Electronic Supporting Information

Photoluminescent Lanthanide-Organic Bilayer Networks with 2,3-Pyrazinedicarboxylate and Oxalate

Paula C. R. Soares-Santos ${ }^{\text {a,b }}$, Luís Cunha-Silva ${ }^{\text {a,c }}$, Filipe A. Almeida Paz ${ }^{\text {a }}$, Rute A. S. Ferreira ${ }^{\text {b }}$, João Rocha ${ }^{\text {a }}$, Luís D. Carlos ${ }^{*, b}$, Helena I. S. Nogueira *,a

A contribution from

CICECO, Departments of Chemistry ${ }^{a}$ and Physics ${ }^{b}$, University of Aveiro, 3810-193 Aveiro, Portugal REQUIMTE \& Department of Chemistry ${ }^{c}$, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal

Table S1

Table S1. Selected bond lengths (in \AA) and angles (in degrees) for the coordination Polyhedron of Ce^{3+} in $\left[\mathrm{Ce}_{2}(2,3-\mathrm{pzdc})_{2}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(\mathbf{1}) .{ }^{a}$

$\mathrm{Ce}(1)-\mathrm{O}(1)$	$2.483(5)$	$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Ce}(1)-\mathrm{O}(1 \mathrm{~W})$	$153.45(15)$
$\mathrm{Ce}(1)-\mathrm{O}(2)^{\mathrm{i}}$	$2.465(5)$	$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Ce}(1)-\mathrm{N}(1)$	$75.33(9)$
$\mathrm{Ce}(1)-\mathrm{O}(3)$	$2.419(4)$	$\mathrm{O}(3)-\mathrm{Ce}(1)-\mathrm{O}(3)^{\mathrm{ii}}$	$73.2(2)$
$\mathrm{Ce}(1)-\mathrm{O}(3)^{\mathrm{ii}}$	$2.419(4)$	$\mathrm{O}(3)-\mathrm{Ce}(1)-\mathrm{O}(4)^{\mathrm{iii}}$	$100.01(14)$
$\mathrm{Ce}(1)-\mathrm{O}(4)^{\mathrm{iii}}$	$2.412(3)$	$\mathrm{O}(3)-\mathrm{Ce}(1)-\mathrm{O}(4)^{\mathrm{iv}}$	$147.98(13)$
$\mathrm{Ce}(1)-\mathrm{O}(4)^{\mathrm{iv}}$	$2.412(3)$	$\mathrm{O}(3)-\mathrm{Ce}(1)-\mathrm{O}(1 \mathrm{~W})$	$70.98(12)$
$\mathrm{Ce}(1)-\mathrm{O}(1 \mathrm{~W})$	$2.581(5)$	$\mathrm{O}(3)-\mathrm{Ce}(1)-\mathrm{N}(1)$	$58.48(12)$
$\mathrm{Ce}(1)-\mathrm{N}(1)$	$2.872(4)$	$\mathrm{O}(3)-\mathrm{Ce}(1)-\mathrm{N}(1)^{\mathrm{ii}}$	$126.66(14)$
$\mathrm{Ce}(1)-\mathrm{N}(1)^{\mathrm{ii}}$	$2.872(4)$	$\mathrm{O}(3)^{\mathrm{ii}}-\mathrm{Ce}(1)-\mathrm{N}(1)^{\mathrm{ii}}$	$58.48(12)$
	$\mathrm{O}(4)^{\mathrm{iii}}-\mathrm{Ce}(1)-\mathrm{O}(4)^{\mathrm{iv}}$	$68.80(17)$	
$\mathrm{O}(1)-\mathrm{Ce}(1)-\mathrm{O}(2)^{\mathrm{i}}$	$66.06(16)$	$\mathrm{O}(4)^{\mathrm{iii}}-\mathrm{Ce}(1)-\mathrm{O}(1 \mathrm{~W})$	$77.21(12)$
$\mathrm{O}(1)-\mathrm{Ce}(1)-\mathrm{O}(3)$	$77.58(14)$	$\mathrm{O}(4)^{\mathrm{iii}}-\mathrm{Ce}(1)-\mathrm{N}(1)$	$67.65(11)$
$\mathrm{O}(1)-\mathrm{Ce}(1)-\mathrm{O}(4)^{\mathrm{iii}}$	$132.56(12)$	$\mathrm{O}(4)^{\mathrm{iii}}-\mathrm{Ce}(1)-\mathrm{N}(1)^{\mathrm{ii}}$	$132.87(11)$
$\mathrm{O}(1)-\mathrm{Ce}(1)-\mathrm{O}(1 \mathrm{~W})$	$140.49(16)$	$\mathrm{O}(4)^{\mathrm{iv}}-\mathrm{Ce}(1)-\mathrm{N}(1)^{\mathrm{ii}}$	$67.65(11)$
$\mathrm{O}(1)-\mathrm{Ce}(1)-\mathrm{N}(1)$	$71.51(8)$	$\mathrm{O}(1 \mathrm{~W})-\mathrm{Ce}(1)-\mathrm{N}(1)$	$109.35(8)$
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Ce}(1)-\mathrm{O}(3)$	$128.27(11)$	$\mathrm{N}(1)-\mathrm{Ce}(1)-\mathrm{N}(1)^{\mathrm{ii}}$	$139.62(16)$
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Ce}(1)-\mathrm{O}(4)^{\mathrm{iii}}$	$80.95(12)$		

${ }^{a}$ Symmetry transformations used to generate equivalent atoms:
(i) $-x+1,-y+1,-z+1$; (ii) $x,-y+1, z$; (iii) $x-1 / 2,-y+1 / 2, z$; (iv) $x-1 / 2, y+1 / 2, z$.

Table S2

Table S2. Selected bond lengths (in \AA) and angles (in degrees) for the coordination Polyhedron of Tb^{3+} in $\left.\left[\mathrm{Tb}_{2}(2-\mathrm{pzc})\right)_{4}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}(8) .{ }^{a}$

$\mathrm{Tb}(1)-\mathrm{O}(1)$	$2.485(5)$	$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Tb}(1)-\mathrm{N}(1)$	$139.85(19)$
$\mathrm{Tb}(1)-\mathrm{O}(2)^{\mathrm{i}}$	$2.387(5)$	$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Tb}(1)-\mathrm{N}(3)$	$74.60(18)$
$\mathrm{Tb}(1)-\mathrm{O}(3)$	$2.369(5)$	$\mathrm{O}(3)-\mathrm{Tb}(1)-\mathrm{O}(5)$	$133.60(17)$
$\mathrm{Tb}(1)-\mathrm{O}(5)$	$2.326(5)$	$\mathrm{O}(3)-\mathrm{Tb}(1)-\mathrm{O}(1 \mathrm{~W})$	$139.00(18)$
$\mathrm{Tb}(1)-\mathrm{O}(1 \mathrm{~W})$	$2.451(5)$	$\mathrm{O}(3)-\mathrm{Tb}(1)-\mathrm{O}(2 \mathrm{~W})$	$77.06(19)$
$\mathrm{Tb}(1)-\mathrm{O}(2 \mathrm{~W})$	$2.409(5)$	$\mathrm{O}(3)-\mathrm{Tb}(1)-\mathrm{O}(3 \mathrm{~W})$	$83.18(18)$
$\mathrm{Tb}(1)-\mathrm{O}(3 \mathrm{~W})$	$2.413(4)$	$\mathrm{O}(3)-\mathrm{Tb}(1)-\mathrm{N}(1)$	$63.19(18)$
$\mathrm{Tb}(1)-\mathrm{N}(1)$	$2.677(6)$	$\mathrm{O}(3)-\mathrm{Tb}(1)-\mathrm{N}(3)$	$142.30(18)$
$\mathrm{Tb}(1)-\mathrm{N}(3)$	$2.682(6)$	$\mathrm{O}(5)-\mathrm{Tb}(1)-\mathrm{O}(1 \mathrm{~W})$	$76.30(18)$
		$\mathrm{O}(5)-\mathrm{Tb}(1)-\mathrm{O}(2 \mathrm{~W})$	$92.6(2)$
$\mathrm{O}(1)-\mathrm{Tb}(1)-\mathrm{O}(2)^{\mathrm{i}}$	$66.84(17)$	$\mathrm{O}(5)-\mathrm{Tb}(1)-\mathrm{O}(3 \mathrm{~W})$	$77.43(17)$
$\mathrm{O}(1)-\mathrm{Tb}(1)-\mathrm{O}(3)$	$72.44(18)$	$\mathrm{O}(5)-\mathrm{Tb}(1)-\mathrm{N}(1)$	$70.52(18)$
$\mathrm{O}(1)-\mathrm{Tb}(1)-\mathrm{O}(5)$	$132.68(18)$	$\mathrm{O}(5)-\mathrm{Tb}(1)-\mathrm{N}(3)$	$63.91(17)$
$\mathrm{O}(1)-\mathrm{Tb}(1)-\mathrm{O}(1 \mathrm{~W})$	$66.79(17)$	$\mathrm{O}(1 \mathrm{~W})-\mathrm{Tb}(1)-\mathrm{O}(2 \mathrm{~W})$	$137.27(19)$
$\mathrm{O}(1)-\mathrm{Tb}(1)-\mathrm{O}(2 \mathrm{~W})$	$134.63(19)$	$\mathrm{O}(1 \mathrm{~W})-\mathrm{Tb}(1)-\mathrm{O}(3 \mathrm{~W})$	$77.08(17)$
$\mathrm{O}(1)-\mathrm{Tb}(1)-\mathrm{O}(3 \mathrm{~W})$	$66.53(17)$	$\mathrm{O}(1 \mathrm{~W})-\mathrm{Tb}(1)-\mathrm{N}(1)$	$136.39(18)$
$\mathrm{O}(1)-\mathrm{Tb}(1)-\mathrm{N}(1)$	$119.21(18)$	$\mathrm{O}(1 \mathrm{~W})-\mathrm{Tb}(1)-\mathrm{N}(3)$	$70.01(18)$
$\mathrm{O}(1)-\mathrm{Tb}(1)-\mathrm{N}(3)$	$123.97(18)$	$\mathrm{O}(2 \mathrm{~W})-\mathrm{Tb}(1)-\mathrm{O}(3 \mathrm{~W})$	$141.3(2)$
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Tb}(1)-\mathrm{O}(3)$	$84.48(18)$	$\mathrm{O}(2 \mathrm{~W})-\mathrm{Tb}(1)-\mathrm{N}(1)$	$72.6(2)$
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Tb}(1)-\mathrm{O}(5)$	$137.93(17)$	$\mathrm{O}(2 \mathrm{~W})-\mathrm{Tb}(1)-\mathrm{N}(3)$	$68.11(18)$
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Tb}(1)-\mathrm{O}(1 \mathrm{~W})$	$83.62(18)$	$\mathrm{O}(3 \mathrm{~W})-\mathrm{Tb}(1)-\mathrm{N}(1)$	$68.82(18)$
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Tb}(1)-\mathrm{O}(2 \mathrm{~W})$	$77.6(2)$	$\mathrm{O}(3 \mathrm{~W})-\mathrm{Tb}(1)-\mathrm{N}(3)$	$133.66(18)$
$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Tb}(1)-\mathrm{O}(3 \mathrm{~W})$	$133.35(18)$	$\mathrm{N}(1)-\mathrm{Tb}(1)-\mathrm{N}(3)$	$116.57(19)$
$\left.a \mathrm{~S} \mathrm{I}^{2}\right)$			

${ }^{a}$ Symmetry transformations used to generate equivalent atoms: (i) $-x+1,-y+2,-z+2$.

Figure S1

Figure S1. FT-IR spectra of $\left[\mathrm{Ln}_{2}(2,3-\mathrm{pzdc})_{2}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}[$ with $\mathrm{Ln}(\mathrm{III})=\mathrm{Ce}(\mathbf{1}), \mathrm{Nd}(\mathbf{2}), \mathrm{Sm}$ (3), $\mathrm{Eu}(\mathbf{4}), \mathrm{Gd}(\mathbf{5}), \mathrm{Tb}(\mathbf{6})$ or $\mathrm{Er}(\mathbf{7})]$ and of $\left[\mathrm{Tb}_{2}(2-\mathrm{pzc})_{4}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}(\mathbf{8})$.

Figure S2

Figure S2. SEM images of $\left[\operatorname{Ln}_{2}(2,3-\mathrm{pzdc})_{2}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}[$ with $\mathrm{Ln}(\mathrm{III})=\mathrm{Ce}(\mathbf{1}), \mathrm{Eu}(\mathbf{4})$ or Tb (6)].

Figure S3

Figure S3. Mixed polyhedral and ball-and-stick representations of the separation between the organic (blue) and the inorganic (green) components in the structure of $\left[\mathrm{Ce}_{2}(2,3-\right.$ pzdc $\left.)_{2}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(\mathbf{1})$: (a) isolated inorganic component (two $\left\{\mathrm{CeN}_{2} \mathrm{O}_{4}\right\}$ polyhedra connected by one ox^{2-} anion); (b) inorganic part surrounded by six organic components (2,3-pzdc ${ }^{2-}$ ligand); (c) $\infty_{\infty}{ }^{2}\left[\mathrm{Ce}_{2}(2,3-\mathrm{pzdc})_{2}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ bilayer viewed in perspective along the [001] direction of the unit cell.

Figure S4

Figure S4. Ball-and-stick representation of the close packing of $\left[\mathrm{Tb}_{2}(2-\mathrm{pzc})_{4}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$ complexes viewed in perspective along the (a) [001] and (b) [100] crystallographic directions, emphasizing the channels running parallel to these directions. Inter-complex hydrogen bonds are drawn as dashed yellow lines. See Table 4 in the main paper for details on the hydrogen bonding geometry.

Figure S5

Figure S5. Mixed ball-and-stick and space-filling (crystallization water molecules) representation of the crystal packing of $\left[\mathrm{Tb}_{2}(2-\right.$ pzc) $\left.)_{4}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$ viewed in perspective along the (a) [001] and (b) [100] crystallographic directions. Channels running parallel to these directions and filled with the uncoordinated crystallization water molecules are emphasized. Inter-complex hydrogen bonds are represented as dashed yellow lines. See Table 4 in the main paper for details on the hydrogen bonding geometry.

Figure S6

Figure S6. Mixed polyhedral (green) and ball-and-stick representation of the crystal packing of $\left[\mathrm{Tb}_{2}(2-\mathrm{pzc})_{4}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$ viewed in perspective along the (a) [010] and (b) [001] crystallographic directions. Hydrogen bonds involving the uncoordinated water molecules are represented as dashed blue lines and the remaining hydrogen bonds represented as dashed yellow lines. See Table 4 in the main paper for details on the hydrogen bonding geometry.

Figure S7

Figure S7. The $\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}$ cluster that results of a hydrogen bonding network with a graph set motif $\left[C_{5}^{5}(11)\right]_{2}(S)_{2} R_{4}^{4}(8)$. Oxygen atoms shown as red and orange represent the uncoordinated and coordinated water molecules, respectively.

Figure S8

Figure S8. Thermograms for $\left[\operatorname{Ln}_{2}(2,3-\mathrm{pzdc})_{2}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}[$ with $\mathrm{Ln}(\mathrm{III})=\mathrm{Eu}(\mathbf{4})$ or $\mathrm{Tb}(\mathbf{6})]$.

Figure S9

Figure S9. Room temperature diffuse reflectance spectra of free ligands ($2,3-\mathrm{H}_{2} \mathrm{pzdc}$ and $\left.\mathrm{H}_{2} \mathrm{Ox}\right)$ and of $\left[\mathrm{Ln}_{2}(2,3-\mathrm{pzdc})_{2}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ [with $\mathrm{Ln}(\mathrm{III})=\mathrm{Ce}(\mathbf{1}), \mathrm{Nd}(\mathbf{2}), \mathrm{Sm}(\mathbf{3}), \mathrm{Eu}(\mathbf{4}), \mathrm{Gd}$ (5), $\mathrm{Tb}(\mathbf{6})$ or $\operatorname{Er}(\mathbf{7})]$.

Figure S10. 12K emission decay curves of $\left[\mathrm{Gd}_{2}(2,3-\mathrm{pzdc})_{2}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(\mathbf{5})$, excited at 283 nm and monitored around (A) 520 nm and (B) 450 nm .

Figure S11

Figure S11. Room temperature emission decay curves of $\left[\mathrm{Eu}_{2}(2,3-\mathrm{pzdc})_{2}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(\mathbf{4}, \square)$ monitored at 614 nm and excited at 464 nm , of $\left[\mathrm{Tb}_{2}(2,3-\mathrm{pzdc})_{2}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(6, \mathrm{O})$ monitored at 544 nm and excited at 490 nm , and of $\left[\mathrm{Tb}_{2}(2-\mathrm{pzc})_{4}(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}(8, \Delta)$ monitored at 544 nm and excited at 330 nm .

