Supporting Information

Concise Total Syntheses of Aspalathin and Nothofagin

Akop Yepremyan, Baback Salehani, and Thomas G. Minehan ${ }^{*}$
Department of Chemistry and Biochemistry, California State University-Northridge, Northridge, CA 91330

Table of Contents:

General Methods and Procedures
S2-S4
Characterization data for new compounds
S5-S12
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compounds
S13-S40

General Methods. Distilled water was used in all of the experiments. Organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated using a rotary evaporator at aspirator pressure ($20-30 \mathrm{mmHg}$). Chromatography refers to flash chromatography and was carried out on SiO_{2} (silica gel $60,230-400$ mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured in CDCl_{3} at 400 MHz and 100 MHz , respectively, using $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. Chemical shifts are reported in ppm downfield (δ) from $\mathrm{Me}_{4} \mathrm{Si}$.

Representative procedure for the preparation of 1,2 -di- O-acyl-3,4,6-tri- O-benzyl glucose, compounds 4a-4d.

3,4,6-tri- O-acetyl-D-glucal ($3 \mathrm{~g}, 11 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL}$) and KCN ($36 \mathrm{mg}, 0.5 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added. The reaction was stirred for 2 hours, and another 36 mg KCN was added. After an additional two hours, TLC indicated that the reaction was complete, and the mixture was concentrated in vacuo. To the crude oil was added anhydrous DMF (11 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Sodium hydride (1.76 g , 60% dispersion in mineral oil, 44 mmol) was added carefully, along with a catalytic amount ($\sim 20 \mathrm{mg}$) of imidazole; the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes. Then benzyl bromide ($4.3 \mathrm{~mL}, 36.3 \mathrm{mmol}$) was added dropwise, followed by tetra- n butylammonium iodide ($405 \mathrm{mg}, 1.1 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and the mixture was allowed to warm to room temperature overnight. The mixture was quenched dropwise by the careful addition of saturated NaHCO_{3} solution (10 mL) and ether (20 mL). The phases were separated and the aqueous phase was back-extracted with ether (2 x 10 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of the residue by flash chromatography ($\mathrm{SiO}_{2}, 10: 1$ Hexanes:EtOAc) afforded 3,4,6-tri- O-benzyl-D-glucal ($3.88 \mathrm{~g}, 85 \%$)

To a solution of 3,4,6-tri- O-benzyl-D-glucal ($3.88 \mathrm{~g}, 9.35 \mathrm{mmol}$) in 4:1 acetone: $\mathrm{H}_{2} \mathrm{O}(80$ mL) was added in small portions a mixture of Oxone ($16.6 \mathrm{~g}, 112 \mathrm{mmol}$) and NaHCO_{3} $(4.58 \mathrm{~g}, 54 \mathrm{mmol})$ and the flask was stoppered and stirred at room temperature. After an hour, TLC (4:1 hexanes:ethyl acetate) indicated complete disappearance of starting material, and the acetone was evaporated. The remaining solid mass was partitioned between water (100 mL) and EtOAc (100 mL). The phases were separated and the aqueous phase was back-extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

The crude diol was dissolved in pyridine $(100 \mathrm{~mL})$ and the appropriate acyl chloride (1030 equivalents) was added, along with a catalytic amount ($\sim 100 \mathrm{mg}$) of DMAP. The reaction was stirred at $60{ }^{\circ} \mathrm{C}$ overnight, at which time TLC indicated complete conversion to the diester. The solution was concentrated in vacuo and the residue was partitioned between $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$. The organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 100 \mathrm{~mL})$ and then with saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of the residue by flash chromatography $\left(\mathrm{SiO}_{2}, 85: 15\right.$ Hexanes: EtOAc) afforded 1,2-di- O-acyl-3,4,6-tri- O-benzyl-D-glucal 4a-4d (70-90\% from 3,4,6-tri- O -benzyl-D-glucal).

Representative procedure for C-glycosidation: Synthesis of glycosides 5a-5d.

To a stirred solution of 1,2-di- O-acyl-3,4,6-tri- O-benzyl glucose 4 ($500 \mathrm{mg}, \sim 0.8 \mathrm{mmol}$) in 2: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: THF (2.4 mL) was added tribenzylphloroglucinol 2a ${ }^{9 \mathrm{a}}(1.26 \mathrm{~g}, 3.2 \mathrm{mmol}$, 4.0 equiv). The homogeneous solution was cooled to $0^{\circ} \mathrm{C}$ and TMSOTf ($5-10$ equiv) was added. The reaction was stirred at $0^{\circ} \mathrm{C}$ for one hour and then was carefully diluted with $1: 1$ ether/saturated NaHCO_{3} solution (15 mL). The phases were separated and the aqueous phase was back-extracted with ether ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of the residue by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ afforded glycosides $\mathbf{5 a - 5 d}$ in the yields indicated in table 1.

Representative procedure for formylation of 5.

To a stirred solution of $\mathbf{5 a}(450 \mathrm{mg}, 0.49 \mathrm{mmol})$ in DMF (3 mL) was added dropwise $\mathrm{POCl}_{3}(277 \mu \mathrm{~L}, 2.94 \mathrm{mmol}, 6$ equiv) and the reaction was allowed to stir under an atmosphere of nitrogen overnight. At this time an additional portion $(139 \mu \mathrm{~L}, 1.47 \mathrm{mmol}$, 3 equiv) of POCl_{3} was added if TLC indicated remaining starting material. After stirring an addition four hours, the reaction mixture was carefully quenched by the addition of $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{~mL})$. The phases were separated and the aqueous phase was back-extracted with ether ($2 \times 50 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of the residue by flash chromatography ($\mathrm{SiO}_{2}, 85: 15$ Hexanes:EtOAc) afforded aldehyde 7b.

Representative procedure for the synthesis of alkynes $\mathbf{1 0 a}, \mathbf{b}$ from aldehydes $\mathbf{9 a}, \mathrm{b}$.

To a $0^{\circ} \mathrm{C}$ solution of aldehyde $9 \mathbf{b}(1 \mathrm{~g}, 3.14 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.32 \mathrm{~g}, 9.43 \mathrm{mmol}, 3$ equiv) in $\mathrm{CH}_{3} \mathrm{OH}(15 \mathrm{~mL})$ was added dimethyl-1-diazo-2-oxopropylphosphonate ${ }^{23}$ (1.43 $\mathrm{g}, 7.1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ dropwise. The reaction was allowed to warm to room temperature and was stirred overnight. The mixture was diluted with ether (50 mL) and quenched with water (50 mL); the volatiles were then removed in vacuo and the mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of the residue by flash chromatography ($\mathrm{SiO}_{2}, 97: 3$ Hexanes:Ether) afforded alkyne $\mathbf{1 0 b}$.

Representative procedure for alkyne addition to $\mathbf{7 b}$. Synthesis of alcohols 12a,b.

Alkyne 10a ($135 \mathrm{mg}, 0.63 \mathrm{mmol}, 3$ equiv) was dissolved in THF (1 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. A 2 M solution of $n \mathrm{BuLi}(0.29 \mathrm{~mL}, 0.58 \mathrm{mmol})$ was added dropwise and the solution was allowed to stir for 10 minutes at $-78{ }^{\circ} \mathrm{C}$. Then a solution of aldehyde $\mathbf{7 b}$ ($200 \mathrm{mg}, 0.21 \mathrm{mmol}$) was added dropwise, and the reaction was allowed to stir for an additional 10 minutes. At this time, TLC indicated complete conversion of starting material. The mixture was quenched with saturated NaHCO_{3} solution (5 mL) and was allowed to warm to room temperature. The reaction was diluted with EtOAc (10 mL), and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The phases were separated and the aqueous phase was back-extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered
and concentrated in vacuo. Purification of the residue by flash chromatography (SiO_{2}, 80:20 Hexanes:EtOAc) afforded alcohols 11a,b.

To a solution of alcohols $\mathbf{1 1 a}, \mathbf{b}(230 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added dropwise at room temperature a 3 M solution of $\mathrm{CH}_{3} \mathrm{MgBr}(0.4 \mathrm{~mL}, 1.2 \mathrm{mmol}, 6$ equiv). After 10 minutes, TLC indicated $\sim 60 \%$ conversion of starting material, and an additional 0.4 mL of $3 \mathrm{M} \mathrm{CH}_{3} \mathrm{MgBr}$ solution was added. The reaction was then cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by dropwise addition of saturated NaHCO_{3} solution (3 mL). The mixture was diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$; the phases were separated and the aqueous phase was back-extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification of the residue by flash chromatography (SiO_{2}, 75:25 Hexanes:EtOAc) afforded alcohols 12a,b

Representative procedure for benzylic oxidation. Synthesis of ynone 13.

To a solution of alcohols $\mathbf{1 2 a}, \mathbf{b}(195 \mathrm{mg}, 0.183 \mathrm{mmol})$ in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: hexanes (2 mL) was added MnO_{2} ($200 \mathrm{mg}, 2.29 \mathrm{mmol}, 12.5$ equiv). After 10 minutes at room termperature, TLC indicated complete conversion of the starting material. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ and filtered through a pad of celite; the filter cake was washed with copious amounts of $\mathrm{Et}_{2} \mathrm{O}$, and the filtrate was concentrated in vacuo. Purification of the residue by flash chromatography ($\mathrm{SiO}_{2}, 75: 25$ Hexanes:EtOAc) afforded ynone 13.

Representative procedure for the hydrogenolysis of ynones 13 and 16. Synthesis of Aspalathin.

To a solution of ynone $16(89 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $1: 1 \mathrm{EtOAc}: \mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{~mL})$ was added 10% palladium on carbon $(\sim 50 \mathrm{mg})$ and the mixture was stirred under an atmosphere of hydrogen (1 atm , hydrogen balloon). After 2 hours, TLC indicated complete conversion of the starting material. The mixture was diluted with $10 \% \mathrm{CH}_{3} \mathrm{OH} / \mathrm{EtOAc}(20 \mathrm{~mL})$ and filtered through a pad of celite; the filter cake was washed with copious amounts of 10% $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{EtOAc}$, and the filtrate was concentrated in vacuo to afford synthetic aspalathin.

4a
Purification: $\mathrm{SiO}_{2}(15 \% \mathrm{EtOAc}$ in hexanes) affording $\mathbf{4 a}(90 \%)$.

See spectra and page S-13 and S-14

major diastereomer (β):
${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
7.43-7.25 (m, 15H); 5.79 (d, J=8.0 Hz, 1H); 5.38 (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$); 4.92 (d,
$J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.88(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.83(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.66$ (t, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}) ; 4.63$ (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.95-3.72$ (m, 5H); 1.32 (s, 9H); 1.26 (s, 9H).
${ }^{13}$ C NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
176.9; 176.6; 138.1; 128.5; 128.4; 128.3; 128.2; 128.1; 128.0; 127.9; 127.8; 127.7; 127.5; 127.4; 92.4; 83.2; 75.9; 75.0; 74.9; 73.5; 72.0; 68.0; 38.8; 27.3; 26.9.

HRMS: (ESI) Calculated for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{NaO}_{8} 641.3091$, found $\mathrm{m} / \mathrm{z}=641.3124(\mathrm{M}+\mathrm{Na})^{+}$

Purification: $\mathrm{SiO}_{2}(15 \%$ EtOAc in hexanes) affording $\mathbf{4 b}(87 \%)$ as a $3: 1$ mixture of $\beta: \alpha$ anomers.

See spectra and page S-15 and S-16

${ }^{1}$ H NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
7.45-7.10 (m, 15H); 5.76 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.29$ (t, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.89-4.55$ (m, 6H); 3.93-3.67 (m, 5H); 3.57 (d, J=4.0 Hz, 1H); 2.63 (s, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$; $2.50(\mathrm{~s}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ; 1.19$ (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$175.4 ; 175.4 ; 138.1 ; 137.9 ; 130.5 ; 128.6 ; 128.5 ; 128.4 ; 128.3 ; 128.1 ; 128.0$;
$127.9 ; 127.8 ; 127.7 ; 127.6 ; 92.2 ; 82.9 ; 75.8 ; 75.0 ; 73.5 ; 71.9 ; 34.0 ; 33.9 ; 19.0$;
18.8; 18.7; 18.4; 18.3.

HRMS: (ESI) Calculated for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{NO}_{8} 608.3218$, found $\mathrm{m} / \mathrm{z}=608.3227\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$

Purification: $\mathrm{SiO}_{2}(15 \%$ EtOAc in hexanes) affording $\mathbf{4 c}(70 \%)$ as a $3: 1$ mixture of $\beta: \alpha$ anomers.

See spectra and page S-17 and S-18

${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
7.27-7.06 (m, 15H); $5.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.11(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.74-4.41$
(m, 6H); 3.77-3.52 (m, 5H); 2.52 (tt, $J=3.6,11.2 \mathrm{~Hz}, 2 \mathrm{H}) ; 1.90-1.11$ (m, 20H).
${ }^{13}$ C NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
182.6; 174.4; 174.3; 173.7; 138.3; 138.0; 137.9; 137.8; 128.4; 128.3; 128.2;
128.1; 127.9; 127.8; 127.7; 127.6; 92.1; 82.8; 76.8; 75.0; 73.4; 43.2; 42.9;
29.1; 28.8; 28.7; 28.6; 28.4; 25.7; 25.6; 25.4; 25.3; 25.2.

HRMS: (ESI) Calculated for $\mathrm{C}_{41} \mathrm{H}_{50} \mathrm{NaO}_{8} 693.3398$, found $\mathrm{m} / \mathrm{z}=693.3406(\mathrm{M}+\mathrm{Na})^{+}$

5a

Purification: SiO_{2} (18\% EtOAc in hexanes) affording 5a (55\%).
See spectra pages S19 and S20
${ }^{1}$ H NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
7.53-7.10 (m, 30H); $6.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.15(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.98$ (t,
$J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.07-4.42(\mathrm{~m}, 12 \mathrm{H}) ; 3.72-3.65(\mathrm{~m}, 5 \mathrm{H}) ; 0.85(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
176.7; 160.6; 158.7; 138.7; 138.5; 138.4; 137.4; 137.0; 136.8; 128.6; 128.5; $128.4 ; 128.3 ; 128.2 ; 128.0 ; 127.9 ; 127.8 ; 127.6 ; 127.4 ; 127.3 ; 127.2 ; 106.5$; 104.4; 78.0; 76.9; 76.7; 74.9; 73.4; 72.2; 70.6; 70.0; 38.6; 26.9

HRMS: (ESI) Calculated for $\mathrm{C}_{59} \mathrm{H}_{60} \mathrm{NaO}_{9} 935.4135$, found $\mathrm{m} / \mathrm{z}=935.4867(\mathrm{M}+\mathrm{Na})^{+}$ $\overline{[\alpha]^{25} \underline{\mathrm{D}}:} \quad-8.9^{\circ}\left(c 0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

3a
Purification: $\mathrm{SiO}_{2}(10 \%$ EtOAc in hexanes) affording 3a (89\%) as a 3:1 ($\beta: \alpha)$ mixture of diastereomers.

See spectra pages S21 and S22

Major diastereomer:
${ }^{1}$ H NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
7.69-7.12 (m, 35H); $6.45(\mathrm{~s}, 2 \mathrm{H}) ; 5.28-5.02(\mathrm{~m}, 9 \mathrm{H}) ; 4.83-4.66(\mathrm{~m}, 5 \mathrm{H}) ; 4.62$
($\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$); $4.39(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.99-3.90(\mathrm{~m}, 4 \mathrm{H}) ; 3.77(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
160.5; 160.2; 160.1; 159.4; 139.3; 139.0; 138.7; 138.6; 137.4; 137.3; 136.9;
129.3; 128.9; 128.8; 128.7; 128.5; 128.4; 128.2; 128.1; 128.0; 127.9; 127.8;
127.7; 127.6; 127.4; 127.3; 127.2; 109.5; 109.4; 94.9; 94.3; 87.8; 79.9; 79.6;
78.5; 76.8; 75.5; 75.2; 74.2; 73.6; 73.5; 71.4; 70.8; 70.2; 69.6.

HRMS: (ESI) Calculated for $\mathrm{C}_{61} \mathrm{H}_{58} \mathrm{NaO}_{8} 941.4029$, found $\mathrm{m} / \mathrm{z}=941.5475(\mathrm{M}+\mathrm{Na})^{+}$ $[\alpha]^{25} \mathrm{D}$: $\quad-19.8^{\circ}\left(c 0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
Previous Preparation: Schmidt, R. R.; Effenberger, G. Carbohydr. Res. 1987, 171, 59.

5b
Purification: SiO_{2} (18\% EtOAc in hexanes) affording 5b (65\%)
See spectra pages S23 and S24
${ }^{1}$ H NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
7.65-7.21 (m, 30H); $6.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.09$ (t, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.19-4.55$ (m, 7H); 4.15 (d, J=6.8 Hz, 1H); 3.87-3.63 (m, 4H); 2.31 (st, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 0.96$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ; 0.86$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$175.5 ; 160.5 ; 158.7 ; 138.8 ; 138.5 ; 137.4 ; 137.1 ; 136.8 ; 128.6 ; 128.5 ; 128.4 ;$
128.3; 128.1; 128.0; 127.9; 127.7; 127.6; 127.5; 127.4; 127.3; 127.2; 127.1;
106.6; 94.0; 93.0; 85.4; 79.7; 78.0; 75.0; 74.3; 73.4; 72.2; 71.3; 70.7; 70.6;
70.0; 34.1; 18.9; 18.5.

HRMS: (ESI) Calculated for $\mathrm{C}_{58} \mathrm{H}_{58} \mathrm{NaO}_{9} 921.3973$, found $\mathrm{m} / \mathrm{z}=921.3961(\mathrm{M}+\mathrm{Na})^{+}$ $[\alpha]^{25} \underline{\mathrm{D}}=\quad+13.4^{\circ}\left(c 0.004, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

Purification: SiO_{2} (13\% EtOAc in hexanes) affording 5c (30\%)

See spectra pages S25 and S26

${ }^{1}$ H NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
7.61-7.21 (m, 30H); $6.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.23$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.04$ (t, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.17$ (s, 1H); 5.06-4.51 (m, 12H); 3.84-3.59 (m, 5H); 2.00 (td, $J=7.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.62-1.09(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$174.4 ; 160.5 ; 158.7 ; 138.8 ; 138.5 ; 138.4 ; 137.4 ; 137.1 ; 136.8 ; 128.6 ; 128.4$; 128.3; 128.2; 128.1; 128.0; 127.9; 127.8; 127.6; 127.5; 127.4; 127.3; 127.2; 127.1; 106.6; 79.6; 78.0; 76.9; 76.7; 76.6; 74.3; 71.1; 70.7; 43.3; 28.8; 28.4; 25.7; 25.4; 25.2

HRMS: (ESI) Calculated for $\mathrm{C}_{61} \mathrm{H}_{62} \mathrm{NaO}_{9} 961.4268$, found $\mathrm{m} / \mathrm{z}=961.4292(\mathrm{M}+\mathrm{Na})^{+}$ $[\alpha]^{25} \mathrm{D}: \quad-4.25^{\circ}\left(c 0.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

5d
Purification: SiO_{2} (15\% EtOAc in hexanes) affording 5d (43\%)
See spectra pages S27 and S28
${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
7.62-7.21 (m, 30H); $6.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.01(\mathrm{t}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.17-4.54(\mathrm{~m}, 13 \mathrm{H}) ; 3.84-3.73(\mathrm{~m}, 4 \mathrm{H}) ; 3.62(\mathrm{dt}, J=8.4,2.0$ Hz, 1H); 1.73 (s, 3H).
${ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$169.4 ; 160.5 ; 158.7 ; 138.8 ; 138.5 ; 138.4 ; 138.3 ; 137.4 ; 137.2 ; 136.7 ; 129.4$;
$129.0 ; 128.6 ; 128.5 ; 128.4 ; 128.3 ; 128.2 ; 128.1 ; 128.0 ; 127.9 ; 127.8 ; 127.7$;
127.6; 127.4; 127.3; 127.0; 120.3; 107.4; 106.8; 85.2; 79.6; 78.1; 76.7; 75.0;
74.3; 73.4; 72.2; 71.8; 70.6; 70.0; 20.7.

HRMS: (ESI) Calculated for $\mathrm{C}_{56} \mathrm{H}_{54} \mathrm{NaO}_{9} 893.3659$, found $\mathrm{m} / \mathrm{z}=893.3656(\mathrm{M}+\mathrm{Na})^{+}$ $[\alpha]^{25} \underline{\mathrm{D}}: \quad-8.3\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

Purification: $\mathrm{SiO}_{2}(20 \% \mathrm{EtOAc}$ in hexanes) affording 7a (85\%).
See spectra on pages S-29 and \boldsymbol{S}-30
${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
10.65 (s, 1H); 7.78-7.32 (m, 30H); $6.60(\mathrm{~s}, 1 \mathrm{H}) ; 6.19$ (t, J=9.6 Hz, 1H); 5.42-
$4.65(\mathrm{~m}, 12 \mathrm{H}) ; 3.93-3.53(\mathrm{~m}, 5 \mathrm{H}) ; 1.11(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
187.3; 177.1; 165.2; 163.6; 162.0; 138.7; 138.4; 138.3; 136.9; 136.2; 135.9;
129.3; 129.1; 128.9; 128.7; 128.6; 128.5; 128.4; 128.2;128.1; 128.0; 127.8;
127.6; 127.5; 127.4; 127.3; 127.2; 127.1; 126.9; 112.6; 112.2; 94.8; 85.4;
$79.7 ; 78.8 ; 76.9 ; 75.1 ; 74.6 ; 73.5 ; 72.8 ; 71.1 ; 71.0 ; 70.9 ; 38.7 ; 27.1$.
HRMS: (ESI) Calculated for $\mathrm{C}_{60} \mathrm{H}_{60} \mathrm{NaO}_{10} 963.4079$, found $\mathrm{m} / \mathrm{z}=963.4077(\mathrm{M}+\mathrm{Na})^{+}$ $[\alpha]^{25} \mathrm{D}: \quad-8.6^{\circ}\left(c 0.23, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

Purification: SiO_{2} (5\% EtOAc in hexanes) affording 10b (68\%)
See spectra on pages S-31 and S - 32
${ }^{1}$ H NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
7.47-7.26 (m, 11H); 7.09 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.88$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.18$ (s,

2H); 5.15 (s, 2H); 2.99 ($\mathrm{s}, 1 \mathrm{H}$)
${ }^{13}$ C NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
149.8; 148.5; 136.9; 128.5; 127.9; 127.3; 127.2; 126.1; 118.3; 114.8; 114.5;
83.6; 75.8; 71.3; 71.0

HRMS: (ESI) Calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{2} 315.1379$, found $\mathrm{m} / \mathrm{z}=315.1382(\mathrm{M}+\mathrm{H})^{+}$
m.p.: $\quad 83.7^{\circ} \mathrm{C}-87.3^{\circ} \mathrm{C}$

13
Purification: SiO_{2} (20\% EtOAc in hexanes) affording 13 (75\%)
See spectra on pages S-33 and S-34
${ }^{1}$ H NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)
7.57-7.25 (m, 37H); 6.99 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ; 6.52(\mathrm{~s}, 1 \mathrm{H}) ; 5.49$ (d, $J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}) ; 5.23-4.56(\mathrm{~m}, 14 \mathrm{H}) ; 3.90-3.57(\mathrm{~m}, 6 \mathrm{H}) ; 1.96(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
178.0; 161.6; 160.6; 158.7; 139.1; 138.9; 138.3; 136.5; 136.3; 135.1; 128.7; 128.6; 128.5; 128.4; 128.3; 128.2; 128.1; 128.0; 127.9; 127.8; 127.7; 127.6; $127.5 ; 127.4 ; 127.3 ; 127.2 ; 127.1 ; 127.0 ; 118.5 ; 115.1 ; 113.2 ; 112.7 ; 91.9$; 90.7; 87.6; 76.9; 76.8; 75.0; 74.9; 70.8; 70.1.

HRMS: (ESI) Calculated for $\mathrm{C}_{74} \mathrm{H}_{67} \mathrm{O}_{11} 1131.4678$, found $\mathrm{m} / \mathrm{z}=1131.5032(\mathrm{M}-\mathrm{H})^{+}$ $\overline{[\alpha]^{25} \underline{\mathrm{D}}=} \quad-20.9^{\circ}\left(c 0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

16
Purification: SiO_{2} (20\% EtOAc in hexanes) affording 13 (66\%)
See spectra on pages S - 35 and S-36
${ }^{1}$ H NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)
$7.51-7.20(\mathrm{~m}, 41 \mathrm{H}) ; 7.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.44$ (s, $1 \mathrm{H}) ; 5.38$ (d, J=10.0 Hz, 1H); 5.21-4.47 (m, 16H); 3.81-3.50 (m, 6H); 1.83 (s, 1H)
${ }^{13}$ C NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$177.4 ; 161.4 ; 158.7 ; 151.2 ; 148.5 ; 138.8 ; 138.3 ; 138.2 ; 136.9 ; 136.7 ; 136.6$;
$136.4 ; 136.3 ; 129.6 ; 129.3 ; 129.2 ; 128.9 ; 128.7 ; 128.6 ; 128.5 ; 128.4 ; 128.1$;
128.0; 127.9; 127.8; 127.7; 127.6; 127.5; 127.3; 127.2; 127.0; 126.9; 126.8;
126.5; 118.7; 118.4; 114.9; 114.1; 113.1; 113.0; 91.8; 90.3; 87.5; 79.2; 76.6;
76.5; 76.4; 75.0; 74.9; 73.5; 71.1; 70.9; 70.8; 70.7.

HRMS: (ESI) Calculated for $\mathrm{C}_{77} \mathrm{H}_{68} \mathrm{O}_{11} \mathrm{Na} 1191.4654$, found $\mathrm{m} / \mathrm{z}=1191.4636$ $(\mathrm{M}+\mathrm{Na})^{+}$
$[\alpha]^{25} \underline{D} \dot{\vdots} \quad+6.12^{\circ}\left(c 0.005, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$

synthetic nothofagin
Purification: filtration through celite and concentration in vacuo gave synthetic nothofagin (B) (89\%)

See spectra on pages S-37 and S-38

${ }^{1}$ H NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
7.01 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ; 6.65$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ; 5.93$ (s, 1H); 4.52 (d, $J=10.0$ Hz, 1H); 3.88 (t, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.64$ (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.42$ (d, $J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}) ; 3.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ; 3.16$ (m, 2H); 2.77 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
204.8; 165.3; 164.2; 162.3; 155.8; 132.0; 129.1; 115.4; 104.4; 104.1; 95.3;
95.0; 94.3; 74.8; 73.3; 71.2; 70.3; 61.6; 46.0; 30.0.

HRMS: (ESI) Calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{10}$ 437.1442, found $\mathrm{m} / \mathrm{z}=437.1444(\mathrm{M}+\mathrm{H})^{+}$
$[\alpha]^{25}{ }_{\mathrm{D}}: \quad+36.6^{\circ}(c 0.01, \mathrm{EtOH})$
m.p. $\quad 92-110^{\circ} \mathrm{C}($ decomp $)\left(\right.$ lit. $\left.70-100^{\circ} \mathrm{C}\right)$

UV: $\quad \lambda_{\max }=288(\varepsilon=14,000)$ (lit. $\left.\lambda_{\max }=287.5\right)$
IR: $\quad 3341 \mathrm{~cm}^{-1}, 2925,1627,1515,1541,1367,1245,1171,1080,1018,911,828$.

Purification: filtration through celite and concentration in vacuo gave synthetic aspalathin A (77\%)
See spectra on pages S-39 and S-40
${ }^{1}$ H NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)
6.63 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.61(\mathrm{~s}, 1 \mathrm{H}) ; 6.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.93(\mathrm{~s}, 1 \mathrm{H}) ;$
4.54 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.87$ (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.66$ (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.42$
(d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ; 3.14(\mathrm{~m}, 3 \mathrm{H}) 2.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
204.9; 165.5; 164.4; 162.2; 145.5; 143.8; 133.0; 119.3; 116.2; 115.9; 104.4;
104.1; 95.0; 81.7; 79.4; 74.1; 70.8; 70.5; 61.7; 45.8; 30.2

HRMS: (ESI) Calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{11} 453.1391$, found $\mathrm{m} / \mathrm{z}=453.1383(\mathrm{M}+\mathrm{H})^{+}$
$[\alpha]^{25} \mathrm{D}$: $\quad+33.3^{\circ}(c 0.001, \mathrm{EtOH})\left(\right.$ lit. $\left.+34.7^{\circ}(\mathrm{EtOH})\right)$
m.p. $\quad 131-165^{\circ} \mathrm{C}$ (lit. $140-160^{\circ} \mathrm{C}$)

IR: $\quad 3368 \mathrm{~cm}^{-1}, 2925,1626,1527,1454,1372,1283,1115,1080,1041,591$.
UV: $\quad \lambda_{\max }=289(\varepsilon=10,000)\left(\right.$ lit. $\left.\lambda_{\max }=287.5\right)$
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

4a

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

4a

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

(as a 3:1 mixture of $\beta: \alpha$ anomers)

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

(as a 3:1 mixture of $\beta: \alpha$ anomers)

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

5a

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

5d

(10:1 mixture of $\beta: \alpha$ anomers)

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

DMSO-d6, 100MHz

synthetic aspalathin

