Supporting Material to:

Strategy for Rapid and High Purity Cyclic Polymers by CuAAC 'Click' Reactions.

Daria E. Lonsdale, Craig A. Bell and Michael J. Monteiro*

Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane QLD 4072, Australia

*author to whom correspondence should be sent:

e-mail: <u>m.monteiro@uq.edu.au</u>

Table S1: Conditions for the synthesis of polystyrene polymers by Atom Transfer Radical Polymerization (ATRP). Refer to experimental section for a typical cyclization procedure.

			Time (min)				
		Toluene					
	Styrene	Initiator	Initiator PMDETA		Cu(I)Br	(mL)	
≡-PSTY ₅₁ -Br	8.977	0.064	0.064	0.013	0.064	-	360
\equiv -PSTY ₁₀₄ -Br	9.027	0.035	0.035	0.008	0.035	-	465
≡-PSTY ₁₃₆ -Br	7.531	0.019	0.019	0.004	0.019	2	555

Table S2: Experimental conditions for cyclization of \equiv -PSTY₅₁-N₃. A general procedure for cyclization involves addition of \equiv -PSTY₅₁-N₃ in toluene via a syringe pump at a certain feed rate and temperature into a reaction vessel containing Cu(I)Br and PMDETA (stoichiometric to Cu(I)Br) in toluene.

				Syrin	nge	Reactio	n Vessel	Product	
Expt	$\mathbf{M_n}^{\mathbf{a}}$ $\equiv -\mathbf{PSTY}_{51} - \mathbf{N}_3$	Temp (°C)	Feed Rate (ml/min)	=-PSTY ₅₁ -N ₃ (mg)	Toluene (mL)	Cu(I)Br mole excess to polymer	Toluene (mL)	Purity % ^c	Time ^d (h)
1	5400 (3a)	80	0.003	20	1	100	50	93	8.6
2		50	0.003	20	1	100	50	91	8.6
3		25	0.003	20	1	100	50	93	8.6
4		25	0.003	20	1	100	25	91	8.6
5		25	0.003	20	1	100	1	90	8.6
6		25	0.003	20	1	50	1	92	8.6
7		25	0.003	20	1	25	1	90	8.6
8		25	0.003	20	1	10	1	84	8.6
9		25	0.003	20	1	1	1	66	8.6
10		25	0.003	20	1	50	1	95	8.6
11		25	0.006	20	1	50	1	96	5.8
12		25	0.009	20	1	50	1	96	4.9
13		25	0.012	20	1	50	1	96	4.4
14		25	0.024	20	1	50	1	96	3.7
15		25	0.034	20	1	50	1	95	3.5
16		25	0.094	20	1	50	1	96	3.2
17		25	0.124	20	1	50	1	96	3.1
18		25	One pot ^b	20	-	50	2	83	4
19		25	0.012	60	3	50	3	96	17
20		80	0.012	60	3	50	3	96	17

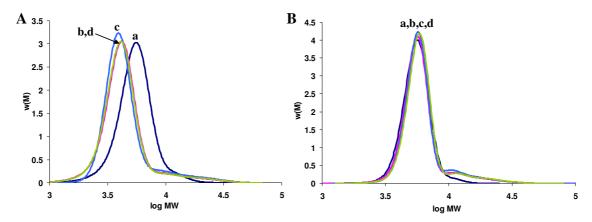
^a M_n was acquired using Triple Detection SEC

^b The only exception to the general cyclization procedure: \equiv -PSTY₅₁-N₃ was added straight into the reaction vessel, without the use of a syringe pump.

^c Purity is the percentage of cyclic product in the final polymer mixture determined from SEC trace based on a polystyrene calibration curve ^d Time at which the reaction was stopped and purity of the cyclic product determined

Table S3: Experimental conditions for cyclization of \equiv -PSTY₁₀₄-N₃ and \equiv -PSTY₁₃₆-N₃. A general procedure for cyclization involves addition of polymer in toluene via a syringe pump at a certain feed rate and temperature into a reaction vessel containing Cu(I)Br and PMDETA (stoichiometric to Cu(I)Br) in toluene).

				Syringe		Reaction Vessel		Product	
Expt	M_n^a $\equiv -PSTY_n-N_3$	Temp (°C)	Feed Rate (ml/min)	$\equiv -PSTY_n - N_3$ (mg)	Toluene (mL)	Cu(I)Br mole excess to polymer	Toluene (mL)	Purity % ^c	Time ^d (h)
21	10800 (n=104)	25	One pot ^b	20	-	50	2	57	4
22		25	0.012	60	3	50	3	89	17
23		80	0.012	60	3	50	3	92	17
24		80	0.012	40	2	50	2	92	5.8
25		25	0.012	40	2	50	2	93	5.8
26		25	0.034	20	2	50	2	94	4.0
27		25	0.034	40	2	50	2	91	4.0
28		25	0.034	60	2	50	2	85	4.0
29	14400 (n=136)	25	One pot ^b	20	-	50	2	54	4
30		80	0.012	60	3	50	3	93	17
31		25	0.012	60	3	50	3	88	17
32		80	0.012	40	2	50	2	92	5.8
33		25	0.012	40	2	50	2	88	5.8


^a M_n was acquired using Triple Detection SEC
^b The only exception to the general cyclization procedure: \equiv -PSTY_n-N₃ was added straight into the reaction vessel, without the use of a syringe pump.

^c Purity is the percentage of cyclic product in the final polymer mixture determined from SEC trace based on a polystyrene calibration curve ^d Time at which the reaction was stopped and purity of the cyclic product determined

Table S4: Comparison of molecular weight distributions (MWD) of \equiv -PSTY₅₁-N₃ vs c-PSTY₅₁ cyclized at 80 °C, 50 °C and 25 °C. The cyclizations were achieved by feeding \equiv -PSTY₅₁-N₃ (20 mg in 1 mL of toluene) at the rate of 0.003 mL/min into 50 mL of toluene containing Cu(I)Br and PMDETA (x100 mole excess to PSTY): Refer to Table S2 (entries 1-3).

		PS'	ΓY Calibra	ation Cu	Triple Detection ^b			
Polymer	Temp (°C) of cyclization ^c	$\mathbf{M}_{\mathbf{n}}$	M_{P}	PDI	Purity ^d %	$\mathbf{M}_{\mathbf{n}}$	M_{P}	PDI
\equiv -PSTY ₅₁ -N ₃		5000	5200	1.12		5400	5600	1.08
c-PSTY ₅₁	80	4000	4200	1.27	93	5600	5700	1.16
c-PSTY ₅₁	50	4100	4000	1.28	91	5700	5700	1.17
c-PSTY ₅₁	25	4000	4200	1.27	93	5700	5700	1.16

^aThe data was acquired using SEC based on polystyrene calibration curve

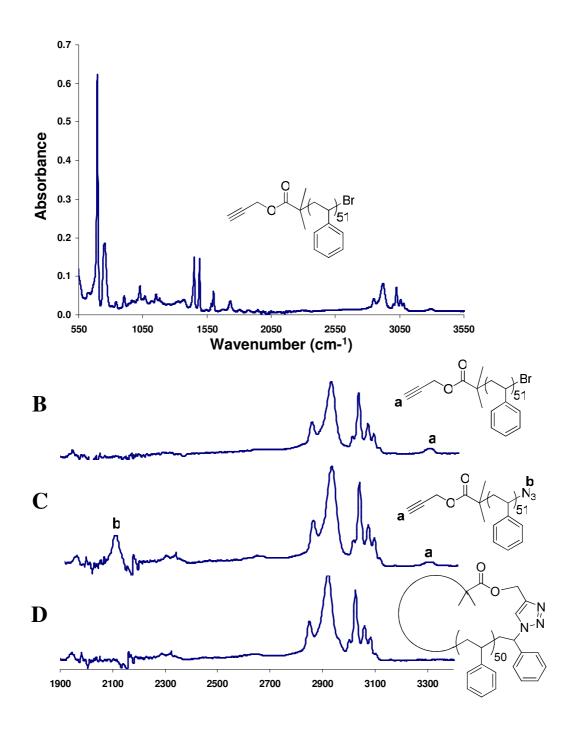
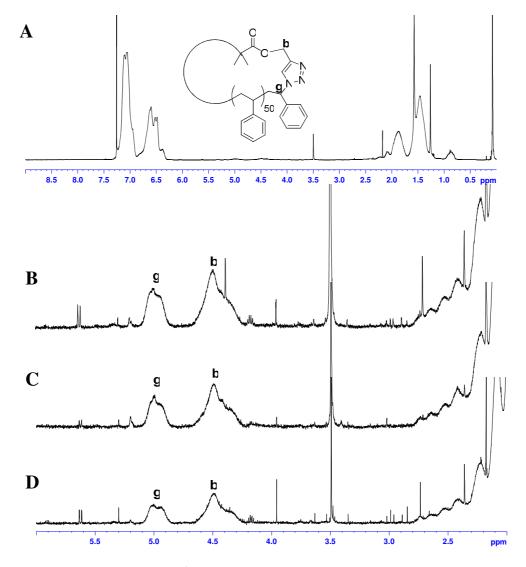
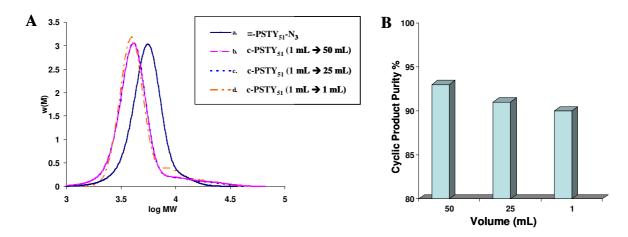
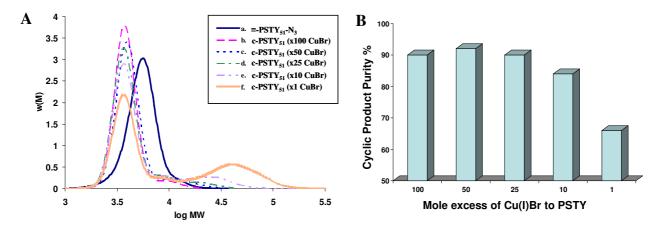


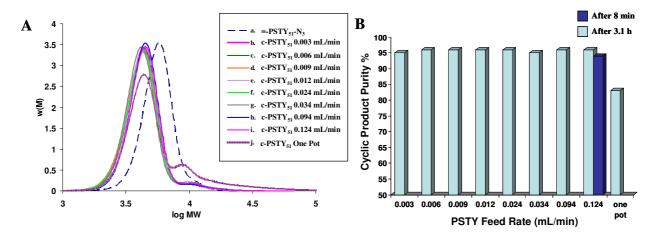
Figure S1: Effect of temperature on cyclization of \equiv -PSTY₅₁-N₃ analysed by SEC based on: (**A**) Polystyrene calibration curve; (**B**) Triple Detection SEC (absolute molecular weights). (**a**) \equiv -PSTY₅₁-N₃; (**b**) c-PSTY₅₁, cyclized at 80 °C; (c) c-PSTY₅₁, cyclized at 50 °C; (d) c-PSTY₅₁, cyclized at 25 °C. All cyclizations were performed by feeding 20 mg of \equiv -PSTY₅₁-N₃ in 1 mL of toluene, at a feed rate of 0.003 mL/min, into 50 mL of toluene containing Cu(I)Br and PMDETA (x100 mole excess to PSTY): Refer to Table S2 (entries 1-3).

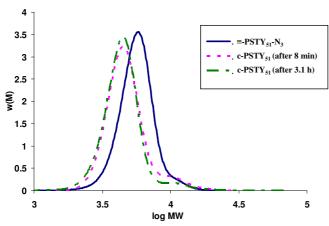

^b The data was acquired using Triple Detection SEC

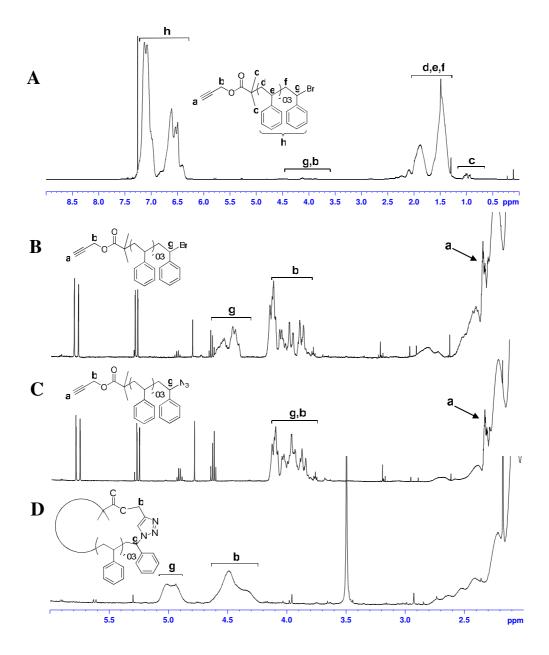
^c Temperature at which \equiv -PSTY₅₁-N₃ was cyclised

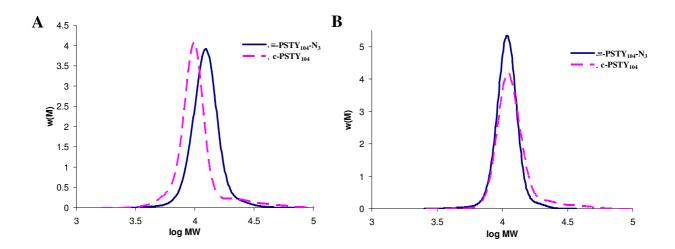

^d Purity is the percentage of cyclic product in the final polymer mixture determined from SEC trace based on polystyrene calibration curve.

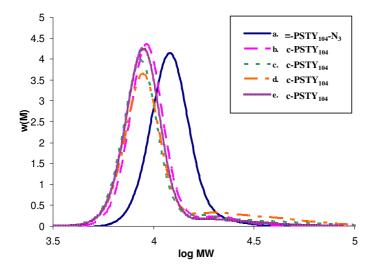

Figure S2: ATR-FTIR analysis of the polystyrene chain-end modification and cyclization. (**A**) Full spectrum of \equiv -PSTY₅₁-Br; (**B**) Expended spectrum of \equiv -PSTY₅₁-Br; (**C**) Expended spectrum of \equiv -PSTY₅₁-N₃; (**D**) Expended spectrum of c-PSTY₅₁ cyclized by feeding 20 mg of \equiv -PSTY₅₁-N₃ in 1 mL of toluene, at a feed rate of 0.003 mL/min, into 50 mL of toluene containing Cu(I)Br and PMDETA (x100 mole excess to PSTY) at 80 °C: Refer to Table S2 (entry 1). (**a**) alkyne stretch at 3295 cm⁻¹, (**b**) azide stretch at 2095 cm⁻¹.


Figure S3: 500 MHz ¹H NMR analysis of c-PSTY₅₁ cyclized at different temperatures. (**A**) Full spectrum of c-PSTY₅₁ cyclized at 80 °C. Below, overlaid expanded spectra of c-PSTY₅₁, cyclized at (**B**) 80 °C, (**C**) 50 °C, (**D**) 25 °C. All cyclizations were performed by feeding 20 mg of \equiv -PSTY₅₁-N₃ in 1 mL of toluene, at a feed rate of 0.003 mL/min into a reaction vessel containing 50 mL of toluene, Cu(I)Br and PMDETA (x100 mole excess to polymer). Refer to Table S2 (entries 1-3).


Figure S4: Effect of reaction volume on cyclization of ≡-PSTY₅₁-N₃ at 25 °C. (**A**) SEC analysis of ≡-PSTY₅₁-N₃; **a.** prior to cyclization, **b.** cyclized in 50 mL, **c.** cyclized in 25 mL, **d.** cyclized in 1 mL. Refer to Table S2 (entries 3-5). (**B**) Represents the % purity of cyclic products, determined from SEC traces **b-d**. All reactions were fed from 1 mL (20 mg/mL of PSTY in toluene) at a feed rate of 0.003 mL/min into the reaction vessel containing Cu(I)Br, PMDETA (x100 mole excess to PSTY).


Figure S5: Effect of Cu(I)Br concentration on cyclization of \equiv -PSTY₅₁-N₃ at 25 °C. (**A**) SEC analysis of \equiv -PSTY₅₁-N₃ **a.** prior to cyclization, **b.** cyclized with x100 mole excess of Cu(I)Br to PSTY, **c.** cyclized with x50 mole excess of Cu(I)Br to PSTY, **d.** cyclized with x25 mole excess of Cu(I)Br to PSTY, **e.** cyclized with x10 mole excess of Cu(I)Br to PSTY, **f.** cyclized with x1 mole excess of Cu(I)Br to PSTY. (**B**) Represents the % purity of cyclic products, determined from SEC trace, with decreasing Cu(I)Br concentration. All reactions were fed from 1 mL (20 mg/mL in toluene) at a feed rate of 0.003 mL/min into the reaction vessel containing 1 mL of toluene and various amounts of Cu(I)Br and PMDETA (**b-f**). Refer to Table S2 (entries 5-9).


Figure S6: The effect of feed rate on cyclization of \equiv -PSTY₅₁-N₃ at 25 °C. (**A**) SEC analysis based on polystyrene calibration curve. Cyclizations **b-i** were done by feeding 20 mg of PSTY in 1 mL of toluene into a reaction vessel containing toluene (1mL), Cu(I)Br and PMDETA (x50 mole excess to polymer) at various feed rates (**b-i**). **i.** was done in one pot with no other variations to reactants or reaction conditions. Refer to Table S2 (entries 10-18). (**B**) Represents the % purity of cyclic products, determined from SEC trace, with increasing feed rate, including one-pot reaction.


Figure S7: Rate of cyclization of I-PSTY determined by SEC analysis of samples taken after 8 min and 3.1 h from the start of the reaction. Cyclization was done by feeding 20 mg of PSTY in 1 mL of toluene into a reaction vessel containing toluene (1mL), Cu(I)Br and PMDETA (x50 mole excess to polymer) at a feed rate of 0.124 mL/min and 25 °C. Refer to Table S2 (entry 17).

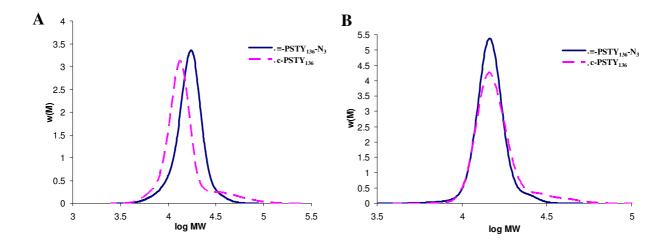

Figure S8: 500 MHz ¹H NMR analysis 1-PSTY ($M_n = 10800$, PDI = 1.05) chain-end modification and cyclization. (**A**) Full spectrum of \equiv -PSTY₁₀₄-Br; (**B**) Expanded spectrum of \equiv -PSTY₁₀₄-Br; (**C**) Expanded spectrum of \equiv -PSTY₁₀₄-N₃; (**D**) Expanded spectrum of c-PSTY₁₀₄ cyclized by feeding 40 mg of \equiv -PSTY₁₀₄-N₃ in 2 mL of toluene, at a feed rate of 0.012 mL/min into 2 mL of toluene containing Cu(I)Br and PMDETA (x50 mole excess to PSTY) at 80 °C. Refer to Table S3 (entry 24).

Figure S9: SEC chromatograms of \equiv -PSTY₁₀₄-N₃ and c-PSTY₁₀₄ (**A**) Based on PSTY calibration curve and (**B**) Triple Detection SEC (absolute molecular weights). The cyclization was done by adding 40 mg of PSTY in 2 mL of toluene to a reaction vessel containing 2 mL of toluene, Cu(I)Br and PMDETA (x50 mole excess to PSTY) at a rate of 0.012 mL/min and temperature of 80 °C. Refer to Table S3 (entry 24).

Figure S10: SEC chromatograms of \equiv -PSTY₁₀₄-N₃ and c-PSTY₁₀₄ cyclized at 25 °C. **a.** \equiv -PSTY₁₀₄-N₃; **b.** c-PSTY₁₀₄ cyclized by feeding 40 mg of PSTY in 2 mL of toluene to a reaction vessel of toluene (2mL), Cu(I)Br and PMDETA (x50 mole excess to PSTY) at a rate of 0.012 mL/min. **c.** The same conditions as **b** but with a feed rate of 0.034 mL/min. **d.** The same conditions as **c** but increased PSTY concentration to 60 mg of PSTY in 2 mL of toluene. **e.** The same conditions as **d** but with decreased PSTY concentration to 20 mg in 2 mL of toluene. Refer to Table S3 (entries 25-28).

Figure S11: SEC chromatograms of \equiv -PSTY₁₃₆-N₃ and c-PSTY₁₃₆ (**A**) Based on PSTY calibration curve; (**B**) Triple Detection SEC (absolute molecular weights). The cyclization was done by adding 40 mg of PSTY in 2 mL of toluene, at a rate of 0.012 mL/min, to 2 mL of toluene containing Cu(I)Br and PMDETA (x50 mole excess to PSTY) at 80 °C. Refer to Table S3 (entry 32).