Synthesis of the Spiroiminal Moiety of Marineosins A and B
Department of Chemistry MS 015, Brandeis University, Waltham, MA 02454-9110 snider@brandeis.edu
Experimental Section S2-S11
Conformations and Spectral Assignments in Spiroiminals 24a, 25a, and 27a S12-S13
Discussion of Spiroiminal Formation and Equilibration S14
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S15-S46

General Experimental Methods. Reactions were conducted in flame- or oven-dried glassware under a nitrogen atmosphere and were stirred magnetically. The phrase "concentrated" refers to removal of solvents by means of a rotary evaporator attached to a diaphragm pump (15-60 Torr) followed by removal of residual solvents at <1 Torr with a vacuum pump. Flash chromatography was performed on silica gel 60 (230-400 mesh). Analytical thin layer chromatography (TLC) was performed using silica gel $60 \mathrm{~F}-254$ pre-coated glass plates $(0.25 \mathrm{~mm})$. TLC Plates were analyzed by short wave UV illumination, or by dipping in vanillin stain (27 g of vanillin in 380 mL of $\mathrm{EtOH}, 50 \mathrm{~mL}$ of water and 20 mL of concentrated sulfuric acid) and heating on a hot plate. THF and ether were dried and purified by distillation from sodium/benzophenone. $\mathrm{Et}_{3} \mathrm{~N}$ was distilled from $\mathrm{CaH}_{2} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a 400 MHz spectrometer in CDCl_{3} with CHCl_{3} as an internal standard ($\delta 7.26$, CDCl_{3} at $\delta 77.00$) unless otherwise indicated. Chemical shifts are reported in δ (ppm downfield from tetramethylsilane). Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet) and br (broad). IR spectra were acquired on an FT-IR spectrometer and are reported in wave numbers $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra were obtained using the following ionization techniques: chemical ionization (CI), electron impact (EI), electrospray ionization analyzed by quadrupole time of flight (QTof).

Benzaldehyde Oxime (S1). A solution of benzaldehyde ($530 \mathrm{mg}, 5.0 \mathrm{mmol}$) in 20 mL of EtOH was treated with a mixture of $\mathrm{NaOH}(300 \mathrm{mg}, 7.50 \mathrm{mmol})$ and $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(783 \mathrm{mg}$, $11.4 \mathrm{mmol})$ in 10 mL of $\mathrm{H}_{2} \mathrm{O}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 6 h , concentrated to remove EtOH , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Flash chromatography on silica gel (8:1 hexanes/EtOAc) gave $482 \mathrm{mg}(84 \%)$ of S1 with data identical to those previously reported. ${ }^{12}$

1-[[2-(Trimethylsilyl)ethoxy]methyl]-1H-pyrrole-2-carboxaldehyde (S2) was prepared by the literature procedure. ${ }^{10}$ A solution of pyrrole-2-carboxaldehyde (245 mg , $2.57 \mathrm{mmol})$ in anhydrous THF (2 mL) was added dropwise to a suspension of $\mathrm{NaH}(60 \%$ in
mineral oil, $124 \mathrm{mg}, 3.09 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and $\mathrm{SEMCl}(0.50 \mathrm{~mL}, 2.83 \mathrm{mmol})$ was added by syringe over 3 min . The reaction was warmed to $25^{\circ} \mathrm{C}$ and stirred for 2 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (3 mL). The aqueous layer was extracted with EtOAc and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Flash chromatography on silica gel (8:1 hexanes/EtOAc) gave $538 \mathrm{mg}(93 \%)$ of S2: ${ }^{1} \mathrm{H}$ NMR $9.58(\mathrm{~s}, 1), 7.15-7.13(\mathrm{~m}, 1), 6.96$ (dd, $1, J=1.5,3$), 6.30 (dd, $1, J$ $=3,4), 5.70(\mathrm{~s}, 2), 3.54(\mathrm{t}, 2, J=8.1), 0.89(\mathrm{t}, 2, J=8.1),-0.04(\mathrm{~s}, 9) ;{ }^{13} \mathrm{C}$ NMR 179.3, 131.6, 130.8, 125.0, 110.2, 76.2, 65.8, 17.5, -1.7 (3 C); IR (neat) 1671.

1-[[2-(Trimethylsilyl)ethoxy]methyl]-1H-pyrrole-2-carboxaldehyde Oxime (S3). A

 solution of aldehyde $\mathbf{S 2}(538 \mathrm{mg}, 2.39 \mathrm{mmol})$ in 11 mL of $10: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ was treated with $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(183 \mathrm{mg}, 2.63 \mathrm{mmol})$ and $\mathrm{NaOAc}(295 \mathrm{mg}, 3.59 \mathrm{mmol})$. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 2.5 h , concentrated to remove MeOH , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography on silica gel (8:1 hexanes/EtOAc) gave $482 \mathrm{mg}(84 \%)$ of S3: ${ }^{1} \mathrm{H}$ NMR $8.92(\mathrm{~s}, 1, \mathrm{OH}), 8.20(\mathrm{~s}, 1), 6.87-6.85(\mathrm{~m}, 1), 6.52(\mathrm{dd}, 1, \mathrm{~J}=$ $1.2,2.5), 6.19(\mathrm{dd}, 1, J=3,4), 5.46(\mathrm{~s}, 2), 3.50(\mathrm{t}, 2, J=8.2), 0.91(\mathrm{t}, 2, J=8.2),-0.03(\mathrm{~s}, 9) ;{ }^{13} \mathrm{C}$ NMR 142.3, 126.2, 125.2, 115.0, 109.1, 76.9, 65.5, 17.5, -1.6 (3 C); IR (neat) 3376, 1624; HRMS (EI) calc for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}\right)$240.1294, found 240.1298.7-Hydroxy-1-octen-3-one (18) was prepared by the literature procedure. ${ }^{6}$ A solution of 6-Methyltetrahydropyran-2-one (17) ($0.92 \mathrm{~g}, 8.76 \mathrm{mmol}$) in anhydrous THF $(15 \mathrm{~mL})$ was treated with vinylmagnesium bromide (1 M in THF, $10.51 \mathrm{~mL}, 10.51 \mathrm{mmol}$) by syringe over 15 min under nitrogen at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 4 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc , washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give 1.11 g of crude 18. Flash chromatography on MeOH -deactivated silica gel (4:1 hexanes/EtOAc) gave $1.06 \mathrm{~g}(85 \%)$ of 18: ${ }^{1} \mathrm{H}$ NMR $6.36(\mathrm{dd}, 1, J=10.4,17.4), 6.24(\mathrm{~d}$, $1, J=17.4), 5.85(\mathrm{~d}, 1, J=10.4), 3.81-3.76(\mathrm{~m}, 1), 2.64(\mathrm{t}, 2, J=6.7), 2.37(\mathrm{~s}, 1, \mathrm{OH}), 1.75-1.65$ (m, 2), 1.50-1.43 (m, 2), 1.19 (d, 3, $J=6.7$); ${ }^{13} \mathrm{C}$ NMR 201.0, 136.3, 128.2, 67.3, 39.2, 38.4, 23.3, 19.8; IR (neat) 3452 (br), 1729.

7-Triethylsilyloxy-1-octen-3-one (19). A solution of alcohol 18 ($836 \mathrm{mg}, 5.88 \mathrm{mmol}$) in 15 mL of THF was treated with $\mathrm{Et}_{3} \mathrm{~N}(1.36 \mathrm{~mL}, 9.41 \mathrm{mmol})$, DMAP ($69 \mathrm{mg}, 0.59 \mathrm{mmol}$), and TESCl ($1.58 \mathrm{~mL}, 9.41 \mathrm{mmol}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The reaction was then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and washed with brine $(3 \times 5 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 1.78 g of crude 19. Flash chromatography on silica gel (18:1 hexanes/EtOAc) gave $1.45 \mathrm{~g}(96 \%)$ of 19: ${ }^{1} \mathrm{H}$ NMR 6.34 (dd, $1, J=10.6,17.6$), $6.21(\mathrm{~d}, 1, J=$ 17.6), $5.81(\mathrm{~d}, 1, J=10.6), 3.82-3.78(\mathrm{~m}, 1), 2.59(\mathrm{t}, 2, J=6.4), 1.72-1.58(\mathrm{~m}, 2), 1.46-1.39(\mathrm{~m}$, 2), $1.14(\mathrm{~d}, 3, J=6.4), 0.95(\mathrm{t}, 9, J=7.6), 0.58(\mathrm{q}, 6, J=7.6) ;{ }^{13} \mathrm{C} \operatorname{NMR} 200.8,136.5,127.9$, 68.2, 39.6, 39.1, 23.8, 20.3, 6.9 (3 C), 4.9 (3 C); IR (neat) 1682; HRMS (EI) calc for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}$ $\left(\mathrm{M}-\mathrm{H}^{+}\right) 255.1780$, found 255.1787 .

1-(4,5-Dihydro-3-phenyl-5-isoxazolyl)-5-triethylsilyloxy-1-hexanone (20a). A solution of N-chlorosuccinimide ($220 \mathrm{mg}, 1.65 \mathrm{mmol}$) in anhydrous THF (3 mL) was added dropwise by syringe over 20 min to a solution of benzaldehyde oxime (S1) ($170 \mathrm{mg}, 1.40 \mathrm{mmol}$) in THF $(6 \mathrm{~mL})$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 5 h , cooled to $-78^{\circ} \mathrm{C}$, and treated with a solution of enone $19(300 \mathrm{mg}, 1.17 \mathrm{mmol})$ in THF (2 mL) and then $\mathrm{Et}_{3} \mathrm{~N}(240 \mu \mathrm{~L}, 1.65 \mathrm{mmol})$. The mixture was gradually warmed to $25^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction mixture was diluted with EtOAc, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography on MeOH deactivated silica gel (12:1 hexanes/EtOAc) gave 341 mg (78\%) of 20a as a $1: 1$ mixture of diastereomers: ${ }^{1} \mathrm{H}$ NMR $7.67(\mathrm{~d}, 2, J=6.1), 7.43-7.39(\mathrm{~m}, 3), 5.03(\mathrm{dd}, 1, J=6.1,12.1), 3.79(\mathrm{tq}$, $1, J=6.1,6.1), 3.64(\mathrm{dd}, 1, J=6.1,16.8), 3.48(\mathrm{dd}, 1, J=12.1,16.8), 2.73(\mathrm{t}, 2, J=7.3), 1.73-$ $1.52(\mathrm{~m}, 2), 1.50-1.34(\mathrm{~m}, 2), 1.12(\mathrm{~d}, 3, J=5.5), 0.94(\mathrm{t}, 9, J=6.6), 0.57(\mathrm{q}, 6, J=6.6) ;{ }^{13} \mathrm{C}$ NMR 209.5, 156.6, 130.5, 128.8 (2 C), 128.5, 126.8 (2 C), 84.1, 68.1, (38.96, 38.94), (38.82, 38.81), (37.28, 37.25), 23.7, (19.30, 19.27), 6.8 (3 C), 4.9 (3 C); IR (neat) 1721, 1595; HRMS (EI) calc for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NSi}\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ 346.1838, found 346.1837.

1-[4,5-Dihydro-3-[[2-(trimethylsilyl)ethoxy]methyl]-1H-pyrrole-5-isoxazolyl]-5-triethylsilyloxy-1-hexanone (20c). A mixture of oxime S3 (440 mg, 1.83 mmol) and enone 19 ($610 \mathrm{mg}, 2.28 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was treated with bleach (5.25% aqueous NaOCl ,
$5.15 \mathrm{~mL}, 271 \mathrm{mg}$ of $\mathrm{NaOCl}, 3.66 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(40 \mu \mathrm{~L}, 0.28 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography on $\mathrm{MeOH}-$ deactivated silica gel ($12: 1$ hexanes/EtOAc) gave $661 \mathrm{mg}(73 \%)$ of 20c as a mixture of diastereomers: ${ }^{1}$ H NMR 7.00-6.98 (m, 1), 6.46-6.44 (m, 1), 6.23-6.12 (m, 1), 5.67 (d, $1, J=10.4$), $5.60(\mathrm{~d}, 1, J=10.4), 4.87(\mathrm{dd}, 1, J=6.2,11.3), 3.79(\mathrm{tq}, 1, J=6.1,6.1), 3.60(\mathrm{dd}, 1, J=6.2$, 16.3), 3.53-3.46 (m, 3), 2.78-2.63 (m, 2), 1.72-1.50 (m, 2), 1.48-1.34 (m, 2), $1.12(\mathrm{~d}, 3, J=6.1)$, $0.94(\mathrm{t}, 9, J=7,8), 0.89(\mathrm{t}, 2, J=7.9), 0.57(\mathrm{q}, 6, J=7.8),-0.04(\mathrm{~s}, 9) ;{ }^{13} \mathrm{C}$ NMR 209.7, 150.1, $127.5,121.3,116.0,109.3,82.4,77.4,68.1,65.7,39.4,39.0,38.8,(23.72,23.70), 19.3,17.7,6.9$ (3 C), 4.9 (3 C), -1.5 (3 C); IR (neat) 1721, 1598; HRMS (EI) calc for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$ 494.2996, found 494.2989.

3,4-Dihydro-2,3-dimethoxy-2-(4-triethylsilyloxypentyl)-4-phenyl-2H-pyrrole (22a).

A solution of isoxazoline 20a $(178 \mathrm{mg}, 0.47 \mathrm{mmol})$ in 10 mL of MeOH was treated with a wet slurry of Raney nickel $2800(\sim 50 \mathrm{mg})$ and the suspension was stirred at $25^{\circ} \mathrm{C}$ under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 35 min . The mixture was then diluted with EtOAc and filtered. The filtrate was washed with brine $(3 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give 174 mg of crude hydroxy hemi-iminal 21a as a mixture of four diastereomers that was used for the next step.

A solution of crude 21a in anhydrous THF (2 mL) was added dropwise to a suspension of $\mathrm{NaH}(60 \%$ in mineral oil, $152 \mathrm{mg}, 3.80 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and $\mathrm{MeI}(237 \mu \mathrm{~L}, 3.80 \mathrm{mmol})$ was then added by syringe over 3 min . The resulting mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 4 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give 163 mg of crude 22a. Flash chromatography on silica gel (18:1 hexanes/EtOAc) gave 110 mg (58% for two steps) of 22a as a mixture of four diastereomers: ${ }^{1} \mathrm{H}$ NMR (major (75-80\%) pair of diastereomers with either cis or trans methoxy groups) $7.87(\mathrm{~d}, 2, J=7.3), 7.46-7.39(\mathrm{~m}, 3), 3.96-3.91(\mathrm{~m}, 1), 3.84-$ $3.75(\mathrm{~m}, 1), 3.48(\mathrm{~s}, 6), 3.20(\mathrm{dd}, 1, J=7.3,17.4), 3.02(\mathrm{dd}, 1, J=3.0,17.4), 1.96-1.82(\mathrm{~m}, 1)$,
1.67-1.35 (m, 5), $1.14(\mathrm{~d}, 3, J=6.1), 0.93(\mathrm{t}, 9, J=7.8), 0.58(\mathrm{q}, 6, J=7.8) ;{ }^{1} \mathrm{H}$ NMR (minor (20-25\%) pair of diastereomers with either trans or cis methoxy groups) 3.48-3.24 (m, 2 or 3); IR (neat) 2955, 1619, 1449; HRMS (EI) calc for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{NSi}\left(\mathrm{M}^{+}\right) 405.2699$, found 405.2710.

3,4-Dihydro-2,3-dimethoxy-2-(4-triethylsilyloxypentyl)-4-(1-[[2-(trimethylsilyl)-ethoxy]methyl]-1H-pyrrol-2-yl)-2H-pyrrole (22c). A solution of isoxazoline 20c (203 mg, 0.41 mmol) in 12 mL of $5: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ was treated with a wet slurry of Raney nickel 2800 $(\sim 50 \mathrm{mg})$ and the suspension was stirred at $25^{\circ} \mathrm{C}$ under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for about 50 min . The mixture was then diluted with EtOAc and filtered. The filtrate was washed with brine $(3 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give 191 mg of crude hydroxy hemi-iminal 21c.

A solution of crude 21c in THF (2 mL) was added dropwise to a suspension of NaH $(60 \%$ in mineral oil, $130 \mathrm{mg}, 3.24 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and $\mathrm{MeI}(203 \mu \mathrm{~L}, 3.24 \mathrm{mmol})$ was added dropwise by syringe over 3 min . The resulting mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 4 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and the aqueous layer was extracted with EtOAc. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give 151 mg of crude 22c. Flash chromatography on silica gel (15:1 hexanes/EtOAc) gave 91 mg (42% for two steps) of 22c as a mixture of four diastereomers in which two predominate: ${ }^{1} \mathrm{H}$ NMR 7.03-7.01 (m, 1), 6.58-6.56 (m, 1), 6.21-6.19 (m, 1), $5.93(\mathrm{~d}, 1, J=10.4), 5.90(\mathrm{~d}, 1, J=10.4), 3.80-3.77(\mathrm{~m}, 2)$, $3.54(\mathrm{t}, 2, J=7.9), 3.44(\mathrm{~s}, 3), 3.43(\mathrm{~s}, 3), 3.12(\mathrm{dd}, 1, J=6.7,17.1), 2.96(\mathrm{dd}, 1, J=2.4,17.1)$, 1.83-1.77 (m, 1), 1.55-1.37 (m, 5), $1.13(\mathrm{~d}, 3, J=6.1), 0.94(\mathrm{t}, 9, J=7.8), 0.87(\mathrm{t}, 2, J=7.9)$, $0.57(\mathrm{q}, 6, J=7.8),-0.05(\mathrm{~s}, 9)$; IR (neat) 2954, 1617; HRMS (EI) calc for $\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$ 524.3466, found 524.3475.

3-Methoxy- α-methyl-5-phenyl-1H- pyrrole-2-butanol (23a) and (4S, 5R, 7R)-rel-4-Methoxy-7-methyl-2-phenyl-6-oxa-1-azaspiro[4.5]dec-1-ene (24a), (4R, $5 R, 7 R$)-rel-4-Methoxy-7-methyl-2-phenyl-6-oxa-1-azaspiro[4.5]dec-1-ene (25a), (4R, 5S, 7R)-rel-4-Methoxy-7-methyl-2-phenyl-6-oxa-1-azaspiro[4.5]dec-1-ene (27a). A solution of 22a (101 mg, $243 \mu \mathrm{~mol})$ in 6 mL of $1: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{THF}$ was treated with $2 \mathrm{M} \mathrm{HCl}(2.49 \mathrm{~mL}, 4.98 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$.

The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 40 min . Saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added to bring the pH to 7. The reaction was extracted with EtOAc and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography on MeOH -deactivated silica gel (7:1 to 2:1 hexanes/EtOAc) gave $26 \mathrm{mg}(41 \%)$ of 24a, followed by $8.1 \mathrm{mg}(13 \%)$ of 25a, 7.4 mg (12\%) of 27a, and then $5.2 \mathrm{mg}(8 \%)$ of 23a.

The data for 23a: ${ }^{1} \mathrm{H}$ NMR ${ }^{13}$ (recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ because the compound is unstable in $\left.\mathrm{CDCl}_{3}\right) 7.83(\mathrm{br}, 1, \mathrm{NH}), 7.30(\mathrm{~d}, 2, J=7.3), 7.20(\mathrm{t}, 2, J=7.3), 7.04(\mathrm{t}, 1, J=7.3), 6.30(\mathrm{~d}, 1, J$ $=2.5), 3.60(\mathrm{~s}, 3), 3.58-3.48(\mathrm{~m}, 1), 2.61(\mathrm{t}, 2, J=7.4), 1.69-1.51(\mathrm{~m}, 2), 1.38-1.25(\mathrm{~m}, 2), 0.92$ (d, 3, J=6.1); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) 146.0, 133.9, 129.0 (2 C), 126.9, 125.5, 123.4 (2 C), 117.5, 95.0, 67.8, 58.5, 38.3, 26.3, 24.5, 24.0; IR (neat) 3316, 2934, 1630; HRMS (EI) calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}$ $\left(\mathrm{M}^{+}\right) 259.1572$, found 259.1523; HRMS (EI) calc for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}\left(\mathrm{M}^{+}-2 \mathrm{H}\right) 257.1416$, found 257.1407.

The data for 24a: ${ }^{1} \mathrm{H}$ NMR 7.84 ($\mathrm{d}, 2, J=6.7$), 7.44-7.38 (m, 3), 4.43-4.39 (m, 1, H-7), $3.88(\mathrm{dd}, 1, J=7.0,7.0, H-4), 3.46(\mathrm{~s}, 3), 3.30(\mathrm{dd}, 1, J=17.1,7.0, H-3), 2.77(\mathrm{dd}, 1, J=16.4$, 7.0, H-3), 2.07 (br ddd, 1, $J=11,11,11, ~ H-9 \mathrm{ax}), 1.79$ (ddd, $1, J=11,11,3, H-10 \mathrm{ax}), 1.77-1.69$ (m, 2, H-8eq, H-9eq), 1.51 (br d, 1, $J=11, H-10 e q), 1.36$ (br ddd, $1, J=11,11,11, H-8 \mathrm{ax}), 1.16$ (d, 3, $J=6.1, \mathrm{H}-7 \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR 169.6, 134.8, 130.8, 128.4 (2 C), 127.6 (2 C), 103.8, 87.2, 68.7, 58.2, 39.1, 33.6, 28.7, 22.4, 19.8; IR (neat) 2932, 1615, 1448; HRMS (EI) calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}$ $\left(\mathrm{M}^{+}\right) 259.1572$, found 259.1560. A 1D NOESY experiment with irradiation of the $\mathrm{H}-4$ at $\delta 3.88$ showed NOEs to the protons at $\delta 3.46(\mathrm{OMe}), 3.30(\mathrm{H}-3)$, and $2.77(\mathrm{H}-3)$. A 1D NOESY experiment with irradiation of H-7 at $\delta 4.43-4.39$ showed NOEs to protons at $\delta 2.07$ (H-9ax), δ $1.77-1.69(\mathrm{H}-8 \mathrm{eq})$ and $1.16(\mathrm{H}-7 \mathrm{Me})$.

The data for 25a: ${ }^{1} \mathrm{H}$ NMR $7.86(\mathrm{~d}, 2, J=7.3), 7.46-7.36(\mathrm{~m}, 3), 4.49-4.42(\mathrm{~m}, 1, \mathrm{H}-7)$, 3.77 (dd, $1, J=6.1,4.0, H-4), 3.50(\mathrm{~s}, 3), 3.13(\mathrm{dd}, 1, J=17.1,6.1, \mathrm{H}-3), 3.05(\mathrm{dd}, 1, J=17.1$, 4.0, H-3), 2.12 (br ddd, $1, J=11,11,11, H-9 \mathrm{ax}), 1.77$ (ddd, $1, J=11,11,3, H-10 \mathrm{ax}), 1.76-1.68$ (m, 2, H-8eq, H-9eq), 1.48 (br d, 1, $J=11, H-10 \mathrm{eq}$), 1.40 (br ddd, $1, J=11,11,11, \mathrm{H}-8 \mathrm{ax}$), 1.23 (d, 3, $J=6.7, \mathrm{H}-7 \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR 170.3, 134.8, 130.7, 128.3 (2 C), 127.7 (2 C), 101.7, 85.4, 68.6,
58.8, 39.6, 34.7, 33.3, 22.3, 20.4; IR (neat) 2930, 1616, 1448; HRMS (EI) calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}$ $\left(\mathrm{M}^{+}\right)$259.1572, found 259.1570. A 1D NOESY experiment with irradiation of $\mathrm{H}-4$ at $\delta 3.77$ showed NOEs to the protons at $\delta 3.50(\mathrm{OMe}), 3.13(\mathrm{H}-3), 3.05(\mathrm{H}-3), 1.77(\mathrm{H}-10 \mathrm{ax})$ and 1.48 (H-10eq).

The data for 27a: ${ }^{1} \mathrm{H}$ NMR $7.90(\mathrm{~d}, 2, J=7.4), 7.44-7.36(\mathrm{~m}, 3), 4.11(\mathrm{dd}, 1, J=6.7,3.6$, H-4), 3.83-3.76 (m, 1, H-7), $3.40(\mathrm{~s}, 3), 3.36(\mathrm{dd}, 1, J=17.4,6.7, \mathrm{H}-3), 2.94(\mathrm{dd}, 1, J=17.4,3.6$, H-3), 2.06-2.01 (m, 1), 1.88-1.75 (m, 3), 1.62 (br d, 1, $J=11$), 1.46-1.38 (m, 1), $1.23(\mathrm{~d}, 3, J=$ $6.1) ;{ }^{13} \mathrm{C}$ NMR 171.9, 134.0, 131.1, 128.2 (2 C), 128.1 (2 C), 105.4, 83.8, 69.9, 57.7, 40.1, 32.2, 28.9, 22.3, 20.6; IR (neat) 2930, 1627, 1448; HRMS (EI) calc for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}\left(\mathrm{M}^{+}\right)$259.1572, found 259.1556. A 1D NOESY experiment with irradiation of $\mathrm{H}-4$ at $\delta 4.11$ showed NOEs to the protons at $\delta 3.83-3.76(\mathrm{H}-7), 3.40(\mathrm{OMe}), 3.36(\mathrm{H}-3)$ and $2.94(\mathrm{H}-3)$.

Equilibration of 25a and 27a. A solution of 25a in 0.6 mL of CDCl_{3} (containing $\mathrm{HCl} / \mathrm{DCl}$ from decomposition of CDCl_{3}) equilibrated to a $3: 1$ mixture of $\mathbf{2 5 a}$ and 27a. The percentage of 25a in the mixture was determined as a function of time by ${ }^{1} \mathrm{H}$ NMR spectroscopy: initial, $100 \% ; 7$ days, 90%; 14 days, $80 \% ; 20$ days, 75%. The spectrum did not change at longer times. A solution of 27 a in 0.6 mL of CDCl_{3} (containing $\mathrm{HCl} / \mathrm{DCl}$ from decomposition of CDCl_{3}) equilibrated to a 3:1 mixture of 25a and 27a. The percentage of 25a in the mixture was determined as a function of time by ${ }^{1} \mathrm{H}$ NMR spectroscopy: initial, $<2 \% ; 5$ days, $25 \% ; 10$ days, $60 \%, 15$ days, 75%. The spectrum did not change at longer times.

Equilibration of 24a and 26a. A solution of 24a in 0.6 mL of CDCl_{3} (containing $\mathrm{HCl} / \mathrm{DCl}$ from decomposition of CDCl_{3}) was monitored by ${ }^{1} \mathrm{H}$ NMR for 14 days, at which time a 19:1 mixture of 24a and 26a was present. Partial data for 26a were determined from the mixture: ${ }^{1} \mathrm{H}$ NMR 4.13 (d, 1, J = 4.9, H-4), 3.80-3.74 (m, 1, H-7), 3.36 (s, 3, OMe), 3.20 (d, $1, J=17.4$, H-3), 2.99 (dd, 1, J=17.4, 4.9, H-3).
(4S, 5R, 7R)-rel-4-Methoxy-7-methyl-2-(1-[[2-(trimethylsilyl)ethoxy]methyl]-1H-pyrrol-2-yl)-6-oxa-1-azaspiro[4.5]dec-1-ene (24c), and (4R, $5 R, 7 R$)-rel-, (4R, $5 S, 7 R$)-4-rel-Methoxy-7-methyl-2-(1-[[2-(trimethylsilyl)ethoxy]methyl]-1H-pyrrol-2-yl)-6-oxa-1-
azaspiro[4.5]dec-1-ene (25c, 27c). A solution of 22c (78 mg, $149 \mu \mathrm{~mol})$ in 8 mL of 3:1 $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{THF}$ was treated with aqueous $2 \mathrm{M} \mathrm{HCl}(1.49 \mathrm{~mL}, 2.98 \mu \mathrm{~mol})$ at $25^{\circ} \mathrm{C}$. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 11 h . Saturated $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ was added to bring the pH to 7 . The reaction was extracted with EtOAc and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give 77 mg of a mixture of spiroiminals. Flash chromatography on MeOH -deactivated silica gel (18:1 to 2:1 hexanes/EtOAc) gave 19 mg (34\%) of isomer 24c followed by 19 mg (34\%) of an inseparable 3:2 mixture of isomers 25c and 27c.

The data for 24c: ${ }^{1} \mathrm{H}$ NMR 7.02-7.00 (m, 1), 6.57-6.55 (m, 1), 6.21-6.19 (m, 1), $6.01(\mathrm{~d}, 1$, $J=10.1), 5.88(\mathrm{~d}, 1, J=10.1), 4.29-4.22(\mathrm{~m}, 1, \mathrm{H}-7), 3.77(\mathrm{dd}, 1, J=6.9,6.9, \mathrm{H}-4), 3.55(\mathrm{t}, 2, J$ $=8.2$), 3.43 ($\mathrm{s}, 3$), 3.23 (dd, $1, J=6.9,16.3, \mathrm{H}-3), 2.76(\mathrm{dd}, 1, J=6.9,16.3, \mathrm{H}-3), 1.98$ (br ddd, 1 , $J=11,11,11, H-9 \mathrm{ax}), 1.76$ (ddd, $1, J=11,11,3, H-10 \mathrm{ax}), 1.76-1.64$ (m, 2, H-8eq, H-9eq), 1.49 (br d, 1, $J=11, \mathrm{H}-10 \mathrm{eq}), 1.34$ (br ddd, $1, J=11,11,11, \mathrm{H}-8 \mathrm{ax}), 1.13$ (d, 3, $J=6.1$), 0.88 (t, 2, J $=8.2$), -0.05 (s, 9); ${ }^{13} \mathrm{C}$ NMR 162.6, 127.6, 127.5, 116.6, 108.9, 104.3, 86.2, 76.8, 68.6, 65.5, 58.2, 40.5, 33.6, 29.0, 22.4, 20.0, 18.0, -1.5 (3 C); IR (neat) 1610; HRMS (EI) calc for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Si}\left(\mathrm{M}^{+}\right) 378.2339$, found 378.2325.

The data for 25c and 27c: ${ }^{1} \mathrm{H}$ NMR 7.03-7.01 (m, $0.6 \times 1,25 \mathrm{c}$), 7.01-6.99 (m, 0.4×1, 27c), 6.57-6.55 (m, 1), $6.38(\mathrm{~d}, 0.4 \times 1, J=10.4,27 \mathrm{c}), 6.20-6.17(\mathrm{~m}, 1), 6.16(\mathrm{~d}, 0.6 \times 1, J=10.1$, 25c), $5.74(\mathrm{~d}, 0.6 \times 1, J=10.1,25 c), 5.54(\mathrm{~d}, 0.4 \times 1, J=10.4,27 \mathrm{c}), 4.35-4.29(\mathrm{~m}, 0.6 \times 1,25 \mathrm{c})$, $3.97(\mathrm{dd}, 0.4 \times 1, J=6.0,3.1,27 \mathrm{c}), 3.81-3.75(\mathrm{~m}, 0.4 \times 1,27 \mathrm{c}), 3.67(\mathrm{dd}, 0.6 \times 1, J=6.0,4.8$, $25 \mathrm{c}), 3.56(\mathrm{t}, 0.6 \times 2, J=8.5,25 \mathrm{c}), 3.51(\mathrm{t}, 0.4 \times 2, J=8.5,27 \mathrm{c}), 3.47(\mathrm{~s}, 0.6 \times 3,25 \mathrm{c}), 3.36(\mathrm{~s}$, $0.4 \times 3,27 c), 3.28(\mathrm{dd}, 0.4 \times 1, J=16.8,6.0,27 \mathrm{c}), 3.06(\mathrm{dd}, 0.6 \times 1, J=17.2,6.0,25 \mathrm{c}), 3.01(\mathrm{dd}$, $0.6 \times 1, J=17.2,4.8,25 \mathrm{c}), 2.86(\mathrm{dd}, 0.4 \times 1, J=16.8,3.1,27 \mathrm{c}), 2.06-1.99(\mathrm{~m}, 1), 1.78-1.35(\mathrm{~m}$, 5), $1.21(\mathrm{~d}, 3, J=6.1), 0.90-0.85(\mathrm{~m}, 2),-0.04(\mathrm{~s}, 0.4 \times 9,27 \mathrm{c}),-0.05(\mathrm{~s}, 0.6 \times 9,25 \mathrm{c}) ;{ }^{13} \mathrm{C}$ NMR 164.8 (27c), 162.9 (25c), 127.6 (25c, 27c), 127.4 (25c, 27c), 117.0 (27c), 116.7 (25c), 108.9 (25c,
 58.6 (25c), 57.4 (27c), 41.2 (27c), 40.8 (25c), 34.8 (25c), 33.4 (25c), 32.2 (27c), 29.4 (27c), 22.4 (27c), 22.3 ($\mathbf{2 5 c}$), 20.6 ($\mathbf{2 5 c}$), 20.5 (27c), 18.0 ($\mathbf{2 5 c}$), 17.9 ($\mathbf{2 7 c}$), -1.5 (3 C, 25c, 27c), (one peak
for each compound is obscured by the CDCl_{3} triplet at $\delta 77.0$) ; IR $\left(\mathrm{CDCl}_{3}\right) 1613$; HRMS (EI) calc for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Si}\left(\mathrm{M}^{+}\right) 378.2339$, found 378.2350.
(4S, 5R, 7R)-rel-4-Methoxy-7-methyl-2-(1H-pyrrol-2-yl)-6-oxa-1-azaspiro[4.5]dec-1ene (24b). A mixture of $\mathbf{2 4 c}(19 \mathrm{mg}, 50.2 \mu \mathrm{~mol})$ and molecular sieves ($4 \AA, 100 \mathrm{mg}$) in freshly distilled THF (3 mL) was treated with TBAF (1 M in THF, $1.01 \mathrm{~mL}, 1.01 \mathrm{mmol}$) dropwise at $50^{\circ} \mathrm{C}$. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h . The reaction was cooled, diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, washed with brine $(2 \times 5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 59 mg crude of 24c. Flash chromatography on $\mathrm{MeOH}-$ deactivated silica gel ($4: 1$ hexanes/EtOAc) gave $5.7 \mathrm{mg}(54 \%)$ of isomer $\mathrm{A}(\mathbf{2 4 b}):{ }^{1} \mathrm{H}$ NMR $6.94-$ $6.91(\mathrm{~m}, 1), 6.57-6.54(\mathrm{~m}, 1), 6.25-6.23(\mathrm{~m}, 1), 4.26-4.20(\mathrm{~m}, 1), 3.82(\mathrm{dd}, 1, J=6.7,6.1), 3.43(\mathrm{~s}$, 3), 3.19 (dd, $1, J=16.4,6.7$), 2.73 (dd, $1, J=16.4,6.1$), 1.97 (br ddd, $1, J=11,11,11, H-9 \mathrm{ax}$), 1.81-1.66 (m, 3, H-10ax, H-8eq, H-9eq), 1.54 (br d, 1, $J=11, H-10 \mathrm{eq}$), 1.32 (br ddd, $1, J=11$, $11,11, \mathrm{H}-8 \mathrm{ax}), 1.12(\mathrm{~d}, 3, J=6.1, \mathrm{H}-7 \mathrm{Me})$, the pyrrole NH was not observed; ${ }^{13} \mathrm{C}$ NMR 162.8, 127.7, 122.1, 113.7, 109.8, 103.4, 86.9, 68.5, 58.1, 38.5, 33.4, 28.7, 22.4, 19.7; IR ($\left.\mathrm{CDCl}_{3}\right) 2930$, 1607, 1432, 743; HRMS (EI) calc $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 248.1525$, found 248.1532.
(4R, 5R, 7R)-rel-, (4R, 5S, 7R)-rel-4-Methoxy-7-methyl-2-(1H-pyrrol-2-yl)-6-oxa-1-azaspiro[4.5]dec-1-ene (25b, 27b). A mixture of 25c and 27c (19 mg, $50.2 \mu \mathrm{~mol}$), and molecular sieves $(4 \AA, 100 \mathrm{mg})$ in freshly distilled THF $(3 \mathrm{~mL})$ was treated with TBAF (1 M in THF, $1.01 \mathrm{~mL}, 1.01 \mathrm{mmol}$) dropwise at $50^{\circ} \mathrm{C}$. The resulting mixture was then stirred at $60^{\circ} \mathrm{C}$ for 3 h . The reaction was cooled, diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, washed with brine $(2 \times 5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 65 mg crude of 25b and 27b. Flash chromatography on MeOH -deactivated silica gel (4:1 to 2:1 hexanes/EtOAc) gave $5.9 \mathrm{mg}(56 \%)$ of an inseparable 7:3 mixture of 25b and 27b: ${ }^{1} \mathrm{H}$ NMR 6.94-6.92 (m, 0.7×1, 25b), 6.92-6.90 (m, $0.3 \times 1,27 b), 6.56-6.54(\mathrm{~m}, 1), 6.25-6.21(\mathrm{~m}, 1), 4.31-4.23(\mathrm{~m}, 0.7 \times 1,25 b)$, $4.07(\mathrm{dd}, 0.3 \times 1, J=6.1,3.0,27 b), 3.81-3.73(\mathrm{~m}, 0.3 \times 1,27 b), 3.70(\mathrm{dd}, 0.7 \times 1, J=6.1,4.3$, 25b), 3.48 ($\mathrm{s}, 0.7 \times 3$ 25b), $3.38(\mathrm{~s}, 0.3 \times 3,27 b), 3.24(\mathrm{dd}, 0.3 \times 1, J=17.0,6.1,27 b), 3.03(\mathrm{dd}$, $0.7 \times 1, J=16.4,6.1, \mathbf{2 5 b}), 2.97(\mathrm{dd}, 0.7 \times 1, J=16.4,4.3, \mathbf{2 5 b}), 2.85(\mathrm{dd}, 0.3 \times 1, J=17.0,3.0$,

27b), 2.08-1.98 (m, 1), 1.81-1.32 (m, 5), $1.21(\mathrm{~d}, 0.3 \times 3, J=6.1, \mathbf{2 7 b}), 1.19(\mathrm{~d}, 0.7 \times 3, J=6.1$, 25b), the pyrrole NHs were not observed; ${ }^{13} \mathrm{C}$ NMR 164.4 (27b), 163.1 (25b), (127.8, 127.1), (122.5, 122.2), (114.2, 113.6), (109.9, 109.8), 105.0 (27b), 100.7 (25b), 85.3 (25b), 83.1 (27b), 70.1 (27b), 68.4 (25b), 58.8 (25b), 57.5 (27b), 39.4 (27b), 38.6 (25b), 34.3 (25b), 33.3 (25b), 32.3 (27b), 29.1 (27b), 22.4 (27b), 22.3 (25b), 20.7 (27b), 20.3 (25b); IR (CDCl_{3}) 2933, 1612, 1434, 744; HRMS (EI) calc $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 248.1525$, found 248.1533. A similar reaction on a $6: 5$ mixture of $\mathbf{2 5 c}$ and $\mathbf{2 7}$ c gave a 1.3:1 mixture of $\mathbf{2 5 b}$ and $\mathbf{2 7 b}$.

References and Notes

12. Jain, N.; Kumar, A.; Chauhan, S. M. S. Tetrahedron Lett. 2005, 46, 2599-2602.
13. The spectral data correspond well with those of a related 2,5-disubstituted 3methoxypyrrole. In 2-methyl-3-methoxy-5-phenylpyrrole, the pyrrole NH absorbs at δ 7.8 (br), the pyrrole hydrogen absorbs at $\delta 6.26(\mathrm{~d}, J=3 \mathrm{~Hz})$ and the methoxy group absorbs at δ 3.8. See: Berner, H.; Schulz, G.; Reinshagen, H. Monat. Chem. 1978, 109, 137-145.

Conformations, Chemical Shift Assignments and NOEs in Spiroiminals 24a, 25a, and 27a.

The chemical shifts of all the protons of spiroiminal 24a, which were assigned from the coupling pattern and the COSY spectra, are indicated in the figure below. Molecular mechanics calculations suggest that this compound exists as a single tetrahydropyran chair conformer with an equatorial methyl group and axial nitrogen. NOEs are indicated by red arrows and are only seen within the dihydropyrrole and tetrahydropyran rings as required by the structure.

The chemical shifts of all the protons of spiroiminal 25a, which were assigned from the coupling pattern and the COSY spectra, are indicated in the figure below. Molecular mechanics calculations suggest that this compound exists as a single tetrahydropyran chair conformer with an equatorial methyl group and axial nitrogen. NOEs are indicated by red arrows and seen most significantly between the proton adjacent to the methoxy group at $\delta 3.77$ and the methylene group at $\delta 1.77$ and 1.48.

The chemical shifts of all the protons of spiroiminal 27a that can be assigned from the coupling pattern and the COSY spectra are indicated in the figure below. Molecular mechanics calculations suggest that this compound exists as several conformers, a tetrahydropyran chair conformer with an equatorial methyl group and axial CHOMe group, a tetrahydropyran chair conformer with an axial methyl group and an equatorial nitrogen and a tetrahydropyran boat conformer with a pseudoaxial nitrogen and a pseudoequatorial methyl group. NOEs are indicated by red arrows and seen most significantly between the proton adjacent to the methoxy group at δ 4.11 and the proton adjacent to the methyl group at $\delta 3.79$. These protons are close (2.1-2.5 \AA) in the tetrahydropyran chair conformer of 27a with an equatorial methyl group and an axial CHOMe group and far apart in other conformers of 27a and all conformers of 24a-26a.

Formation of 24-27

Protonation of $\mathbf{2 2}$ on the methoxy group will give $\mathbf{S 4}$, which is unlikely to lose methanol to give $\mathbf{S 5}$. The nitrogen lone pair can't stabilize the cation by resonance because $\mathrm{C}=\mathrm{N}^{+}=\mathrm{C}$ is in a five-membered ring. Protonation of 22 on the nitrogen and ring opening will give imine cation S6, which can cyclize and lose a proton to give imine tetrahydropyran S9. Protonation of the methoxy group and loss of MeOH will give imine cation S 12 , which can cyclize to give 24-27. Equilibration of spiroiminal 25 with 27 and spiroiminal 24 with 26 will also occur through imine cation S12. Alternatively, 22 can tautomerize to enamine S7, which can lose MeOH after protonation to give cation S8. Tetrahydropyran formation will give the unsaturated spiroaminals S10 and S11, which can tautomerize to 24-27.

Synthesis of the Spiroiminal Moiety of Marineosins A and B Cai, Wu, and SniderS20

家

Synthesis of the Spiroiminal Moiety of Marineosins A and B Cai, Wu, and Snider

