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A: THE ITERATIVE NEWTON-RAPHSON METHOD
The iterative Newton-Raphson method is a standard numerical procedure for solving a system of coupled
non-linear simultaneous. The n equations are written in an homogeneous form:
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Let & be the vector containing the unkonowns xg to z,; let f(Z) be the vector containing the functions
fo to fn; and let @ be the vector containing the differences between & at consecutive iterations, such that

@ =Ty — 1, (2)

In the simple Newton-Raphson method, the Taylor series of a function about a trial solution zq is
considered:

f(l') ~ f(fo) + (IE — :L‘O)f/(:z'o) =0 (3)
and hence the solution x may be derived from successive iterations of the form:
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For a function of multiple variables, a trial vector &y may be altered similarly:
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and hence, defining u,, = x, — 0
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Where there are n simultaneous equations associated with the n variables, this may be extended, such

that for each variable m: O f(Fo)
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which may be expressed for the vectors @ and f in the matrix form:
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Where J is the Jacobian matrix, being the n x n square matrix for mhich the element J,,, is described:
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i.e. equation 8 is a matrix equation of the form:
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This equation is solved iteratively and & is augmented by , until all values ug to u, are less than
a characteristic parameter e, at which point & is taken as the trial vector for the next timstep. The
equation can be solved by an adapted Thomas Algorithm method (LU decomposition followed by back
substitution) as the Jacobian is a diagonal matrix with a minimum of fifteen non-zero diagonals for a
Type 3 LJP simulation when unknowns z,, are appropriately ordered (e.g. ca 0, ¢x,0, $0, €B,0, CY,0, CA.1,
ex,1, ¢1, ete).



