Dynamic Theory of Type 3 Liquid Junction Potentials: Formation of Multi-Layer Liquid Junctions - Supporting Information.
 Kristopher R. Ward, Edmund J. F. Dickinson and Richard G. Compton*

*Corresponding author
Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, United Kingdom OX1 3QZ. Fax: +44 (0) 1865 275410; Tel: +44 (0) 1865 275413. Email: richard.compton@chem.ox.ac.uk

A: THE ITERATIVE NEWTON-RAPHSON METHOD

The iterative Newton-Raphson method is a standard numerical procedure for solving a system of coupled non-linear simultaneous. The n equations are written in an homogeneous form:

$$
\begin{equation*}
f_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0 \tag{1}
\end{equation*}
$$

Let \vec{x} be the vector containing the unkonowns x_{0} to x_{n}; let $\vec{f}(\vec{x})$ be the vector containing the functions f_{0} to f_{n}; and let \vec{u} be the vector containing the differences between \vec{x} at consecutive iterations, such that

$$
\begin{equation*}
\vec{u}=\vec{x}_{z+1}-\vec{x}_{z} \tag{2}
\end{equation*}
$$

In the simple Newton-Raphson method, the Taylor series of a function about a trial solution x_{0} is considered:

$$
\begin{equation*}
f(x) \approx f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)=0 \tag{3}
\end{equation*}
$$

and hence the solution x may be derived from successive iterations of the form:

$$
\begin{equation*}
x_{z+1}=x_{z}-\frac{f\left(x_{z}\right)}{f^{\prime}\left(x_{z}\right)} \tag{4}
\end{equation*}
$$

For a function of multiple variables, a trial vector \vec{x}_{0} may be altered similarly:

$$
\begin{equation*}
f(\vec{x}) \approx f\left(\vec{x}_{0}\right)+\sum_{n}\left(x_{n}-x_{n, 0}\right) \frac{\partial f\left(\vec{x}_{0}\right)}{\partial x_{n}} \tag{5}
\end{equation*}
$$

and hence, defining $u_{n}=x_{n}-x_{n, 0}$

$$
\begin{equation*}
\sum_{n} u_{n} \frac{\partial f\left(\vec{x}_{0}\right)}{\partial x_{n}}=-f\left(\vec{x}_{0}\right) \tag{6}
\end{equation*}
$$

Where there are n simultaneous equations associated with the n variables, this may be extended, such that for each variable m :

$$
\begin{equation*}
\sum_{n} u_{n} \frac{\partial f_{m}\left(\vec{x}_{0}\right)}{\partial x_{n}}=-f_{m}\left(\vec{x}_{0}\right) \tag{7}
\end{equation*}
$$

which may be expressed for the vectors \vec{u} and \vec{f} in the matrix form:

$$
\begin{equation*}
\vec{J}\left(\vec{x}_{0}\right) \vec{u}=-\vec{f}\left(\vec{x}_{0}\right) \tag{8}
\end{equation*}
$$

Where \vec{J} is the Jacobian matrix, being the $n \times n$ square matrix for mhich the element $J_{m n}$ is described:

$$
\begin{equation*}
J_{m n}=\frac{\partial f_{m}}{\partial x_{n}} \tag{9}
\end{equation*}
$$

i.e. equation 8 is a matrix equation of the form:

$$
\left(\begin{array}{ccccc}
\frac{\partial f_{0}}{\partial x_{0}} & \frac{\partial f_{0}}{\partial x_{1}} & \frac{\partial f_{0}}{\partial x_{2}} & \cdots & \frac{\partial f_{0}}{\partial x_{n}} \tag{10}\\
\frac{\partial f_{1}}{\partial x_{0}} & \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{0}} & \frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right)\left(\begin{array}{c}
\left(x_{0}-x_{0,0}\right) \\
\left(x_{1}-x_{1,0}\right) \\
\vdots \\
\left(x_{n}-x_{n, 0}\right)
\end{array}\right)=\left(\begin{array}{c}
-\vec{f}_{0}\left(\vec{x}_{0}\right) \\
-\vec{f}_{1}\left(\vec{x}_{0}\right) \\
\vdots \\
-\vec{f}_{n}\left(\vec{x}_{0}\right)
\end{array}\right)
$$

This equation is solved iteratively and \vec{x} is augmented by \vec{u}, until all values u_{0} to u_{n} are less than a characteristic parameter ϵ, at which point \vec{x} is taken as the trial vector for the next timstep. The equation can be solved by an adapted Thomas Algorithm method (LU decomposition followed by back substitution) as the Jacobian is a diagonal matrix with a minimum of fifteen non-zero diagonals for a Type 3 LJP simulation when unknowns x_{n} are appropriately ordered (e.g. $c_{\mathrm{A}, 0}, c_{\mathrm{X}, 0}, \phi_{0}, c_{\mathrm{B}, 0}, c_{\mathrm{Y}, 0}, c_{\mathrm{A}, 1}$, $c_{\mathrm{X}, 1}, \phi_{1}$, etc).

