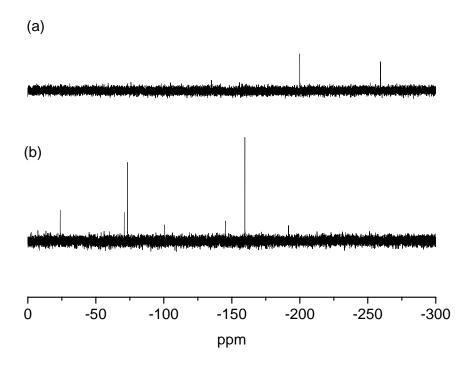
$Photoluminescent\ Properties\ of\ Chalcobromide-capped\ Octahedral\ Hexarhenium (III)\ Complexes$

 $[{Re_6Q_{8-n}Br_n}Br_6]^{n-4} (Q = Se, n = 1-3; Q = S, n = 1, 2)$

Takashi Yoshimura, * Ayumi Matsuda, Yuki Ito, † Shoji Ishizaka, † Satoshi Shinoda, ‡ Hiroshi Tsukube, ‡

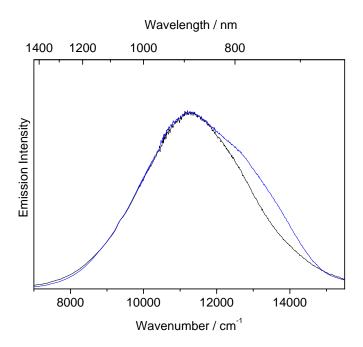
Noboru Kitamura, † and Atsushi Shinohara

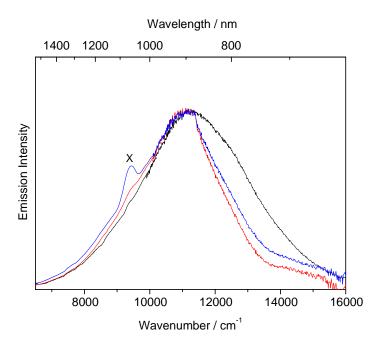

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan,

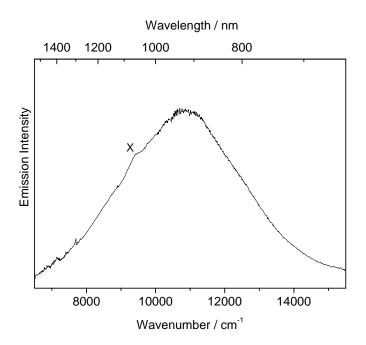
[†]Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan,

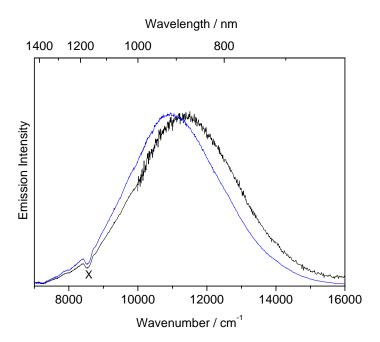

[‡]Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.

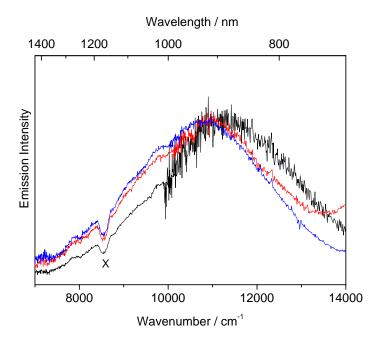
Supporting Information

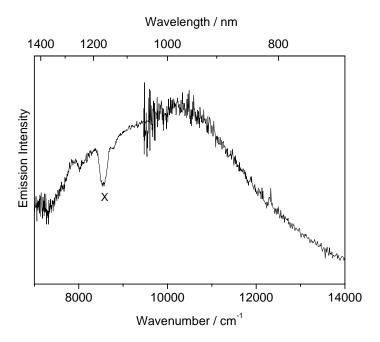

Figures S1-S11

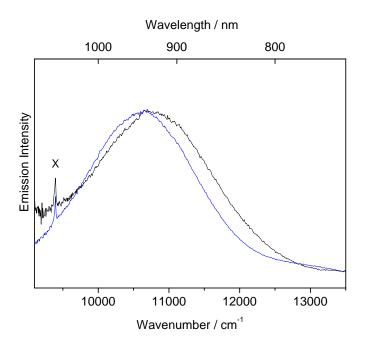

Figure S1. The ⁷⁷Se NMR spectra for $(Bu_4N)_3[\{Re_6Se_7Br\}Br_6]$ (a) in CD_3CN and $(Bu_4N)[\{Re_6Se_5Br_3\}Br_6]$ (b) in DMSO- d_6 at room temperature.


Figure S2. UV-vis absorption spectra of the D_{3d} ([2a-Se]²⁻, black) and $C_{2\nu}$ ([2b-Se]²⁻, red; [2b-Se]²⁻, blue) isomers for $(Bu_4N)_2[\{Re_6S_6Br_2\}Br_6]$ in acetonitrile at room temperature.


Figure S3. Emission spectra for $(Bu_4N)_3[\{Re_6Q_7Br\}Br_6]$ (Q = S (black), Q = Se (blue)) in the crystalline phase at 296 K.


Figure S4. Emission spectra for $(Bu_4N)_2[\{Re_6S_6Br_2\}Br_6]$ ($(Bu_4N)_2[2a-S]$ (black), $(Bu_4N)_2[2b-S]$ (red), and $(Bu_4N)_2[2c-S]$ (blue)) in the crystalline phase at 296 K. The feature with x is due to instrumental artifact.


Figure S5. Emission spectrum for $(Bu_4N)[\{Re_6Se_5Br_3\}Br_6]$ ($(Bu_4N)[\mathbf{3-Se}]$) in the crystalline phase at 296 K. The feature with x is due to instrumental artifact.


Figure S6. Emission spectra for $(Bu_4N)_3[\{Re_6Q_7Br\}Br_6]$ (Q = S (black), Q = Se (blue)) in acetonitrile at 296 K. The feature with x is due to instrumental artifact.

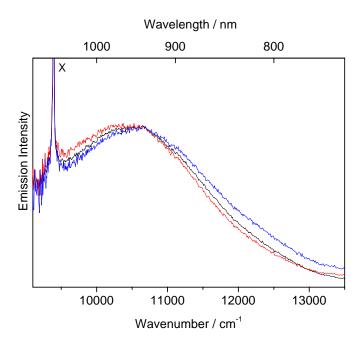

Figure S7. Emission spectra for $(Bu_4N)_2[\{Re_6S_6Br_2\}Br_6]$ ($(Bu_4N)_2[\mathbf{2a-S}]$ (black), $(Bu_4N)_2[\mathbf{2b-S}]$ (red), and $(Bu_4N)_2[\mathbf{2c-S}]$ (blue)) in acetonitrile at 296 K. The feature with x is due to instrumental artifact.

Figure S8. Emission spectrum for $(Bu_4N)[\{Re_6Se_5Br_3\}Br_6]$ $((Bu_4N)[\mathbf{3-Se}])$ in acetonitrile at 296 K. The feature with x is due to instrumental artifact.

Figure S9. Emission Spectra for $(Bu_4N)_3[\{Re_6Q_7Br\}Br_6]$ (Q = S (black), Q = Se (blue)) in the crystalline phase at 80 K. The feature with x is due to instrumental artifact.

Figure S10. Emission Spectra for $(Bu_4N)_2[\{Re_6S_6Br_2\}Br_6]$ ($(Bu_4N)_2[2a-S]$ (black), $(Bu_4N)_2[2b-S]$ (red), and $(Bu_4N)_2[2c-S]$ (blue)) in the crystalline phase at 80 K. The feature with x is due to instrumental artifact.

Figure S11. Emission Spectrum for $(Bu_4N)[\{Re_6Se_5Br_3\}Br_6]$ in the crystalline phase at 95 K. The feature with x is due to instrumental artifact.