Supplementary material for

"Piperazine Bridged Resorcinarene Cages"

By N. Kodiah Beyeh, Arto Valkonen, Kari Rissanen*

NanoScience Center, Department of Chemistry, University of Jyväskylä, P.O.Box 35, 40014 Jyväskylä, Finland.

kari.t.rissanen@jyu.fi

CONTENT:

I.	General	S1
II.	Synthetic procedure, ¹ H, ¹³ C NMR and ESI-TOF mass spectra of 2a	S2
III.	Synthetic procedure, ¹ H, ¹³ C, ¹ H ¹³ C HMQC, ¹ H ¹³ C HMBC, ¹ H ¹ H COSY NMR and ESI-TOF mass	
	spectra of 2b	S5
IV.	Synthetic procedure, ¹ H, ¹³ C NMR and ESI-TOF mass spectra of 2c	S10

General

Melting points were determined with a Mettler Toledo FP62 capillary melting point apparatus and are uncorrected. Elemental analyses were carried out with a Varian ELIII elemental analyzer. ¹H and ¹³C NMR, ¹H¹H COSY, ¹H¹³C HMQC and ¹H¹³C HMBC spectra were recorded on Bruker Avance DRX 500 (500 MHz for ¹H and 126 MHz for ¹³C) spectrometer. ¹H and ¹³C assignments were mainly based on ¹H¹H COSY, ¹H¹³C HMQC and ¹H¹³C HMBC 2D correlation spectra. All signals are expressed as δ values in ppm using residual solvent signal as internal standard. J values are given in Hz. The mass spectrometric studies was perform with a micromass LCT ESI-TOF instrument. Since the instrument does not permit MS/MS experiments, the fragmentation behavior of the samples were examined by in-source fragmentation induced collisions with the gas molecules present in the ion source. For this purpose, the ions were accelerated to different kinetic energies by tuning the sample cone voltage to different settings. At low voltage, the ions are not significantly accelerated and undergo fragmentations only to a minor extent upon collision with the surrounding gas molecules. With a high sample cone voltage, the ions approach the sample cone at a higher velocity and collisions with the surrounding gas lead to much more pronounced fragmentations.

All materials were commercial and used as such unless otherwise mentioned. Resorcinarene **1a**-c were prepared according to literature procedure.¹

¹ (a) Timmerman, P.; Verboom, W.; Reinhoudt, D. *Tetrahedron* **1996**, *52*, 2663; (b) Jasat, A.; Sherman, J. C. *Chem. Rev.* **1999**, *99*, 931.

General procedure for the preparation of the covalent resorcinarene cages

To a solution of excess formaldehyde (35 % aqueous solution) and a few drops of glacial acetic acid in ethanol (1.0 L), a solution of resorcinarene **1** (1.5 mmol) in ethanol (250 mL) and a solution of piperazine (3.0 mmol) in ethanol (250 mL) were added drop wise with flow rate of approximately 10 μ L/min at 80 °C. The reaction mixture was reflux for a further 6 h and the solvent was evaporated in vacuum. The crude product was subject to chromatography and washed thoroughly with methanol to give the product.

$C_2 Resorcinarene \ cage \ 2a$

Formaldehyde (3 mL), ethanol (1.0 L), resorcinarene **1a** (1.0 g, 1.66 mmol) and piperazine (0.28 g, 3.32 mmol). Purification via flash chromatography (RediSep Flash Column (silica) 40/12g, from Teledyne Isco; eluent: CH₂Cl₂/CH₃OH 10 %) gave the product (0.43g, 32 %) as a cream white powder. Mp > 300 °C. (found C,64.31, H, 6.78, N, 6.08. C₉₆H₁₂₀N₈O₁₆·0.5CH₃OH·0.5CH₃CH₂OH 2CH₂Cl₂ requires C, 64.57, H, 7.02, N, 6.05). [C₉₆H₁₂₀N₈O₁₆ MW 1642.02; ESI-TOF MS [M+H]⁺ 1641.93]. ¹H NMR (500 MHz, CDCl₃, 30 °C) δ : 12.96 (br, 8H, ArO*H*), 8.76 (br, 8H, ArO*H*), 7.11 (br, 8H, Ar*H*), 4.12 (m, 8H, C*H*), 4.00 (m, 8H, ArC*H*₂N), 3.62 (m, 8H, ArC*H*₂N), 3.11 (d, *J* 8.1 Hz, 8H, NC*H*₂R), 2.56 (d, 8H, *J* 8.1 Hz, NC*H*₂R), 2.22 (m, 20H, NC*H*₂R, C*H*₂), 1.66 (m, 8H, NC*H*₂R), 1.22 (br, 4H, NC*H*₂R), 0.90 (m, 24H, C*H*₃), 0.11 (d, *J* 5.7), - 0.84 (t, *J* 5.3), -1.68 (t, *J* 7.0), -1.89 (t, *J* 7.1), -2.07 (t, *J* 5.3); ¹³C NMR (126 MHz, CDCl₃, 30 °C) δ : 152.0, 150.5, 124.6, 123.6, 122.3, 107.2, 53.8, 53.2, 50.1, 35.5, 26.6, 12.6.

SI Fig. 1: ¹H NMR spectrum of 2a in CDCl₃ at 303 K

SI Fig. 2: ¹H NMR spectra of **2a** in CDCl₃ at 303 K: a) after chromatography, revealing strongly overlapping doublets for the diastereotopic ArCH₂N (*), and four multiplets for the equally diastereotopic piperazine protons ($\mathbf{\nabla}$) and encapsulated solvent molecules (•) corresponding to methanol, ethanol and dichloromethane (solvents used in synthesis and chromatography), b) after boiling for 2h in distilled MeCN showing that it is encapsulated (θ), c) after boiling for 2h in CH₃NO₂ showing that it is encapsulated (β). Some of the previously encapsulated solvent molecules (•) were not completely replaced by now encapsulated MeCN (θ) and CH₃NO₂ (β) molecules (b and c).

SI Fig. 3: ¹³C NMR spectrum of **2a** in CDCl₃ at 303 K

SI Fig. 4: ESI-TOF Mass Spectrum of 2a (MeOH/CH₂Cl₂/H⁺)

C₃Resorcinarene cage **2b**

Formaldehyde (3 mL), ethanol (1.0 L), resorcinarene **1b** (1.0 g, 1.5 mmol) and piperazine (0.26 g, 3.0 mmol). Purification via flash chromatography (RediSep Flash Column (silica) 40/12g, from Teledyne Isco; eluent: CH₂Cl₂/CH₃OH 10 %) gave the product (0.48 g, 36 %) as a cream white powder. Mp > 300 °C. (found C, 69.07, H, 7.66, N, 5.70. $C_{104}H_{136}N_8O_{16}\cdot1.5CH_3OH\cdot0.5CH_2Cl_2$ requires C, 69.01, H, 7.81, N, 6.07). [$C_{104}H_{136}N_8O_{16}$ MW 1754.24; ESI-TOF MS [M+H]⁺ 1754.35]. ¹H NMR (500 MHz, CD₂Cl₂, 30 °C) δ : 12.50 (br, 8H, ArO*H*), 8.34 (br, 8H, ArO*H*), 7.05 (s, 8H, Ar*H*), 4.15 (t, *J* 7.9 Hz, 8H, C*H*), 3.95 (d, *J* 13.7 Hz, 8H, ArC*H*₂N), 3.57 (d, *J* 14.0 Hz, 8H, ArC*H*₂N), 3.05 (d, *J* 7.9 Hz, 8H, NC*H*₂R), 2.50 (d, *J* 7.3, 8H, NC*H*₂R), 2.27 (d, *J* 6.7, 8H, NC*H*₂R), 2.02 (m, 16H, C*H*₂), 1.64 (br, 8H, NC*H*₂R), 1.25 (m, 16H, C*H*₂), 0.89 (t, *J* 7.3 Hz, 24H, C*H*₃); ¹³C NMR (126 MHz, CD₂Cl₂, 30 °C) δ : 151.9, 150.4, 124.7, 123.8, 122.5, 107.1, 53.7, 53.2, 50.1, 35.6, 32.9, 21.1, 13.9.

SI Fig. 5: ¹H NMR spectrum of **2b** in CDCl₃ at 303 K

SI Fig. 6: ¹H NMR spectra of **2b** in CDCl₃ at 303 K: a) after chromatography, revealing two doublets for the diastereotopic ArC H_2 N (*), and four doublets for the equally diastereotopic piperazine protons ($\mathbf{\nabla}$), b) after boiling in distilled MeCN for 2h and dried revealing similar coupling pattern and encapsulated MeCN solvents peaks (θ) upfield.

SI Fig. 8: ¹H ¹³C HMQC 2D NMR spectrum of 2b in CD₂Cl₂.

SI Fig. 10: ¹H ¹H COSY 2D NMR spectrum of **2b** in CD₂Cl₂.

SI Fig. 11: ESI-TOF Mass Spectrum of $2b~(\mbox{MeOH/CH}_2\mbox{Cl}_2\mbox{H}^+)$

$C_6 Resorcinarene \ cage \ 2c$

To a solution of excess formaldehyde (3 mL) and some drops of glacial acetic acid in CH₂Cl₂ (600 mL) a solution of resorcinarene **1c** (0.5 g, 0.6 mmol) in CH₂Cl₂ (100 mL) and a solution of piperazine (0.1 g, 1.2 mmol) in CH₂Cl₂ (100 mL) were added drop wise with flow rate of 10 μ L/min at rt. The reaction mixture was stir at room temperature for 24 h which was then evaporated in vacuum. The crude product was subjected to column chromatography (eluent: CH₂Cl₂/CH₃OH 10 %) to give the product (0.178 g, 28 %) as a brownish power. Mp > 300 °C. (found C, 70.23, H, 8.69, N, 5.01. C₁₂₈H₁₈₄N₈O₁₆·1.5CH₂Cl₂·0.5CH₃CH₂ OH requires C, 69.93, H, 8.54, N, 5.00). [C₁₂₈H₁₈₄N₈O₁₆ MW 2090.87; ESI-TOF MS [M+H]⁺ 2090.39]. ¹H NMR (500 MHz, CDCl₃, 30 °C) δ : 12.71 (m, 8H, ArOH), 8.47 (m, 8H, ArOH), 7.03 (m, 8H, ArH), 4.13 (br, 8H, CH), 3.94 (d, 8H, *J* 13.9 Hz, ArCH₂N), 3.55 (dd, 8H, *J* 7.0 Hz, ArCH₂N), 3.03 (br, 8H, NCH₂R), 2.50 (br, 8H, NCH₂R), 2.03 (m, 24H, NCH₂R, CH₂), 1.62 (br, 8H, NCH₂R), 1.29 (br, 84H, CH₂), 0.79 (t, *J* 6.8 Hz, 24H, CH₃), -0.78 (m), -1.12 (t, *J* 5.6),-2.37 (t, *J* 7.5); ¹³C NMR (126 MHz, CD₂Cl₂, 30 °C) δ : 151.9, 150.4, 124.7, 123.8, 122.3, 121.5, 107.2, 53.8, 53.2, 50.1, 33.4, 31.8, 29.3, 28.1, 22.6, 14.0.

SI Fig. 12: ¹H NMR spectrum of **2c** in CDCl₃ at 303 K

SI Fig. 13: ¹H NMR spectra of **2c** in CDCl₃ at 303 K: a) after chromatography, revealing two doublets for the diastereotopic ArCH₂N (*), and four overlapping multiplets for the equally diastereotopic piperazine protons ($\mathbf{\nabla}$) showing residual encapsulated solvent molecules (•) from the synthesis, b) after boiling for 2h in distilled MeCN showing similar coupling pattern. Some of the previously encapsulated solvent molecules (•) were not completely replaced by now encapsulated MeCN (θ) molecules.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm SI Fig. 14: ¹³C NMR spectrum of **2c** in CDCl₃ at 303 K

SI Fig. 15: ESI-TOF Mass Spectrum of 2c (MeOH/H⁺)