
Lys-13	8.503	3.814	1.934,1.853	1.202,1.709	1.705	2.821,2.770
Leu-14	7.838	4.079	1.715	1.563	0.819/0.782	
Met-15	8.157	4.053	1.949	2.247,2.086		
Phe-16	8.661	4.295	3.214,3.137	6.953	7.05	7.14
His-17	8.362	4.238	3.242	6.963(4)	7.954(2)	
His-18	8.232	4.219	3.019	6.362 (4)	7.789 (2)	
Trp-19	8.153	4.225	2.871,2.482	$6.842 \quad 10.471$	$7.362 \quad 7.00$	$7.234 \quad 6.874$
Phe-20	8.161	4.438	3.026,2.394	7.137	7.062	7.01
Gly-21	7.689	3.820,3.762				
NH_{2}	$\begin{aligned} & 7.038, \\ & 7.672 \\ & \hline \end{aligned}$					

${ }^{\text {a }}$ The peptide protons with chemical shifts in black have no NOE interaction with the micelle protons or their NOE interactions overlap with the intra-peptide NOEs. Peptide protons with chemical shifts highlighted in purple exhibit NOEs with red and blue DPC protons. Peptide protons with chemical shifts highlighted in brown exhibit NOEs with green and blue DPC protons. Peptide protons with chemical shifts highlighted in grey exhibit NOEs with green and orange DPC protons. Figure S1 shows the structure of DPC with the color coding of the protons that interact with the peptide protons.

Figure S1. DPC structure with protons color coded according to ${ }^{1} \mathrm{H}$ NMR NOE interactions with the peptide. DPC protons in black signify no data or NOE interaction.

Figure S2. Comparison of the CD spectrum of the PBP 5 anchor in DPC micelles and POPE/POPG/CL lipid mixture $■$ at $\mathbf{p H}$ 7.5.

Figure S3. ${ }^{15} \mathrm{~N}$ plots of \boldsymbol{R}_{1} and \boldsymbol{R}_{2} for the PBP 5 anchor of E. coli as a function of residue number.

Figure S3. SPR plots of interactions of full-length PBP 5 to different lipids in HEPES buffer pH 7.4. (A) POPE:POPG:CL and Anchor PBP5 Interactions (B) DPC and Anchor PBP5 Interactions (C) SDS and Anchor PBP5 Interactions

NMR Methods

All deuterated reagents and solvents were from Cambridge Isotopes unless otherwise noted. To form a 2 mM solution, two milligrams of the unlabeled peptide was dissolved in $300 \mu \mathrm{~L}$ of an aqueous (90% $\left.\mathrm{H}_{2} \mathrm{O}, 10 \% \mathrm{D}_{2} \mathrm{O}\right)$ micelle solution containing DPC- $d_{38}(80 \mathrm{mM})$. The pH was adjusted to 7.4 with a BIS-TRIS- d_{19} and Benzoic Acid- $d_{5}(20 \mathrm{mM})$ buffer. All volumes were approximately $300 \mu \mathrm{~L}$ and placed in Shigemi NMR tubes (Shigemi Inc. Allison Park, PA) with the tube glass susceptibility matched to the susceptibility of $\mathrm{D}_{2} \mathrm{O}$. Non-deuterated DPC was purchased from Avanti Polar Lipids (Alabaster, AL). Peptide was purchased from Global Peptide (Huntsville, AL) MS (ESI + , m/z) calculated for $\mathrm{C}_{130} \mathrm{H}_{179} \mathrm{~N}_{30} \mathrm{O}_{28} \mathrm{~S} 2642.06$; found: 2641.7 .

All NMR spectra were recorded at a temperature of 298.1 K on a four-channel Bruker AVANCE II spectrometer at a field strength B_{0} of 18.79 T using a $5-\mathrm{mm}$ inverse triple-resonance $(\mathrm{TCI}){ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$, Z-axis PFG cryoprobe, and running TopSpin 2.0, pl 5 software. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ chemical shifts for each residue were determined by analyzing ${ }^{15} \mathrm{~N}$ HSQC, DQF-COSY, TOCSY (31 and 61 ms), NOESY (80 and 200 ms), ${ }^{13} \mathrm{C}$ HSQC and ${ }^{13} \mathrm{C}$ HSQC-TOCSY spectra. $\mathrm{D}_{2} \mathrm{O}$ exchange experiments were measured using 1D ${ }^{1} \mathrm{H}$ and 2D TOCSY spectra with Watergate to suppress a signal of residual HDO with the initial measurement in 15 minutes of $\mathrm{D}_{2} \mathrm{O}$ addition and then continually scanning every 23 minutes for the first 19 hours. After 48 hours, spectra were then obtained every 23 minutes for 5 hours and then every hour for 11 hours. A final scan was acquired after 120 hours. NOE interactions between the peptide and micelle protons were determined using 2D NOESY (80 and 200 ms) spectra with peptide incorporated in a non-deuterated DPC micelle solution buffered at pH 7.4.

The relaxation rate constants $R_{1}\left(R_{1}=1 / T_{1}\right)$, and $R_{2}\left(R_{2}=1 / T_{2}\right)$ were determined from the crosspeak intensities of the corresponding 2D proton detected ${ }^{15} \mathrm{~N}$ HSQC like spectra. ${ }^{1,2}$ For the R_{1} and R_{2} measurements, the spectra were recorded with delays $T ; T=10,35,70,110,180,300,420,570,700$, 850 and 1100 ms and $T=16,32,48,64,80,96,112,128,144,160$ and 176 ms , respectively. To estimate the experimental error for R_{1} and R_{2}, the spectra measured with $T=10$ and 420 ms , for the R_{1}
experiment and $T=16$ and 96 ms for the R_{2} experiment were measured twice. Relaxation delays of 2 seconds were used in all measurements. All spectra were obtained with spectral widths of 11161 Hz and 2270 Hz in the F_{2} and F_{1} domains respectively. Time domain data $\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)$ were recorded as 2048×64 complex matrices with 160 scans per t_{1} increment.

Calculations

The structure of the peptide was calculated and annealed using CyanA (LAS Systems Tokyo Japan). ${ }^{3}$ In the calculation, a total of 681 NOE signals were used with 561 being off-diagonal assignments and 460 were non-redundant NOE distance constraints. Of the non-redundant NOEs, 372, 171 and 18 were short, medium and long range assignments respectively with 120 being inter-residue NOEs. A total of 38 dihedral angle restraints were obtained from the ${ }^{15} \mathrm{~N}, \mathrm{C}_{\alpha}, \mathrm{H}_{\alpha}$ and C_{β} backbone chemical shift values using the program TALOS. ${ }^{4}$ The peptide structure was calculated and annealed for seven iterations to provide 20 final structures.

The ${ }^{15} \mathrm{~N}$-spin-lattice relaxation rates $R_{1},{ }^{15} \mathrm{~N}$-spin-spin relaxation rates R_{2} and ${ }^{15} \mathrm{~N}$ heteronuclear NOE values were calculated for amide resonance signals using the CURVEFIT program (Palmer, Columbia). ${ }^{5,6}$ In the R_{1} and R_{2} measurements, cross peak intensities $I(t)$ were fit using two parameters $\left(I_{0}, R_{\mathrm{i}}\right)$, where:

$$
I(t)=I_{o} e^{-R_{t} t} \text { where } \mathrm{i}=1,2
$$

The errors in the relaxation rates R_{1} and R_{2} were obtained from the root-mean-square deviations between the duplicated spectra. The errors are larger in the experiments in comparison to a $2 \mathrm{mM}{ }^{15} \mathrm{~N}$ labeled peptide sample because the natural abundance of the ${ }^{15} \mathrm{~N}$ isotope is very low, just 0.37%, so the effective sample concentration for all experiments involving ${ }^{15} \mathrm{~N}$ nuclei is only $7.3 \mu \mathrm{M}$. The measured ${ }^{15} \mathrm{~N}$ HSQC spectra used for calculation of R_{1}, R_{2}, and ${ }^{15} \mathrm{~N}$ NOE values therefore exhibited rather low signal to noise ratio even when a cryoprobe was employed with several hundreds of scans per t_{1}
increment.
NOE values were obtained from the ratios of the corresponding cross peak intensities from the spectra recorded with presaturation and without presaturation during a relaxation delay of 3 seconds using the formula:

$$
N O E=\frac{I_{\text {sat }}}{I_{\text {unsat }}}
$$

The standard deviations of the NOE values were determined by the uncertainties of peak heights.
The NMR relaxation of ${ }^{15} \mathrm{~N}$ atoms with directly attached hydrogens is dominated by dipolar interactions between ${ }^{15} \mathrm{~N}$ and ${ }^{1} \mathrm{H}$ spins and by the ${ }^{15} \mathrm{~N}$ chemical shift anisotropy (CSA). ${ }^{7}$ If cross correlation between these two relaxation mechanisms is negligible, the ${ }^{15} \mathrm{~N}$ relaxation rates R_{1}, R_{2} and NOE can be expressed as linear combinations of the spectral densities, which are Fourier transforms of the autocorrelation functions that characterize molecular motions as follows: ${ }^{8}$

$$
\begin{aligned}
& R_{1}=d^{2} / 4\left[J\left(\omega_{H}-\omega_{N}\right)+3 J\left(\omega_{N}\right)+6 J\left(\omega_{H}+\omega_{N}\right)\right]+c^{2} J\left(\omega_{N}\right) \\
& R_{2}=d^{2} / 8\left[4 J(0)+J\left(\omega_{H} \omega_{N}\right)+3 J\left(\omega_{N}\right)+6 J\left(\omega_{H}\right)+6 J\left(\omega_{H}+\omega_{N}\right)\right]+c^{2} / 6\left[4 J(0)+3 J\left(\omega_{N}\right)\right]+R_{e x} \\
& N O E=1+\left(d^{2} / 4 R_{1}\right)\left(\gamma_{H} / \gamma_{N}\right)\left[6 J\left(\omega_{H}+\omega_{N}\right)-J\left(\omega_{H}-\omega_{N}\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& d=\left(\mu_{0} h \gamma_{H} \gamma_{N}\right) /\left(8 \pi^{2} r_{N H}^{3}\right) \\
& c=\omega_{N} / 3^{1 / 2}\left(\sigma_{\|}-\sigma_{\perp}\right)
\end{aligned}
$$

and μ_{0} is the permeability of free space, h is Plank's constant, γ_{H} and γ_{N} are the gyromagnetic ratios of ${ }^{1} \mathrm{H}$ and ${ }^{15} \mathrm{~N}$ respectively, $r_{N H}$ is the $\mathrm{N}-\mathrm{H}$ bond length $\left(1.023 \times 10^{-10} \mathrm{~m}\right), \omega_{H}$ and ω_{N} are the Larmor frequencies of ${ }^{1} \mathrm{H}$ and ${ }^{15} \mathrm{~N}$ respectively, $\left(\sigma_{\|}-\sigma_{\perp}\right)$ is the ${ }^{15} \mathrm{~N} \operatorname{CSA}(-162 \mathrm{ppm})$ and $J(\omega)$ is the spectral density function. In an extended model free formalism, ${ }^{9,10}$ the spectral density is given by formula:

$$
J(\omega)=\frac{2}{5}\left[\frac{s^{2} \tau_{m}}{1+\left(\omega \tau_{m}\right)^{2}}+\frac{\left(S_{f}^{2}-S^{2}\right) \tau}{1+(\omega \tau)^{2}}\right]=\frac{2}{5} S_{f}^{2}\left[\frac{S_{s}^{2} \tau_{m}}{1+\left(\omega \tau_{m}\right)^{2}}+\frac{\left(1-S_{s}^{2}\right) \tau}{1+(\omega \tau)^{2}}\right]
$$

in which

$$
\tau=\frac{\tau_{e} \tau_{m}}{\left(\tau_{e}+\tau_{m}\right)}
$$

τ_{e} is the effective correlation time characterizing internal motion, τ_{m} is the correlation time characterizing overall molecular tumbling, $S^{2}=S_{\mathrm{f}}^{2} S_{\mathrm{s}}^{2}$ is the square of the generalized order parameter that characterizes the amplitude of the internal motions and S_{f}^{2} and $S_{\mathrm{s}}{ }^{2}$ are the squares of the order parameters for the internal motions on the fast and slow time scales, respectively.

The initial anisotropic tumbling rate $\tau_{\mathrm{m}}(6.54 \mathrm{~ns})$ for the MODELFREE program was calculated using the Stokes-Einstein relation:

$$
\tau_{m}=\frac{1}{6 D_{\text {rot }}}=\frac{\eta V_{h}}{k T}=\frac{4 \pi a^{3} \eta}{3 k T} \text { where } D_{r o t}=\frac{D_{\|}}{D_{\perp}}=\frac{2 D_{z z}}{D_{x x}+D_{y y}}
$$

where η is the viscosity, V_{h} is the volume of a sphere, k is the Boltzmann constant, T is the temperature in Kelvin and $\mathrm{D}_{\mathrm{rot}}$ is the rotational diffusion constant for a sphere or a prolate or oblate
spheroid. The volume $\left(0.5481 \mathrm{~nm}^{3}\right)$ of one DPC and number (55) of DPCs per micelle were calculated from previously published data, ${ }^{11}$ the volume of the peptide was calculated using a program from Northwestern University (http://www.basic.northwestern.edu/biotools/proteincalc.html) and these values were used to calculate the total volume of the micelle/peptide complex $\left(3.329 \mathrm{~nm}^{3}, 21971.480\right.$ $\mathrm{g} / \mathrm{mol})$. The viscosity of water as a function of temperature was calculated from:

$$
\eta=A \cdot 10^{\frac{B}{(T-C)}}
$$

where A is $2.414 \times 10^{-5} \mathrm{~Pa} \cdot \mathrm{~s}, \mathrm{~B}$ is $247.8 \mathrm{~K}, \mathrm{C}$ is 140 K and T is the experimental temperature between 273 and 373 K (http://en.wikipedia.org/wiki/Viscosity).

The relaxation rates R_{1}, R_{2} and NOE were analyzed using MODELFREE version 4.20. ${ }^{5,6}$ They were fitted to 5 dynamic models that differ in the number of parameters that can be adjusted. The variable parameters for individual models are model 1 : the square of the generalized order parameter S^{2}; model 2 : S^{2} and the correlation time τ_{e} characterizing fast internal motions; model 3: S^{2} and the chemical exchange term $R_{\text {ex }}$ characterizing conformational exchange processes occurring on the $\mu \mathrm{s}-\mathrm{ms}$ time scale; model 4: S^{2}, R_{ex}, and the correlation time τ_{e} for fast internal motions; model 5: $S^{2}, S_{\mathrm{f}}^{2}$ the square of the order parameter for internal motions on the fast time scale, and the correlation time τ_{e} characterizing slow internal motions. The values of S^{2} and S_{f}^{2} span from zero, corresponding to isotropic internal motion, to one, corresponding to entirely restricted internal motion. The model selection protocol that was followed is described in a previous report. ${ }^{5}$

References

(1) Kay, L. E.; Torchia, D. A.; Bax, A. Biochemistry 1989, 28, 8972-8979.
(2) Farrow, N. A.; Muhandiram, R.; Singer, A. U.; Pascal, S. M.; Kay, C. M.; Gish, G.; Shoelson, S. E.; Pawson, T.; Forman-Kay, J. D.; Kay, L. E. Biochemistry 1994, 33, 5984-6003.
(3) Guntert, P.; Mumenthaler, C.; Wuthrich, K. J. Mol. Biol. 1997, 273, 283-298.
(4) Cornilescu, G.; Delaglio, F.; Bax, A. J. Biomol. NMR 1999, 13, 289-302.
(5) Mandel, A. M.; Akke, M.; Palmer, A. G., III J. Mol. Biol. 1995, 246, 144-163.
(6) Palmer, A. G., III; Rance, M.; Wright, P. E. J. Am. Chem. Soc. 1991, 113, 4371-4380.
(7) Abragam, A., Principles of Nuclear Magnetism. ed.; Clarendon Press: Oxford, 1961; p 599.
(8) Cavanagh, J.; Fairbrother, W. J.; Palmer III, A. G.; Skelton, N. J., Protein NMR Spectroscopy: Principles and Practice ed.; Academic Press Inc. : San Diego, 1996; p 587.
(9) Clore, G. M.; Driscoll, P. C.; Wingfield, P. T.; Gronenborn, A. M. Biochemistry 1990, 29, 73877401.
(10) Clore, G. M.; Szabo, A.; Bax, A.; Kay, L. E.; Driscoll, P. C.; Gronenborn, A. M. J. Am. Chem. Soc. 1990, 112, 4989-4991.
(11) Lipfert, C. J.; Columbus, L.; Chu, V. B.; Lesley, S. A.; Doniach, S. J. Phys. Chem. 2007, 111, 12427-12438.

