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A: THE ITERATIVE NEWTON-RAPHSON METHOD

The iterative Newton-Raphson method is a standard numerical procedure for solving a system of coupled
non-linear simultaneous. The n equations are written in an homogeneous form:

fn(x0, x1, ..., xn) = 0 (1)

Let ~x be the vector containing the unkonowns x0 to xn; let ~f(~x) be the vector containing the functions
f0 to fn; and let ~u be the vector containing the differences between ~x at consecutive iterations, such that

~u = ~xz+1 − ~xz (2)

In the simple Newton-Raphson method, the Taylor series of a function about a trial solution x0 is
considered:

f(x) ≈ f(x0) + (x− x0)f
′(x0) = 0 (3)

and hence the solution x may be derived from successive iterations of the form:

xz+1 = xz −
f(xz)

f ′(xz)
(4)

For a function of multiple variables, a trial vector ~x0 may be altered similarly:

f(~x) ≈ f(~x0) +
∑

n

(xn − xn,0)
∂f(~x0)

∂xn

(5)

and hence, defining un = xn − xn,0
∑

n

un

∂f(~x0)

∂xn

= −f(~x0) (6)

Where there are n simultaneous equations associated with the n variables, this may be extended, such
that for each variable m:

∑

n

un

∂fm(~x0)

∂xn

= −fm(~x0) (7)

which may be expressed for the vectors ~u and ~f in the matrix form:

~J(~x0)~u = −
~f(~x0) (8)

Where ~J is the Jacobian matrix, being the n x n square matrix for mhich the element Jmn is described:

Jmn =
∂fm

∂xn

(9)

i.e. equation 8 is a matrix equation of the form:
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This equation is solved iteratively and ~x is augmented by ~u, until all values u0 to un are less than
a characteristic parameter ǫ, at which point ~x is taken as the trial vector for the next timstep. The
equation can be solved by an adapted Thomas Algorithm method (LU decomposition followed by back
substitution) as the Jacobian is a diagonal matrix with a minimum of fifteen non-zero diagonals for a
Type 3 LJP simulation when unknowns xn are appropriately ordered (e.g. cA,0, cX,0, φ0, cB,0, cY,0, cA,1,
cX,1, φ1, etc).
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