Supporting Information

Heterogeneous Allylsilylation of Aromatic and Aliphatic Alkenes Catalyzed by Proton-Exchanged Montmorillonite

Ken Motokura, Shigekazu Matsunaga, Akimitsu Miyaji, Yasuharu Sakamoto, and Toshihide Baba^{*}

Interdisciplinary Graduate School of Science and Engineering, Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan

Characterization Procedures	S 2
Materials	S 2
Proton Affinity Calculation	S 3
Typical Procedure for Allylsilylation	S 5
Product Characterization Data	S 6
Allylsilylation Using Brönsted Acids	S20
Solid-State NMR Spectra	S21
References	S23

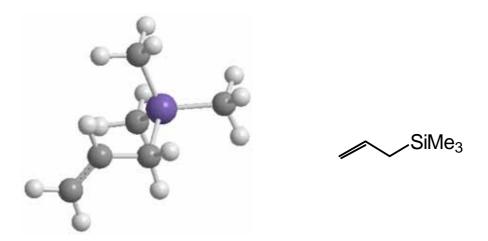
Characterization Procedures:

Proton nuclear magnetic resonance (¹H NMR), carbon nuclear magnetic resonance (¹³C NMR), were recorded in CDCl₃ with a JNM-AL300 spectrometer operating at 300 and 75 MHz, respectively. Solid-state ¹³C and ²⁹Si MAS NMR spectra were recorded on a ECA400 spectrometer operating at 99.5 and 78.7 MHz, rotor spin rate of 10 and 12 kHz, respectively. The delay time was 0.2 s. ¹³C and ²⁹ Si MAS NMR spectra with cross polarization (CP) were acquired at a contact time of 0.5 and 1.0 ms, respectively. External standard was used as an external standard for the calibration of chemical shifts. The accumulation number was fixed at about 200000 (¹³C) and 400000 (²⁹Si). Analytical GLC was measured using a Shimadzu GC-7A equipped with a Silicon SE-30 column and a flame ionization detector. Shimazu QP5000 was used as GC-MS equipped with DB-1 column. FT-IR spectra were recorded on a FT/IR 6100 with TGS detector. The products were confirmed by comparison with reported NMR, MS, and IR data.

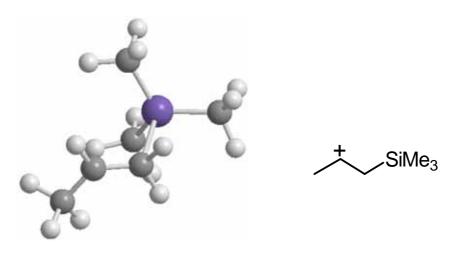
Materials:

Na⁺-montmorillonite (Na_{0.66}(OH)₄Si₈(Al_{3.34}Mg_{0.66}Fe_{0.19})O₂₀; Kunipia F) was obtained from Kunimine Industry. Proton-exchanged montmorillonite was prepared from Na⁺-montmorillonite using reported ion exchange procedure with aqueous hydrogen chloride.[1] MontK10 was purchased from Aldrich. H⁺-Beta (SiO₂/Al₂O₃=25), H⁺-Mordenite (SiO₂/Al₂O₃=18.0) was purchased from Nikki Chemical Co.. H⁺-ZSM-5 (SiO₂/Al₂O₃=23.8) was obtained from Toso Co.. These zeolites were treated at 500 °C under air before use. Amberlyst was purchased from Organo Co. as Amberlyst® 15DRY. Nafion was purchased from Aldrich Inc. as Nafion® NR50.

Unless otherwise noted, materials were purchased from Wako Pure Chemicals,


Tokyo Kasei Co., Kanto kagaku Co. and Aldrich Inc. 1,3-Di(trimethylsilyl)propan-2-ol were purchased from NARD Institute. Allyltriethylsilane was synthesized using reported procedure.[2]

Proton Affinity Calculation:


Proton affinity (PA) was theoretically calculated by reported AM1 method.[3] The PA of a compound (B) is defined as minus the heat of reaction for its combination with a proton (H^+).

B + H⁺ ----> HB⁺ PA(B) = Δ H_f(H⁺) + Δ H_f(B) - Δ H_f(HB⁺) where Δ H_f is heat of formation.

Experimental value of heat of formation of H⁺ (Δ H_f(H⁺) = 367.2 kcal/mol) was used.[3]

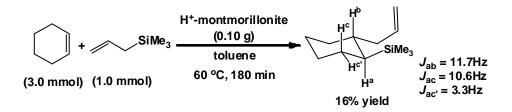
Figure 1S. Optimized structure of allyltrimethylsilane with AM1. C: glay, H: white, Si: purple. Calculated heat of formation was -34.89 kcal/mol.

Figure 2S. Optimized structure of protonated allyltrimethylsilane with AM1. C: glay, H: white, Si: purple. Calculated heat of formation was 127.03 kcal/mol.

PA(Allyltrimethylsilane)

 $=\Delta H_{f}(H^{+}) + \Delta H_{f}(Allyltrimethylsilane) - \Delta H_{f}(Protonated Allyltrimethylsilane)$

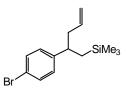
= 367.2 + (-34.89) - 127.03


= 205.3 kcal/mol

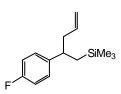
This PA(Allyltrimethylsilane) value is ~4 kcal/mol higher than that for the reported PA(Styrene) (201.4 kcal/mol)[4].

Typical Procedure for Allylsilylation:

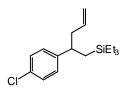
Typical procedure for allylsilylation of *p*-chlorostyrene (**1b**) with allyltrimethylsilane (**2a**) is as follows. Into a glass reactor were placed H^+ -montmorillonite (0.10 g), toluene (1.0 mL), **1b** (1.0 mmol), **2a** (3.0 mmol) in a dry Ar atmosphere using Schlenk technique. The resulting mixture was vigorously stirred at 100 °C. After 180 min, the catalyst was separated by filtration and GC analysis of the filtrate showed a 95 % yield of (2-(4-chlorophenyl)pent-4-enyl)trimethylsilane (**3ba**). The filtrate was evaporated and the crude product was purified by column chromatography using silica (*n*-hexane elute) to afford a pure product. The product was identified by ¹H and ¹³C NMR and Mass data.


Allylsilylation of cyclohexene with allyltrimethylsilane:

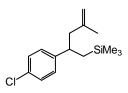
Product Characterization Data:


4-(4-chlorophenyl)-5-trimethylsilyl-1-pentene (3ba):

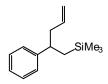
¹H NMR (300 MHz, CDCl₃): δ 0.03 (s, 9H), 1.03-1.20 (m, 2H), 2.49 (t, *J* = 7.0Hz, 2H), 2.88-2.93 (m, 1H), 5.08-5.13 (m, 2H), 5.73-5.82 (m, 1H), 7.27 (d, *J* = 8.3Hz, 2H), 7.42 (d, *J* = 8.4Hz, 2H); ¹³C {¹H} NMR (75.45 MHz. CDCl₃): -1.07, 24.2, 41.7, 45.2, 116.2, 128.3, 128.9, 131.5, 136.8, 145.3; MS (EI) *m*/*z* (%): 252(M⁺), 211, 195, 181, 169, 161, 138, 129, 115, 99, 73(100), 59, 45; IR (KBr): v_{max} 3079, 2953, 2925, 2855, 1638, 1492, 1412, 1249, 1095, 1014, 914, 837, 692, 530.


4-(4-bromophenyl)-5-trimethylsilyl-1-pentene (3ca):

¹H NMR (300 MHz, CDCl₃): δ -0.16 (s, 9H), 0.86-1.04 (m, 2H), 2.32 (t, J = 6.8Hz, 2H), 2.68-2.78 (m, 1H), 4.91-4.98 (m, 2H), 5.51-5.67 (m, 1H), 7.06 (d, J = 8.4Hz, 2H), 7.40 (d, J = 8.4Hz, 2H); ¹³C {¹H} NMR (75.45 MHz. CDCl₃): -1.03, 24.1, 41.7, 45.1, 116.12, 119.5, 128.1, 131.24, 136.7, 145.9; MS (EI) m/z (%): 257(M⁺-allyl), 255, 215, 213, 184, 182, 161, 145, 115, 99, 73(100), 59, 45; IR (KBr): v_{max} 3077, 2952, 2900, 1640, 1489, 1408, 1248, 1074, 914, 849, 692, 530.

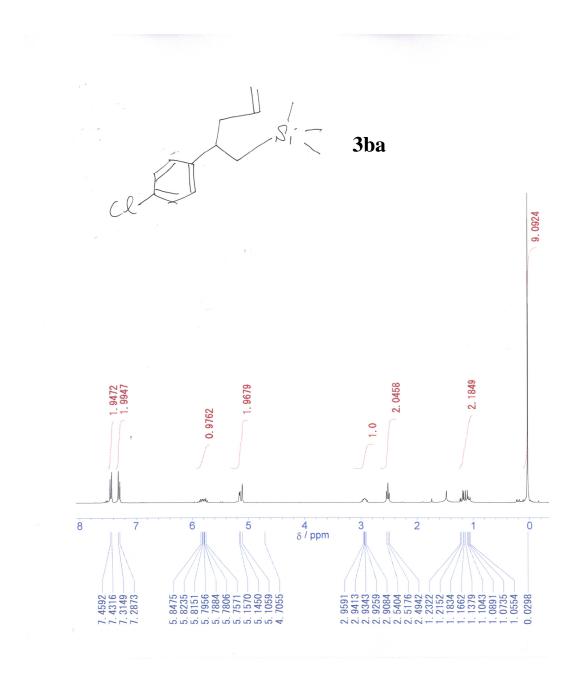

4-(4-fluorophenyl)-5-trimethylsilyl-1-pentene (3da):

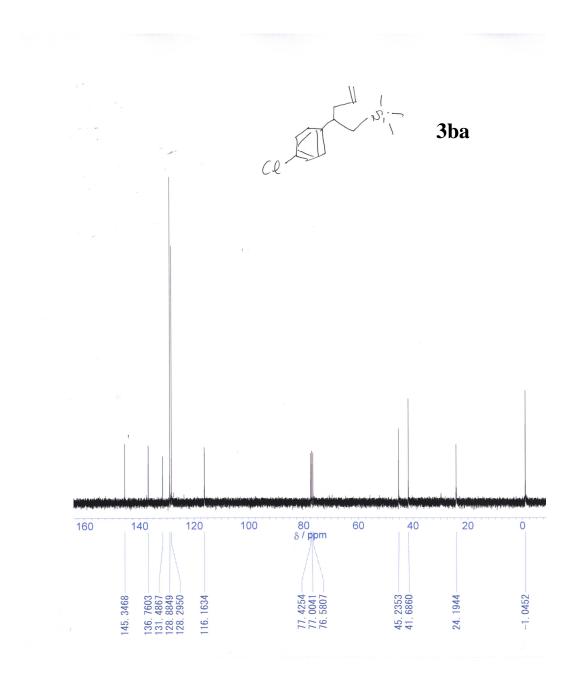
¹H NMR (300 MHz, CDCl₃): δ 0.03 (s, 9H), 1.06-1.24 (m, 2H), 2.53 (t, *J* = 7.1Hz, 2H), 2.90-3.00 (m, 1H), 5.11-5.17 (m, 2H), 5.78-5.89 (m, 1H), 7.13-7.21 (m, 2H), 7.30-7.34 (m, 2H); ¹³C {¹H} NMR (75.45 MHz. CDCl₃): -1.10, 24.4, 41.6, 45.5, 114.8, 116.0, 128.8, 137.0. 142.5, 159.7; MS (EI) *m*/*z* (%): 236(M⁺), 221, 195, 153, 139, 122, 109, 99, 73(100), 59, 45; IR (KBr): v_{max} 3077, 2953, 2901, 1639, 1605, 1509, 1417, 1248, 1226, 1158, 993, 914, 834, 691, 543.

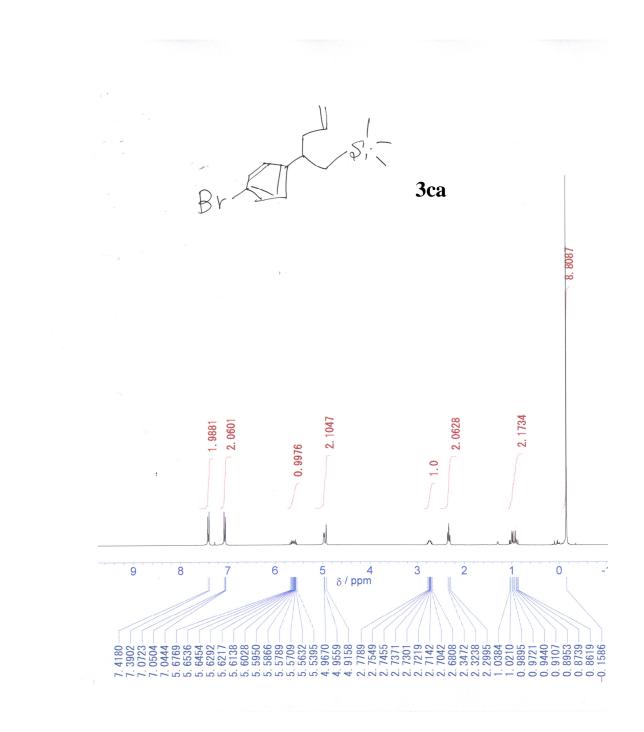

4-(4-chlorophenyl)-5-triethylsilyl-1-pentene (3ab):

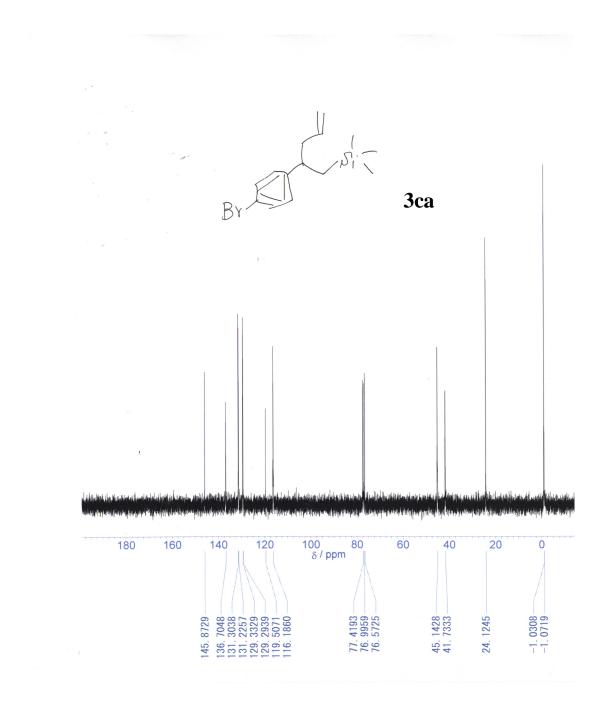
¹H NMR (300 MHz, CDCl₃): δ 0.43-0.60 (m, 6H), 1.02 (t, *J* = 7.9Hz, 9H), 1.08-1.17 (m, 2H), 2.49 (t, *J* = 7.1Hz, 2H), 2.90 (m, 1H), 5.08-5.13 (m, 2H), 5.70-5.87 (m, 1H), 7.29 (d, *J* = 8.4Hz, 2H), 7.42 (d, *J* = 8.2Hz, 2H); ¹³C {¹H} NMR (75.45 MHz. CDCl₃): 3.62, 6.78, 18.9, 41.5, 45.4, 116.2, 128.3, 128.8, 131.5, 136.8, 145.7; MS (EI) *m*/*z* (%): 253(M⁺-allyl), 169, 167, 141, 127, 115(100), 99, 87, 71, 59, 43; IR (KBr): v_{max} 3078, 2953, 2909, 2875, 1639, 1492, 1459, 1413, 1238, 1093, 1014, 913, 831, 750, 727, 534.

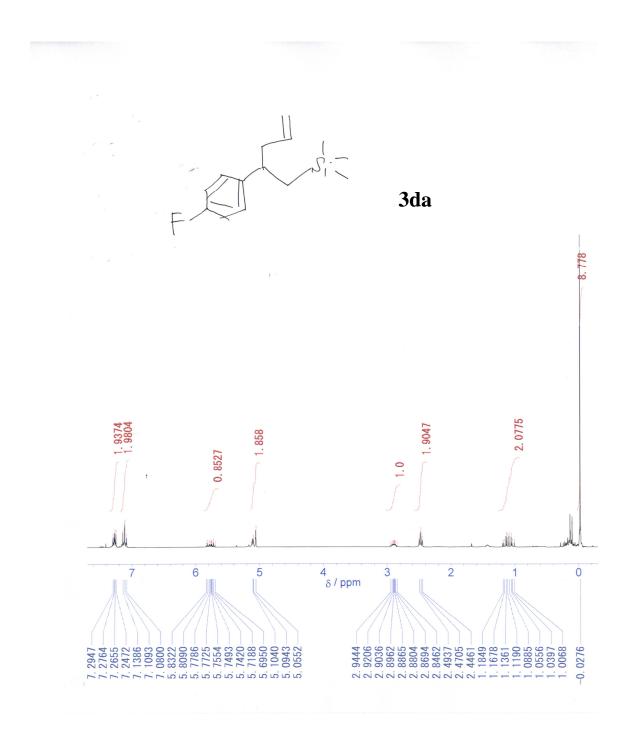
(2-(4-chlorophenyl)-4-methylpent-4-enyl)trimethylsilane (3ac):

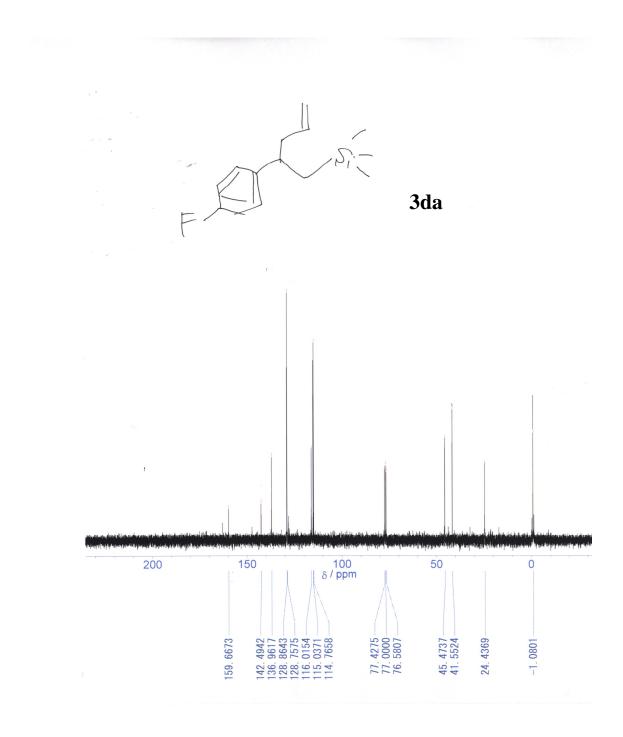

¹H NMR (300 MHz, CDCl₃): δ -0.03 (s, 9H), 0.95-1.16 (m, 2H), 1.78 (s, 3H), 2.42 (d, J = 7.6Hz, 2H), 2.95-3.05 (m, 1H), 4.70 (s, 1H), 4.82 (s, 1H), 7.25 (d, J = 8.5Hz, 2H), 7.38 (d, J = 8.4Hz, 2H); ¹³C {¹H} NMR (75.45 MHz. CDCl₃): -1.10, 22.3, 24.3, 39.8, 49.5, 112.4, 128.3, 128.8, 131.4, 143.6, 145.7; MS (EI) m/z (%): 211(M⁺-methallyl), 181, 179, 138, 113, 108, 85, 73(100), 59, 45; IR (KBr): v_{max} 3074, 2953, 2900, 1647, 1492, 1411, 1249, 1093, 1014, 886, 837, 695, 540.

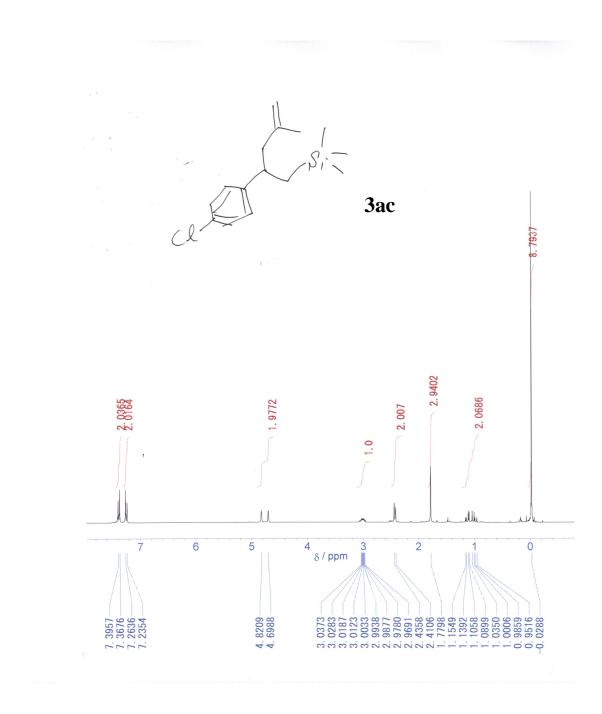


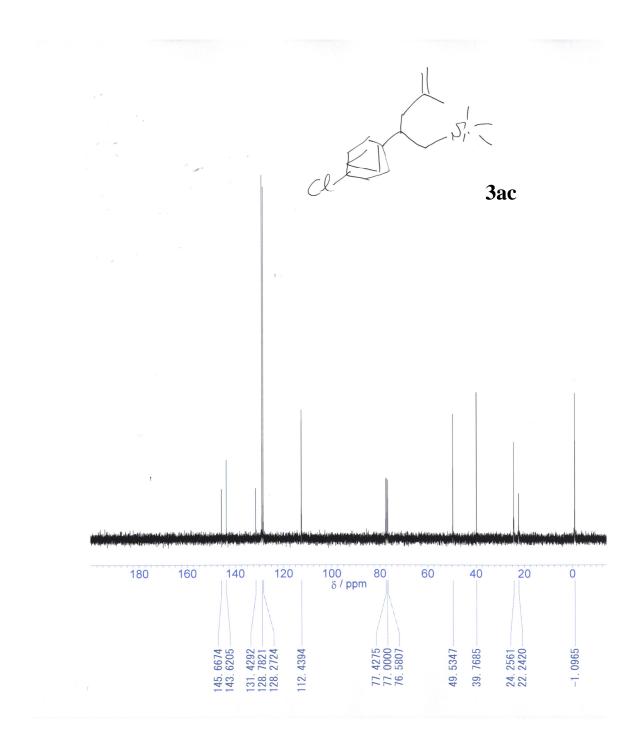

4-phenyl-5-trimethylsilyl-1-pentene (3aa):

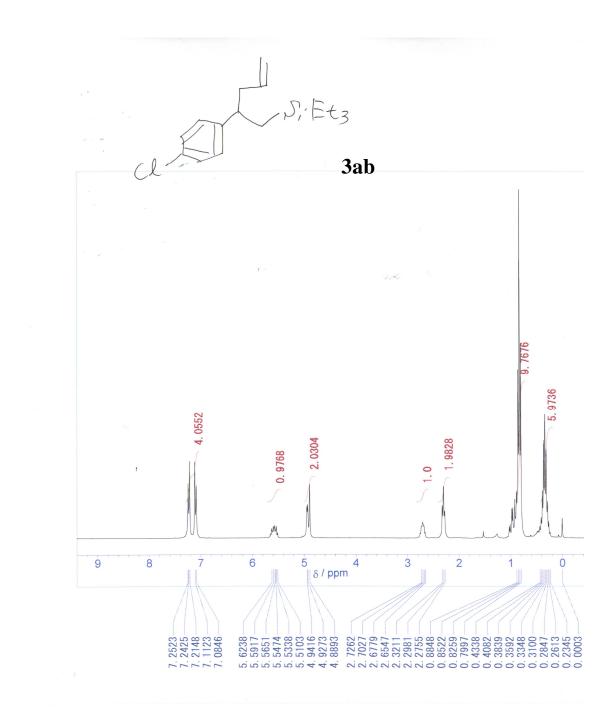

¹H NMR (300 MHz, CDCl₃): δ -0.07 (s, 9H), 1.01-1.16 (m, 2H), 2.47 (t, J = 6.6 Hz, 2H), 2.84-2.90 (m, 1H), 5.03-5.10 (m, 2H), 5.71-6.81 (1H), 7.28-7.42 (m, 5H); ¹³C {¹H} NMR (75.45 MHz. CDCl₃): -1.12, 24.2, 42.2, 45.3, 115.8, 126.0, 127.5, 128.2, 137.3, 146.9; MS (EI) m/z (%): 218(M+), 177, 145, 135, 121, 99, 73(100), 56, 45; IR (KBr): v_{max} 3076, 3063, 3028, 2954, 2900, 1639, 1603, 1493, 1415, 1247, 1181, 996, 912, 859, 838, 760, 700.

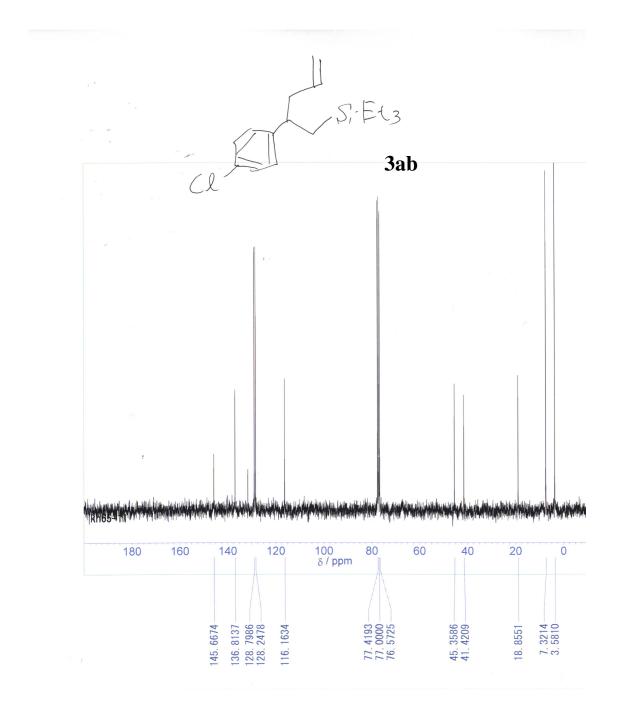

trimethyl[2-(2-propen-1-yl)hexyl]silane (3ea): CAS[165059-54-1] ^[5] trimethyl[2-(2-propen-1-yl)octyl]silane (3fa): CAS[165059-56-3] ^[5]

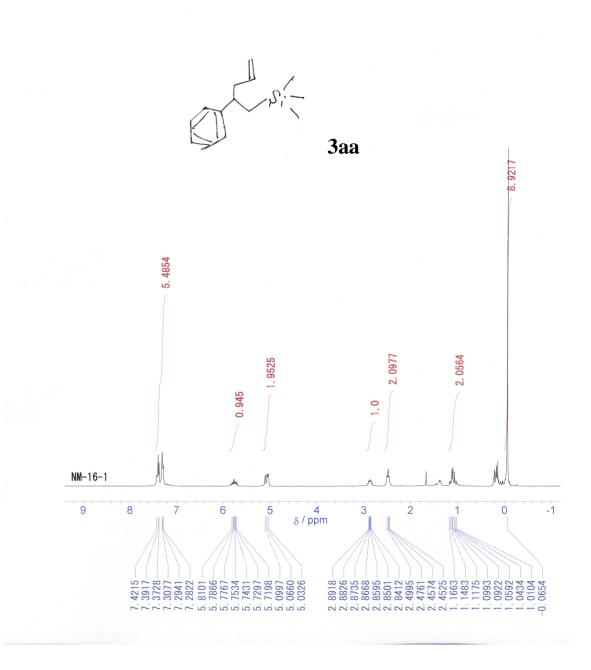


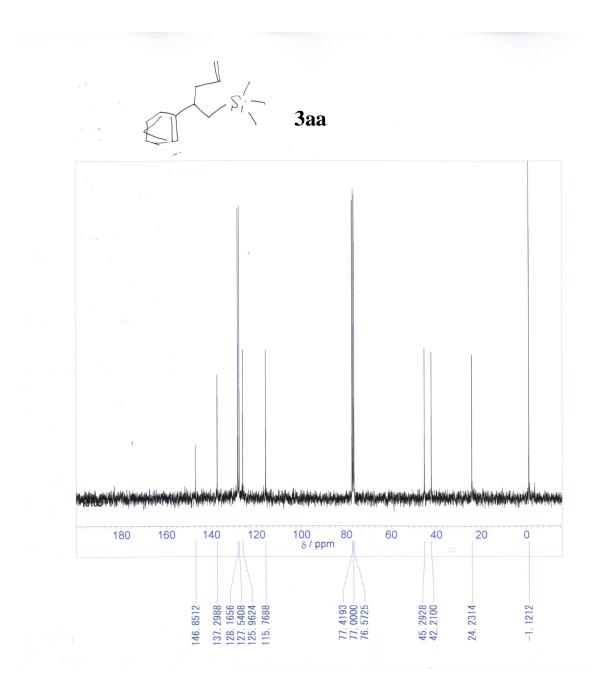




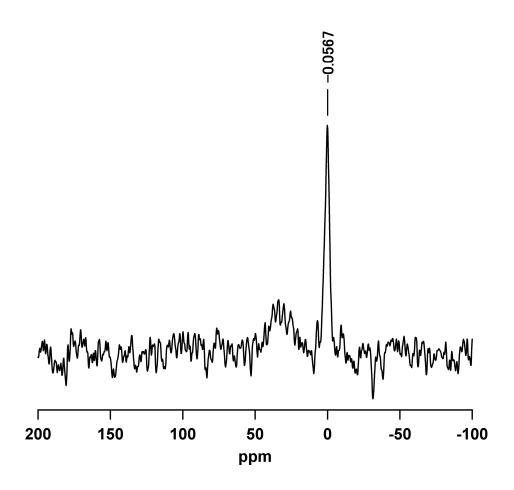




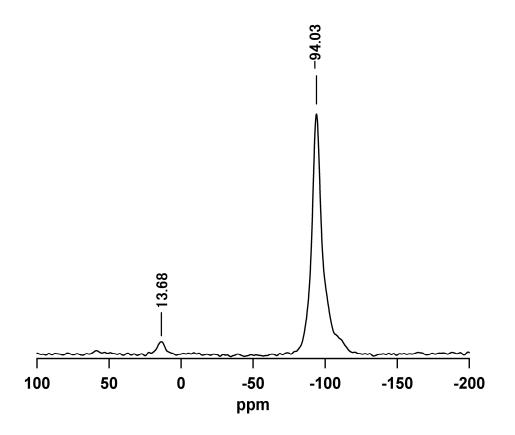




Cl + $SiMe_3$ Cl Cl $SiMe_3$ Cl $SiMe_3$				
Entry	Brönsted acid	Conversion of 1b	Conversion of 2a	Yield of 3ba
		[%] ^[b]	[%] ^[b]	[%] ^[b]
1	H ⁺ -montmorillonite	99	55	85
2	Mont K10	16	6.5	7.2
3	Na ⁺ -montmorillonite	20	3.6	<1.0
4	H^+ -ZSM-5	19	4.0	<1.0
5	H ⁺ -mordenite	6.8	7.5	<1.0
6	Amberlyst	20	25	<1.0
7	CF ₃ SO ₃ H ^[c]	6.8	13	3.7
8	p-TsOH·H ₂ O ^[c]	15	11	<1.0
9	H_2SO_4 ^[c]	5.4	8.7	<1.0


Table 1S. Allylsilylation of 1b with 2a using Brönsted acids.^[a]

[a] Reaction conditions: **1b** (1.0 mmol), **2a** (3.0 mmol), catalyst (0.10 g), *n*-heptane (1.0 mL), 100 $^{\circ}$ C, 30 min.


[b] Determined by GC using internal standards. Yield was based on 1a used.

[c] 0.1 mmol of acid was used.

Solid-State NMR Analyses for SiMe₃ Species on Montmorillonite Surface:

Figure 3S. Solid-state ¹³C CP/MAS NMR spectrum of H⁺-montmorillonite treated with allyltrimethylsilane (SiMe₃-montmorillonite). The signal at -0.057 ppm is assignable to methoxy group on montmorillonite surface attached by Si-O-Si covalent bonding.

Figure 4S. Solid-state ²⁹Si CP/MAS NMR spectrum of H⁺-montmorillonite treated with allyltrimethylsilane (SiMe₃-montmorillonite). The signal at -13.68 ppm is assignable to methoxy group on montmorillonite surface attached by Si-O-Si covalent bonding. The signal at -94.03 ppm is assignable to silicon atom in montmorillonite silicate layer.

Reference

- [1] a) K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, Angew.
- Chem. Int. Ed. 2006, 45, 2605; b) K. Motokura, N. Nakagiri, K. Mori, T. Mizugaki, K.
- Ebitani, K. Jitsukawa, K. Kaneda, Org. Lett. 2006, 8, 4617; c) K. Motokura, N. Nakagiri,
- T. Mizugaki, K. Ebitani, K. Kaneda, J. Org. Chem. 2007, 72, 6006.
- [2] J. Terao, H. Watabe, H. Watanabe, N. Kambe, Adv. Synth. Catal. 2004, 346, 1674.
- [3] Dewar, M. J. S.; Dieter, K. M. J. Am. Chem. Soc. 1986, 108, 8075.
- [4] Kafafi, S. A.; Meot-Ner, M.; Liebman, J. F. Struct. Chem. 1989, 1, 101.
- [5] S.H. Yeon, B.W. Lee, B.R. Yoo, M.-Y. Suk, I.N. Jung, Organometallics 1995, 14, 2361.