Supporting Information A. Using MP2/cc-pVTZ//B3LYP/6-31G** results as the "true" value.

			0				
		φ	ψ	χ1	χ2	χ3	χ4
	α_{R}	-57.0	-47.0	-26.1	37.8	-34.6	19.1
	α_{L}	57.0	47.0	-15.0	32.3	-37.0	29.1
Pro ^a	β	-119.0	113.0	4.5	18.0	-33.8	38.2
	βa	-140.0	135.0	37.5	-23.3	0.6	24.0
	PPII	-79.0	150.0	-19.4	33.9	-35.4	24.5
	α_{R}	-57.0	-47.0				
	α_{L}	57.0	47.0				
Gly	β	-119.0	113.0				
	βa	-140.0	135.0				
	PPII	-79.0	150.0				
	α_R	-57.0	-47.0				
	α_{L}	57.0	47.0				
Ala	β	-119.0	113.0				
	βa	-140.0	135.0				
	PPII	-79.0	150.0				
	α_{R}	-57.0	-47.0	171.9			
	α_{L}	57.0	47.0	-171.2			
Val	β	-119.0	113.0	178.9			
	βa	-140.0	135.0	178.4			
	PPII	-79.0	150.0	173.5			
	α_{R}	-57.0	-47.0	179.3	61.7		
	α_{L}	57.0	47.0	-61.4	178.5		
Leu	β	-119.0	113.0	178.2	61.8		
	βa	-140.0	135.0	-65.8	171.3		
	PPII	-79.0	150.0	-62.5	175.9		
	α_R	-57.0	-47.0	-67.5	168.7		
	α_{L}	57.0	47.0	-51.5	-174.3		
Ile	β	-119.0	113.0	-59.6	172.6		
	βa	-140.0	135.0	-61.0	172.5		
	PPII	-79.0	150.0	62.2	171.1		
	α_{R}	-57.0	-47.0	-69.3	175.4	68.5	
	α_{L}	57.0	47.0	-61.1	-58.9	-65.8	
Met	β	-119.0	113.0	-178.1	179.6	-75.1	
	βa	-140.0	135.0	178.7	174.7	72.0	
	PPII	-79.0	150.0	-62.6	-62.4	-68.9	
	α_{R}	-57.0	-47.0	178.3	79.3		
	$\alpha_{\rm L}$	57.0	47.0	-58.3	105.0		
Phe	β	-119.0	113.0	-63.1	90.2		
	βa	-140.0	135.0	-61.3	92.8		
	PPII	-79.0	150.0	-72.5	99.7		

Table S1. The mainchain and sidechain dihedral angles in the five selected conformations for 20 amino acids.

^a χ_3 and χ_4 for proline were obtained from the geometry optimization at B3LYP/6-31G**.

	α_{R}	-57.0	-47.0	178.3	79.6		
	$\alpha_{\rm L}$	57.0	47.0	-58.4	104.9		
Tyr	β	-119.0	113.0	-62.0	91.2		
	βa	-140.0	135.0	-60.6	90.6		
	PPII	-79.0	150.0	-71.6	98.3		
	α_{R}	-57.0	-47.0	177.6	74.2		
	α_{L}	57.0	47.0	-57.2	-62.4		
His	β	-119.0	113.0	-59.8	-81.0		
	βa	-140.0	135.0	-61.8	-81.6		
	PPII	-79.0	150.0	-67.2	-79.8		
	α_{R}	-57.0	-47.0	-179.4	85.4		
	α_{L}	57.0	47.0	-57.2	104.8		
Trp	β	-119.0	113.0	-176.4	10.5		
	βa	-140.0	135.0	-63.7	89.7		
	PPII	-79.0	150.0	-67.9	99.7		
	α_{R}	-57.0	-47.0	-69.2			
	α_{L}	57.0	47.0	-62.2			
Cys	β	-119.0	113.0	-178.5			
	βa	-140.0	135.0	-179.8			
	PPII	-79.0	150.0	-63.5			
	α_{R}	-57.0	-47.0	-66.5			
	α_{L}	57.0	47.0	-61.2			
Ser	β	-119.0	113.0	177.4			
	βa	-140.0	135.0	179.7			
	PPII	-79.0	150.0	66.9			
	α_{R}	-57.0	-47.0	-61.7			
	α_{L}	57.0	47.0	60.5			
Thr	β	-119.0	113.0	-59.9			
	βa	-140.0	135.0	-58.7			
	PPII	-79.0	150.0	61.5			
	α_{R}	-57.0	-47.0	-72.8	-19.4		
	$\alpha_{\rm L}$	57.0	47.0	-163.8	26.7		
Asn	β	-119.0	113.0	-175.7	-23.2		
	βa	-140.0	135.0	-61.8	-77.4		
	PPII	-79.0	150.0	-70.3	-22.8		
	α_{R}	-57.0	-47.0	-70.6	174.5	-4.3	
	$\alpha_{\rm L}$	57.0	47.0	-64.8	-69.0	-51.0	
Gln	β	-119.0	113.0	-178.7	180.0	5.8	
	βa	-140.0	135.0	-177.5	178.4	-4.4	
	PPII	-79.0	150.0	-61.1	-62.7	-54.3	
	α_R	-57.0	-47.0	-72.4	-12.6		
	α_{L}	57.0	47.0	-162.6	16.3		
Asp	β	-119.0	113.0	-177.6	-5.9		
	βa	-140.0	135.0	-68.3	-69.1		
	PPII	-79.0	150.0	-71.6	-12.3		

	α_R	-57.0	-47.0	-178.1	178.6	-0.7	
	$\alpha_{\rm L}$	57.0	47.0	-62.0	179.9	3.3	
Glu	β	-119.0	113.0	-177.0	179.0	3.8	
	βa	-140.0	135.0	-62.6	-178.4	-1.3	
	PPII	-79.0	150.0	-64.5	-178.2	-2.7	
	α_{R}	-57.0	-47.0	-178.3	177.1	178.0	-179.0
	$\alpha_{\rm L}$	57.0	47.0	-63.8	-179.4	-178.6	175.5
Lys	β	-119.0	113.0	-63.7	-178.4	178.5	-174.7
	βa	-140.0	135.0	-67.0	-176.3	179.9	178.8
	PPII	-79.0	150.0	-67.4	-179.2	179.3	179.4
	α_{R}	-57.0	-47.0	-70.6	178.1	-177.9	177.1
	$\alpha_{\rm L}$	57.0	47.0	-59.2	178.2	72.0	83.2
Arg	β	-119.0	113.0	-72.2	175.7	-174.8	-82.8
	βa	-140.0	135.0	-62.6	-70.2	-175.6	-87.0
	PPII	-79.0	150.0	-67.3	-177.5	178.0	-179.5

	MP2/cc-pVTZ//B3LYP/6-31G**						M05-2X/	/cc-pVTZ//	M05-2X/6-	31G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	2.24	4.26	5.29	1.76	Pro	0.00	2.23	2.59	3.55	-0.42
Gly	0.00	1.55	3.67	1.74	2.85	Gly	0.00	1.16	1.97	-0.93	0.90
Ala	0.00	2.23	3.44	1.01	2.91	Ala	0.00	1.69	1.76	-0.90	0.77
Val	0.00	3.61	2.15	0.18	3.17	Val	0.00	3.15	0.71	-1.84	1.14
Leu	0.00	3.24	3.37	0.79	3.01	Leu	0.00	2.73	1.95	-1.18	1.21
Ile	0.00	4.15	1.97	0.13	2.27	Ile	0.00	3.62	0.57	-1.79	0.44
Met	0.00	-0.12	3.05	0.87	1.53	Met	0.00	-0.76	1.62	-0.82	-0.03
Phe	0.00	-0.62	0.55	-0.91	2.69	Phe	0.00	-1.93	-1.29	-3.27	0.23
Tyr	0.00	-0.43	0.37	-0.97	2.51	Tyr	0.00	-1.63	-1.94	-3.53	0.17
His	0.00	0.05	1.28	0.13	2.32	His	0.00	-1.17	-0.53	-1.89	0.11
Trp	0.00	-0.19	2.54	-0.27	2.40	Trp	0.00	-1.71	-0.12	-2.89	-0.28
Cys	0.00	0.95	1.78	1.15	4.06	Cys	0.00	0.21	2.36	-0.59	2.26
Ser	0.00	1.33	3.90	1.13	3.62	Ser	0.00	0.38	2.52	-0.89	1.93
Thr	0.00	1.99	5.44	4.22	4.00	Thr	0.00	1.45	4.14	2.52	2.48
Asn	0.00	-0.84	1.36	1.53	3.52	Asn	0.00	-1.70	-0.47	0.22	1.75
Gln	0.00	2.06	2.63	0.43	-1.74	Gln	0.00	2.12	1.07	-1.62	-3.22
Asp	0.00	16.70	-0.44	7.01	12.97	Asp	0.00	16.99	-1.12	6.41	12.20
Glu	0.00	5.34	-0.63	2.91	7.20	Glu	0.00	4.86	-0.87	0.85	5.73
Lys	0.00	2.92	3.51	0.42	0.78	Lys	0.00	2.41	2.06	-1.54	-1.36
Arg	0.00	-4.06	-1.33	-18.48	-4.90	Arg	0.00	-4.48	-2.91	-19.64	-7.46

Table S2. Relative energies (with reference to the α_R conformation) calculated by the different methods for the five conformations of each tetrapeptide (kcal/mol).

	M05-2X-D	D ^a /cc-pVTZ	//M05-2X/6	6-31G**			M05-2X/	6-31G**//	M05-2X/6-3	31G**	
	α_{R}	$lpha_{ m L}$	β	β_a	PPII		α_{R}	α_L	β	β_a	PPII
Pro	0.00	3.18	8.51	11.03	2.74	Pro	0.00	0.99	4.03	5.10	2.39
Gly	0.00	2.35	5.10	2.57	4.24	Gly	0.00	0.23	4.08	0.85	3.11
Ala	0.00	3.27	5.01	2.46	3.97	Ala	0.00	0.35	3.69	0.95	2.79
Val	0.00	6.04	3.28	1.19	4.43	Val	0.00	1.29	2.79	-0.16	2.93
Leu	0.00	4.72	4.59	1.67	4.14	Leu	0.00	1.36	4.22	0.52	3.52
Ile	0.00	6.94	3.01	1.25	2.47	Ile	0.00	1.73	2.69	0.08	2.20
Met	0.00	0.89	4.40	2.06	2.44	Met	0.00	-2.30	3.67	1.03	2.03
Phe	0.00	0.27	0.15	-1.68	3.52	Phe	0.00	-3.40	0.21	-1.74	2.49
Tyr	0.00	0.52	-0.61	-1.95	3.64	Tyr	0.00	-3.14	-0.54	-2.42	2.33
His	0.00	0.93	0.45	-0.21	3.22	His	0.00	-2.40	0.97	-0.24	2.47
Trp	0.00	1.14	4.07	-0.68	3.67	Trp	0.00	-2.90	2.00	-0.88	2.28
Cys	0.00	2.06	5.34	2.62	5.38	Cys	0.00	-1.53	4.38	1.01	4.37
Ser	0.00	2.53	5.67	2.35	4.54	Ser	0.00	-0.88	4.54	0.83	3.89
Thr	0.00	2.86	6.84	5.46	5.04	Thr	0.00	-0.91	6.66	4.43	4.38
Asn	0.00	0.15	2.09	2.23	4.43	Asn	0.00	-3.24	1.07	1.94	3.82
Gln	0.00	3.42	4.46	1.81	-0.85	Gln	0.00	0.55	3.13	0.03	-0.88
Asp	0.00	19.77	1.82	7.96	15.01	Asp	0.00	15.29	-1.49	6.74	14.13
Glu	0.00	7.46	2.38	4.26	9.08	Glu	0.00	3.29	-1.31	2.40	7.53
Lys	0.00	5.04	3.20	1.21	1.20	Lys	0.00	1.19	4.44	0.28	1.00
Arg	0.00	-3.03	-2.11	-17.77	-4.62	Arg	0.00	-6.15	-1.22	-19.40	-5.28

	M05-2X-E	0 ^a /6-31G**/	// M05-2X/	6-31G**			PBE	/cc-pVTZ//	PBE/6-31G	**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$lpha_{ m L}$	β	β_a	PPII
Pro	0.00	1.94	9.95	12.57	5.54	Pro	0.00	2.14	-2.21	-0.41	-2.67
Gly	0.00	1.43	7.21	4.35	6.45	Gly	0.00	1.55	-3.07	-5.19	-1.10
Ala	0.00	1.93	6.94	4.31	5.99	Ala	0.00	2.27	-3.44	-5.45	-0.98
Val	0.00	4.18	5.36	2.87	6.22	Val	0.00	3.38	-4.38	-5.78	-0.95
Leu	0.00	3.34	6.86	3.37	6.44	Leu	0.00	2.87	-3.24	-5.47	-1.13
Ile	0.00	5.05	5.13	3.11	4.23	Ile	0.00	4.21	-4.41	-5.66	-1.41
Met	0.00	-0.65	6.45	3.91	4.49	Met	0.00	0.42	-3.25	-4.95	-1.42
Phe	0.00	-1.20	1.65	-0.15	5.77	Phe	0.00	-0.78	-5.32	-6.67	-2.06
Tyr	0.00	-0.99	0.79	-0.83	5.80	Tyr	0.00	-0.49	-5.15	-6.59	-2.08
His	0.00	-0.31	1.95	1.44	5.57	His	0.00	-0.49	-4.87	-6.19	-2.51
Trp	0.00	-0.05	6.19	1.32	6.23	Trp	0.00	-0.89	-4.73	-6.82	-2.69
Cys	0.00	0.32	7.36	4.21	7.49	Cys	0.00	1.29	-4.35	-4.69	0.25
Ser	0.00	1.27	7.68	4.07	6.50	Ser	0.00	1.53	-2.61	-5.06	-0.12
Thr	0.00	0.50	9.36	7.37	6.94	Thr	0.00	1.71	-1.29	-2.13	-0.12
Asn	0.00	-1.39	3.63	3.95	6.50	Asn	0.00	-0.16	-4.57	-4.11	-0.42
Gln	0.00	1.85	6.52	3.46	1.49	Gln	0.00	2.98	-3.63	-5.42	-4.07
Asp	0.00	18.07	1.44	8.28	16.93	Asp	0.00	16.24	-3.57	4.81	9.52
Glu	0.00	5.89	1.94	5.81	10.88	Glu	0.00	4.38	-5.72	-3.20	3.07
Lys	0.00	3.82	5.57	3.04	3.56	Lys	0.00	2.09	-3.38	-5.89	-3.44
Arg	0.00	-4.71	-0.42	-17.52	-2.45	Arg	0.00	-3.19	-7.08	-22.43	-8.14

	PBE-D	D ^a /cc-pVTZ	//PBE/6-31	G**			PBE/	6-31G**//	PBE/6-31G	**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	3.08	3.71	7.06	0.49	Pro	0.00	1.13	-0.40	1.52	0.41
Gly	0.00	2.75	0.06	-1.70	2.23	Gly	0.00	0.82	-0.57	-3.05	1.21
Ala	0.00	3.84	-0.19	-2.10	2.22	Ala	0.00	1.05	-1.03	-3.26	1.03
Val	0.00	6.27	-1.81	-2.76	2.34	Val	0.00	1.93	-1.80	-3.68	0.90
Leu	0.00	4.86	-0.59	-2.62	1.80	Leu	0.00	1.91	-0.42	-3.31	1.29
Ile	0.00	7.53	-1.97	-2.63	0.62	Ile	0.00	2.64	-1.84	-3.56	0.43
Met	0.00	2.07	-0.48	-2.08	1.05	Met	0.00	-0.93	-0.72	-2.77	0.56
Phe	0.00	1.41	-3.88	-5.08	1.22	Phe	0.00	-2.05	-3.26	-4.50	0.11
Tyr	0.00	1.66	-3.81	-5.00	1.40	Tyr	0.00	-1.79	-3.33	-4.47	0.05
His	0.00	1.60	-3.89	-4.51	0.60	His	0.00	-1.55	-2.61	-3.91	-0.17
Trp	0.00	1.96	-0.54	-4.61	1.26	Trp	0.00	-1.96	-2.27	-4.36	-0.31
Cys	0.00	3.14	-1.37	-1.48	3.37	Cys	0.00	-0.17	-1.92	-2.70	2.42
Ser	0.00	3.68	0.54	-1.82	2.49	Ser	0.00	0.48	-0.15	-2.88	1.92
Thr	0.00	3.12	1.41	0.81	2.45	Thr	0.00	-0.26	1.75	0.33	2.07
Asn	0.00	1.69	-2.01	-2.09	2.25	Asn	0.00	-1.60	-2.55	-2.02	1.64
Gln	0.00	4.28	-0.24	-1.99	-1.70	Gln	0.00	1.62	-1.15	-3.35	-1.74
Asp	0.00	19.01	-0.64	6.35	12.32	Asp	0.00	15.47	-3.65	6.14	11.83
Glu	0.00	6.98	-2.47	0.21	6.43	Glu	0.00	3.38	-5.57	-1.31	4.80
Lys	0.00	4.73	-2.25	-3.13	-0.88	Lys	0.00	1.16	-0.61	-3.56	-0.96
Arg	0.00	-1.75	-6.28	-20.55	-5.31	Arg	0.00	-4.86	-4.94	-22.37	-6.02

	PBE-D	0 ^a /6-31G**/	// PBE/6-31	G**			B3LYP/	cc-pVTZ//l	B3LYP/6-3	1G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		$\alpha_{\rm R}$	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	2.07	5.52	8.99	3.57	Pro	0.00	2.42	-2.93	-1.38	-4.49
Gly	0.00	2.02	2.57	0.45	4.55	Gly	0.00	1.69	-4.08	-5.94	-2.86
Ala	0.00	2.63	2.21	0.10	4.24	Ala	0.00	2.58	-4.47	-6.74	-2.64
Val	0.00	4.82	0.77	-0.66	4.18	Val	0.00	3.71	-5.40	-6.88	-2.40
Leu	0.00	3.89	2.22	-0.46	4.21	Leu	0.00	3.11	-4.31	-6.64	-2.85
Ile	0.00	5.96	0.61	-0.53	2.47	Ile	0.00	4.62	-5.48	-6.76	-3.07
Met	0.00	0.73	2.05	0.11	3.03	Met	0.00	1.02	-4.28	-6.14	-2.71
Phe	0.00	0.14	-1.82	-2.90	3.39	Phe	0.00	-0.53	-6.08	-7.71	-3.79
Tyr	0.00	0.37	-1.99	-2.88	3.52	Tyr	0.00	-0.26	-6.08	-7.58	-3.87
His	0.00	0.54	-1.63	-2.23	2.93	His	0.00	-0.37	-5.61	-7.23	-4.26
Trp	0.00	0.89	1.92	-2.15	3.64	Trp	0.00	-0.90	-5.95	-8.09	-4.62
Cys	0.00	1.68	1.06	0.50	5.54	Cys	0.00	1.35	-5.35	-5.89	-1.55
Ser	0.00	2.63	2.99	0.36	4.53	Ser	0.00	1.47	-3.90	-6.50	-1.66
Thr	0.00	1.15	4.45	3.27	4.63	Thr	0.00	2.10	-2.49	-3.33	-1.75
Asn	0.00	0.24	0.01	0.00	4.31	Asn	0.00	-0.05	-5.70	-5.10	-2.13
Gln	0.00	2.92	2.24	0.07	0.63	Gln	0.00	3.54	-4.64	-6.61	-5.46
Asp	0.00	18.24	-0.71	7.68	14.63	Asp	0.00	17.18	-3.72	4.40	8.86
Glu	0.00	5.98	-2.32	2.11	8.15	Glu	0.00	4.60	-5.11	-4.13	1.78
Lys	0.00	3.80	0.53	-0.80	1.60	Lys	0.00	2.40	-4.45	-7.11	-5.27
Arg	0.00	-3.42	-4.14	-20.49	-3.19	Arg	0.00	-2.66	-7.97	-22.63	-9.99

	B3LYP-D	D ^a /cc-pVTZ	//B3LYP/6-	31G**			B3LYP/	6-31G**//	B3LYP/6-3	1G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	3.36	2.99	6.09	-1.33	Pro	0.00	1.50	-1.06	0.59	-1.38
Gly	0.00	2.89	-0.95	-2.45	0.48	Gly	0.00	1.01	-1.53	-3.59	-0.39
Ala	0.00	4.15	-1.23	-3.38	0.56	Ala	0.00	1.39	-2.04	-4.49	-0.43
Val	0.00	6.60	-2.83	-3.86	0.88	Val	0.00	2.38	-2.79	-4.71	-0.38
Leu	0.00	5.09	-1.66	-3.79	0.07	Leu	0.00	2.23	-1.47	-4.40	-0.24
Ile	0.00	7.93	-3.03	-3.73	-1.04	Ile	0.00	3.16	-2.87	-4.60	-0.97
Met	0.00	2.67	-1.51	-3.27	-0.24	Met	0.00	-0.29	-1.75	-3.94	-0.58
Phe	0.00	1.67	-4.64	-6.12	-0.51	Phe	0.00	-1.59	-3.90	-5.43	-1.41
Tyr	0.00	1.89	-4.74	-5.99	-0.39	Tyr	0.00	-1.34	-3.74	-5.34	-1.50
His	0.00	1.72	-4.63	-5.55	-1.15	His	0.00	-1.26	-3.21	-4.86	-1.68
Trp	0.00	1.95	-1.75	-5.89	-0.68	Trp	0.00	-1.77	-3.24	-5.53	-1.97
Cys	0.00	3.20	-2.38	-2.68	1.57	Cys	0.00	-0.03	-2.89	-3.87	0.77
Ser	0.00	3.62	-0.75	-3.26	0.95	Ser	0.00	0.47	-1.44	-4.29	0.49
Thr	0.00	3.51	0.21	-0.40	0.82	Thr	0.00	0.23	0.59	-0.80	0.58
Asn	0.00	1.80	-3.13	-3.08	0.54	Asn	0.00	-1.50	-3.69	-2.96	0.13
Gln	0.00	4.83	-1.25	-3.18	-3.09	Gln	0.00	2.19	-2.15	-4.51	-3.00
Asp	0.00	19.96	-0.79	5.94	11.66	Asp	0.00	16.39	-3.84	5.45	11.24
Glu	0.00	7.20	-1.86	-0.72	5.13	Glu	0.00	3.80	-4.67	-2.02	3.96
Lys	0.00	5.04	-3.31	-4.35	-2.70	Lys	0.00	1.59	-1.61	-4.68	-2.60
Arg	0.00	-1.22	-7.17	-20.76	-7.16	Arg	0.00	-4.20	-5.77	-22.45	-7.73

	B3LYP-D	0 ^a /6-31G**/	// B3LYP/6-	-31G**				AM1//	AM1		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{ m L}$	β	β_a	PPII
Pro	0.00	2.44	4.86	8.07	1.78	Pro	0.00	3.31	-1.94	1.60	-1.55
Gly	0.00	2.21	1.60	-0.09	2.95	Gly	0.00	3.38	-2.81	-2.66	-1.85
Ala	0.00	2.97	1.21	-1.13	2.77	Ala	0.00	5.34	-2.33	-2.24	-1.53
Val	0.00	5.27	-0.22	-1.69	2.91	Val	0.00	6.77	-2.69	-2.08	-1.17
Leu	0.00	4.21	1.18	-1.55	2.69	Leu	0.00	4.36	-2.52	-3.24	-2.39
Ile	0.00	6.47	-0.42	-1.56	1.07	Ile	0.00	7.47	-2.62	-1.98	-2.46
Met	0.00	1.36	1.02	-1.07	1.89	Met	0.00	5.13	-1.14	-0.77	-0.08
Phe	0.00	0.61	-2.46	-3.84	1.88	Phe	0.00	1.09	-5.42	-4.54	-4.05
Tyr	0.00	0.81	-2.40	-3.75	1.98	Tyr	0.00	1.22	-5.34	-4.38	-4.12
His	0.00	0.83	-2.23	-3.17	1.42	His	0.00	1.10	-4.70	-3.72	-4.04
Trp	0.00	1.08	0.95	-3.32	1.97	Trp	0.00	0.66	-4.15	-4.69	-4.60
Cys	0.00	1.82	0.09	-0.67	3.88	Cys	0.00	3.79	-2.11	-1.67	0.01
Ser	0.00	2.62	1.70	-1.05	3.10	Ser	0.00	5.97	-0.53	1.29	-0.46
Thr	0.00	1.64	3.29	2.13	3.14	Thr	0.00	5.45	0.92	2.02	1.25
Asn	0.00	0.35	-1.13	-0.94	2.81	Asn	0.00	5.26	-1.24	-0.94	-0.24
Gln	0.00	3.49	1.24	-1.08	-0.63	Gln	0.00	6.70	-1.60	-1.41	-2.08
Asp	0.00	19.17	-0.91	6.99	14.04	Asp	0.00	21.23	-0.93	5.15	8.83
Glu	0.00	6.40	-1.42	1.39	7.32	Glu	0.00	5.26	-3.18	-2.75	0.69
Lys	0.00	4.22	-0.47	-1.92	-0.03	Lys	0.00	5.00	-2.14	-2.85	-3.90
Arg	0.00	-2.75	-4.97	-20.57	-4.90	Arg	0.00	0.70	-5.10	-12.02	-7.15

		AM1-D ^a /	// AM1					PM3//	PM3		
	α_{R}	$lpha_{ m L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	4.25	3.98	9.07	1.61	Pro	0.00	4.04	-7.11	-5.93	-9.23
Gly	0.00	4.57	0.33	0.83	1.49	Gly	0.00	3.14	-4.79	-6.35	-9.98
Ala	0.00	6.91	0.91	1.12	1.68	Ala	0.00	4.75	-6.77	-7.15	-10.09
Val	0.00	9.66	-0.12	0.94	2.12	Val	0.00	5.70	-8.05	-7.80	-9.87
Leu	0.00	6.34	0.12	-0.39	0.54	Leu	0.00	2.85	-8.00	-8.65	-11.77
Ile	0.00	10.79	-0.17	1.05	-0.42	Ile	0.00	6.70	-7.84	-7.73	-10.74
Met	0.00	6.78	1.64	2.10	2.38	Met	0.00	5.09	-5.84	-6.09	-8.53
Phe	0.00	3.29	-3.98	-2.95	-0.77	Phe	0.00	1.39	-8.41	-8.91	-12.01
Tyr	0.00	3.37	-4.01	-2.80	-0.64	Tyr	0.00	1.55	-9.02	-8.78	-12.06
His	0.00	3.20	-3.72	-2.04	-0.93	His	0.00	2.36	-8.77	-8.42	-11.96
Trp	0.00	3.51	0.04	-2.49	-0.65	Trp	0.00	1.12	-7.86	-9.26	-12.64
Cys	0.00	5.64	0.87	1.54	3.13	Cys	0.00	3.46	-6.70	-5.82	-8.12
Ser	0.00	8.12	2.62	4.53	2.15	Ser	0.00	5.14	-1.93	-5.66	-7.07
Thr	0.00	6.86	3.62	4.96	3.82	Thr	0.00	2.93	-6.59	-6.45	-9.79
Asn	0.00	7.11	1.32	1.08	2.44	Asn	0.00	5.11	-4.98	-5.12	-8.23
Gln	0.00	8.00	1.79	2.02	0.29	Gln	0.00	6.25	-6.18	-6.32	-10.20
Asp	0.00	24.00	2.01	6.69	11.63	Asp	0.00	20.33	-5.20	-3.56	0.62
Glu	0.00	7.86	0.07	0.66	4.04	Glu	0.00	4.14	-7.12	-7.32	-6.69
Lys	0.00	7.64	-1.00	-0.09	-1.34	Lys	0.00	5.46	-6.85	-7.63	-12.11
Arg	0.00	2.14	-4.30	-10.15	-4.32	Arg	0.00	1.77	-9.69	-17.60	-14.32

		PM3-D ^a /	// PM3					PM3MM//	PM3MM		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$lpha_{ m L}$	β	β_a	PPII
Pro	0.00	4.98	-1.19	1.54	-6.07	Pro	0.00	4.57	-7.64	-6.21	-8.75
Gly	0.00	4.33	-1.65	-2.85	-6.64	Gly	0.00	3.57	-7.73	-7.80	-9.53
Ala	0.00	6.33	-3.52	-3.79	-6.89	Ala	0.00	5.45	-7.71	-7.95	-9.43
Val	0.00	8.59	-5.48	-4.78	-6.58	Val	0.00	6.45	-8.68	-8.21	-9.14
Leu	0.00	4.83	-5.36	-5.80	-8.85	Leu	0.00	3.71	-8.76	-9.10	-10.98
Ile	0.00	10.02	-5.39	-4.70	-8.70	Ile	0.00	7.34	-8.58	-8.21	-9.98
Met	0.00	6.74	-3.06	-3.21	-6.06	Met	0.00	5.44	-6.77	-6.81	-7.81
Phe	0.00	3.58	-6.97	-7.32	-8.72	Phe	0.00	2.15	-10.09	-9.45	-11.48
Tyr	0.00	3.70	-7.68	-7.19	-8.59	Tyr	0.00	2.29	-9.96	-9.25	-11.54
His	0.00	4.46	-7.79	-6.74	-8.85	His	0.00	2.91	-9.31	-8.67	-11.45
Trp	0.00	3.97	-3.67	-7.06	-8.69	Trp	0.00	1.86	-8.79	-9.50	-12.12
Cys	0.00	5.31	-3.72	-2.61	-5.00	Cys	0.00	3.95	-7.90	-8.01	-7.80
Ser	0.00	7.29	1.22	-2.42	-4.46	Ser	0.00	6.15	-6.42	-4.74	-8.35
Thr	0.00	4.34	-3.89	-3.51	-7.22	Thr	0.00	3.88	-7.88	-9.55	-8.88
Asn	0.00	6.96	-2.42	-3.11	-5.55	Asn	0.00	5.33	-7.39	-6.49	-8.31
Gln	0.00	7.55	-2.80	-2.89	-7.83	Gln	0.00	6.95	-7.29	-7.59	-9.93
Asp	0.00	23.11	-2.26	-2.02	3.42	Asp	0.00	17.61	-4.05	-2.19	0.52
Glu	0.00	6.74	-3.87	-3.91	-3.33	Glu	0.00	6.73	-6.70	-6.66	-5.26
Lys	0.00	8.09	-5.71	-4.87	-9.54	Lys	0.00	5.35	-8.89	-9.50	-12.46
Arg	0.00	3.22	-8.90	-15.73	-11.49	Arg	0.00	1.22	-12.15	-19.96	-15.27

	P	M3MM-D ^a	// PM3MM				A	MOEBA//	AMOEBA		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{ m L}$	β	β_a	PPII
Pro	0.00	5.51	-1.72	1.26	-5.59	Pro	0.00	1.61	9.86	14.31	1.46
Gly	0.00	4.77	-4.59	-4.30	-6.19	Gly	0.00	0.99	3.94	1.99	1.44
Ala	0.00	7.02	-4.46	-4.59	-6.22	Ala	0.00	1.25	3.48	1.23	1.39
Val	0.00	9.34	-6.11	-5.19	-5.85	Val	0.00	2.63	3.38	2.12	0.84
Leu	0.00	5.69	-6.11	-6.25	-8.06	Leu	0.00	2.46	3.47	1.99	1.88
Ile	0.00	10.66	-6.14	-5.18	-7.94	Ile	0.00	3.07	3.26	2.25	1.67
Met	0.00	7.09	-4.00	-3.94	-5.34	Met	0.00	0.13	4.12	1.75	1.37
Phe	0.00	4.35	-8.65	-7.86	-8.19	Phe	0.00	-1.07	1.31	0.13	2.69
Tyr	0.00	4.45	-8.63	-7.66	-8.06	Tyr	0.00	-1.22	0.72	-0.33	2.48
His	0.00	5.01	-8.33	-6.99	-8.34	His	0.00	-2.89	-1.80	-3.12	-1.80
Trp	0.00	4.72	-4.60	-7.29	-8.17	Trp	0.00	-1.52	3.28	0.05	0.49
Cys	0.00	5.80	-4.92	-4.80	-4.68	Cys	0.00	-0.93	0.71	0.62	1.65
Ser	0.00	8.30	-3.27	-1.50	-5.74	Ser	0.00	-0.44	5.33	1.94	4.41
Thr	0.00	5.29	-5.17	-6.61	-6.32	Thr	0.00	1.62	3.29	2.65	-1.32
Asn	0.00	7.18	-4.83	-4.48	-5.64	Asn	0.00	-1.94	-0.49	-2.92	1.49
Gln	0.00	8.24	-3.91	-4.16	-7.56	Gln	0.00	3.14	2.04	-0.06	-2.02
Asp	0.00	20.39	-1.12	-0.64	3.33	Asp	0.00	12.41	4.99	7.37	11.94
Glu	0.00	9.33	-3.45	-3.25	-1.90	Glu	0.00	3.87	3.38	5.10	5.67
Lys	0.00	7.98	-7.75	-6.74	-9.90	Lys	0.00	-0.50	1.19	-0.58	-2.87
Arg	0.00	2.66	-11.35	-18.09	-12.44	Arg	0.00	-3.11	0.08	-16.95	-5.49

	AN	MBEREP//	AMBEREP)			AMI	BERPOL//	AMBERPC	DL	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_R	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	51.32	11.11	12.11	4.41	Pro	0.00	8.11	12.69	14.13	3.58
Gly	0.00	7.37	3.05	-0.16	4.71	Gly	0.00	7.13	4.54	2.34	2.22
Ala	0.00	11.42	5.05	1.84	4.75	Ala	0.00	11.09	6.32	3.54	3.19
Val	0.00	11.25	3.02	0.31	4.09	Val	0.00	10.51	3.99	1.83	2.76
Leu	0.00	12.23	5.46	1.11	4.92	Leu	0.00	11.79	6.57	2.61	3.57
Ile	0.00	14.42	3.48	0.71	3.17	Ile	0.00	13.97	4.76	2.47	1.84
Met	0.00	9.55	5.50	2.35	5.07	Met	0.00	10.07	6.63	4.01	3.66
Phe	0.00	9.31	2.25	0.03	4.51	Phe	0.00	8.70	3.15	1.41	3.19
Tyr	0.00	8.93	1.48	-0.70	4.50	Tyr	0.00	9.00	2.63	1.15	2.94
His	0.00	5.51	-0.09	-0.75	1.84	His	0.00	6.70	1.68	0.99	1.28
Trp	0.00	11.61	6.42	1.91	5.25	Trp	0.00	10.70	7.54	3.29	3.87
Cys	0.00	11.47	7.06	3.31	5.28	Cys	0.00	9.88	6.28	3.12	3.90
Ser	0.00	9.96	5.92	1.69	5.86	Ser	0.00	9.04	6.52	2.73	4.20
Thr	0.00	11.63	7.58	5.75	3.51	Thr	0.00	13.99	8.74	7.43	4.30
Asn	0.00	10.82	3.90	-0.07	5.60	Asn	0.00	8.81	3.42	0.22	3.48
Gln	0.00	10.70	4.54	1.44	-0.66	Gln	0.00	10.18	5.38	2.78	-2.17
Asp	0.00	20.54	3.00	6.67	15.75	Asp	0.00	19.09	3.10	7.13	13.64
Glu	0.00	18.62	7.19	5.90	12.90	Glu	0.00	17.50	7.72	7.12	10.92
Lys	0.00	11.91	3.75	0.24	1.44	Lys	0.00	11.67	4.44	2.14	0.62
Arg	0.00	5.28	-0.53	-13.93	-3.50	Arg	0.00	6.03	0.91	-12.19	-3.92

	A	MBER94//	AMBER94				Al	MBER96//	AMBER96		
	α_{R}	$lpha_{ m L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	8.42	11.52	16.08	5.30	Pro	0.00	8.42	2.96	6.10	-0.49
Gly	0.00	7.82	6.77	5.16	4.36	Gly	0.00	7.82	-1.79	-4.82	-1.44
Ala	0.00	12.36	8.39	6.28	5.01	Ala	0.00	12.36	-0.17	-3.69	-0.78
Val	0.00	12.10	6.13	4.49	4.89	Val	0.00	12.10	-2.43	-5.49	-0.91
Leu	0.00	13.14	7.54	6.56	6.02	Leu	0.00	13.14	-1.02	-3.41	0.22
Ile	0.00	12.82	5.87	4.49	2.20	Ile	0.00	12.82	-2.69	-5.49	-3.59
Met	0.00	9.25	8.41	6.17	5.25	Met	0.00	9.25	-0.15	-3.81	-0.54
Phe	0.00	10.09	5.27	4.25	5.17	Phe	0.00	10.09	-3.29	-5.73	-0.62
Tyr	0.00	9.42	4.54	3.81	4.74	Tyr	0.00	9.43	-4.02	-6.16	-1.06
His	0.00	9.46	5.81	5.88	4.64	His	0.00	9.46	-2.75	-4.10	-1.15
Trp	0.00	10.01	8.60	5.10	5.00	Trp	0.00	10.01	0.04	-4.88	-0.79
Cys	0.00	9.44	9.24	6.63	5.88	Cys	0.00	9.44	0.68	-3.35	0.08
Ser	0.00	7.70	9.44	6.37	4.93	Ser	0.00	7.70	0.88	-3.61	-0.86
Thr	0.00	12.14	9.66	9.02	7.70	Thr	0.00	12.14	1.10	-0.96	1.90
Asn	0.00	6.57	3.44	5.29	4.94	Asn	0.00	6.57	-5.12	-4.69	-0.85
Gln	0.00	13.64	8.34	6.16	0.59	Gln	0.00	13.64	-0.22	-3.82	-5.20
Asp	0.00	23.34	7.40	12.51	18.19	Asp	0.00	23.34	-1.16	2.53	12.40
Glu	0.00	17.86	10.60	9.38	13.51	Glu	0.00	17.86	2.04	-0.60	7.71
Lys	0.00	11.76	7.88	5.81	1.67	Lys	0.00	11.76	-0.68	-4.17	-4.12
Arg	0.00	6.22	3.64	-8.18	-3.48	Arg	0.00	6.22	-4.92	-18.15	-9.27

	A	MBER99//	AMBER99				AMB	ER99SB//	AMBER99	SB	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	6.39	10.33	11.20	5.01	Pro	0.00	2.77	4.22	4.50	-3.75
Gly	0.00	5.81	6.34	0.77	4.28	Gly	0.00	1.58	0.71	-2.98	-3.40
Ala	0.00	9.38	7.22	1.46	4.73	Ala	0.00	3.08	0.38	-3.78	-3.43
Val	0.00	9.08	4.94	-0.34	4.60	Val	0.00	2.78	-1.90	-5.60	-3.61
Leu	0.00	10.17	6.36	1.82	5.76	Leu	0.00	3.91	-0.47	-3.42	-2.39
Ile	0.00	9.62	4.64	-0.39	1.88	Ile	0.00	3.33	-2.19	-5.64	-6.47
Met	0.00	6.25	7.22	1.33	4.98	Met	0.00	-0.03	0.39	-3.90	-3.15
Phe	0.00	7.11	4.09	-0.58	4.89	Phe	0.00	0.83	-2.73	-5.80	-3.23
Tyr	0.00	6.45	3.36	-1.01	4.45	Tyr	0.00	0.16	-3.45	-6.20	-3.69
His	0.00	6.48	4.62	1.06	4.37	His	0.00	0.17	-2.22	-4.18	-3.90
Trp	0.00	7.04	7.41	0.27	4.72	Trp	0.00	0.77	0.57	-4.92	-3.44
Cys	0.00	6.45	8.07	1.82	5.59	Cys	0.00	0.18	1.07	-3.41	-2.48
Ser	0.00	4.69	8.28	1.56	4.68	Ser	0.00	-1.58	1.41	-3.73	-3.50
Thr	0.00	9.02	8.47	4.18	7.41	Thr	0.00	1.84	1.04	-1.67	-1.93
Asn	0.00	3.56	2.25	1.22	4.67	Asn	0.00	-2.52	-4.48	-3.64	-3.36
Gln	0.00	11.35	7.17	1.34	0.97	Gln	0.00	5.92	0.36	-3.90	-6.56
Asp	0.00	20.20	6.42	7.68	17.90	Asp	0.00	13.93	-0.30	2.54	9.79
Glu	0.00	15.25	9.42	4.56	13.24	Glu	0.00	8.76	2.60	-0.69	5.03
Lys	0.00	8.81	6.68	0.96	1.37	Lys	0.00	2.58	-0.14	-4.29	-6.81
Arg	0.00	3.32	2.44	-12.82	-3.78	Arg	0.00	-2.93	-4.38	-17.99	-11.98

	A	MBER03//	AMBER03				CHA	RMM27//	CHARMM	27	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	9.90	7.51	5.76	-1.82	Pro	0.00	13.34	5.21	7.31	-2.51
Gly	0.00	8.39	1.96	-0.91	-1.23	Gly	0.00	13.21	-1.21	-2.21	-0.90
Ala	0.00	13.55	2.44	-1.43	-1.28	Ala	0.00	20.28	1.75	0.67	-0.53
Val	0.00	10.51	-0.97	-4.48	-1.35	Val	0.00	21.74	0.06	0.04	-0.45
Leu	0.00	14.37	1.89	-0.98	-0.89	Leu	0.00	19.86	0.67	0.42	-1.16
Ile	0.00	14.77	-2.36	-5.55	-5.37	Ile	0.00	22.58	-0.08	0.10	-2.27
Met	0.00	9.41	3.55	-0.43	-0.93	Met	0.00	18.41	1.53	0.37	-0.82
Phe	0.00	9.73	0.43	-2.22	-0.38	Phe	0.00	15.52	-2.83	-2.73	-2.67
Tyr	0.00	11.86	3.34	1.00	2.43	Tyr	0.00	15.48	-3.25	-2.95	-2.87
His	0.00	11.46	5.12	3.46	2.48	His	0.00	11.91	-2.56	-1.90	-3.91
Trp	0.00	10.76	5.23	1.26	2.43	Trp	0.00	16.21	0.10	-1.41	-1.71
Cys	0.00	10.24	3.66	-0.55	-0.22	Cys	0.00	17.63	1.57	0.46	-0.41
Ser	0.00	11.29	3.46	-1.54	-0.65	Ser	0.00	16.24	2.18	0.12	2.27
Thr	0.00	12.68	1.75	0.25	-3.68	Thr	0.00	20.99	2.62	3.53	1.19
Asn	0.00	6.19	-0.84	0.28	0.33	Asn	0.00	16.71	0.84	-0.64	-0.80
Gln	0.00	16.82	-0.81	-5.12	-7.59	Gln	0.00	21.90	1.34	0.23	-4.22
Asp	0.00	25.97	3.59	5.55	14.11	Asp	0.00	38.08	10.54	11.94	14.49
Glu	0.00	17.18	1.67	-2.60	3.68	Glu	0.00	26.89	6.07	6.37	7.91
Lys	0.00	5.15	-2.27	-5.34	-9.72	Lys	0.00	18.59	-0.13	-1.03	-4.51
Arg	0.00	2.62	-2.54	-12.79	-10.80	Arg	0.00	12.97	-4.56	-14.61	-10.39

	C	PLS-AA//	OPLS-AA				OPI	S-AA/L//	OPLS-AA/	Ĺ	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	3.09	3.54	12.46	-2.43	Pro	0.00	4.02	4.66	13.19	-3.77
Gly	0.00	3.62	-1.19	-3.05	-1.12	Gly	0.00	4.47	-6.20	-8.06	-3.52
Ala	0.00	5.83	-1.60	-3.20	-1.57	Ala	0.00	7.14	-0.02	-3.09	-2.40
Val	0.00	6.60	-2.99	-3.98	-2.03	Val	0.00	7.90	-1.36	-3.86	-2.40
Leu	0.00	5.44	-2.62	-3.79	-2.17	Leu	0.00	6.33	-0.95	-3.84	-3.40
Ile	0.00	7.54	-3.22	-3.96	-4.99	Ile	0.00	9.03	-1.57	-3.80	-2.39
Met	0.00	5.20	-2.07	-3.79	0.81	Met	0.00	6.55	-0.62	-3.71	-0.02
Phe	0.00	0.10	-6.09	-6.24	-3.78	Phe	0.00	1.39	-4.52	-5.90	-4.68
Tyr	0.00	0.07	-6.46	-6.41	-3.95	Tyr	0.00	1.33	-4.91	-6.03	-4.84
His	0.00	0.76	-4.71	-4.52	-3.46	His	0.00	1.20	-3.37	-4.27	-4.30
Trp	0.00	4.47	-2.88	-2.65	-0.76	Trp	0.00	4.83	-1.37	-3.03	-2.18
Cys	0.00	2.21	-2.90	-4.24	-1.07	Cys	0.00	3.63	-2.60	-5.50	-1.89
Ser	0.00	2.21	-1.71	-4.18	-0.56	Ser	0.00	3.62	-0.09	-4.38	-5.04
Thr	0.00	3.17	-0.12	-0.11	-2.82	Thr	0.00	5.03	1.54	0.29	-3.00
Asn	0.00	-2.32	-8.79	-3.64	-1.58	Asn	0.00	1.74	-3.93	-5.43	-2.73
Gln	0.00	4.93	-0.55	-2.33	-7.70	Gln	0.00	6.50	-0.81	-3.53	-7.65
Asp	0.00	14.77	-3.64	9.03	12.51	Asp	0.00	20.51	3.89	10.44	13.03
Glu	0.00	9.86	1.98	0.19	4.70	Glu	0.00	15.09	3.70	4.08	7.59
Lys	0.00	4.01	-4.57	-6.18	-6.59	Lys	0.00	5.99	-2.22	-5.15	-6.53
Arg	0.00	0.14	-7.13	-17.02	-10.92	Arg	0.00	0.79	-5.87	-17.37	-12.09

	AN	/BERUA//	AMBERUA	ł			GROMOS	S(G43b1)//	GROMOS(G43b1)	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	55.22	5.40	7.20	-2.92	Pro	0.00	44.79	0.67	5.04	-3.81
Gly	0.00	10.62	1.65	-1.42	-1.26	Gly	0.00	4.14	-5.30	-4.95	-3.11
Ala	0.00	16.62	4.73	0.82	0.77	Ala	0.00	6.46	-5.27	-4.97	-2.93
Val	0.00	11.95	1.88	-1.42	-1.72	Val	0.00	6.24	-6.22	-5.12	-3.59
Leu	0.00	17.60	4.72	1.17	1.54	Leu	0.00	5.79	-5.70	-5.76	-3.18
Ile	0.00	15.78	3.12	-0.06	-0.77	Ile	0.00	7.63	-6.27	-4.99	-4.21
Met	0.00	12.09	4.54	0.93	0.43	Met	0.00	5.84	-5.07	-4.52	-3.10
Phe	0.00	13.25	1.69	-1.18	0.28	Phe	0.00	4.87	-7.96	-7.25	-2.74
Tyr	0.00	15.97	5.34	2.78	4.17	Tyr	0.00	4.92	-8.21	-7.89	-2.51
His	0.00	13.62	3.31	1.23	0.67	His	0.00	5.11	-6.48	-5.53	-3.96
Trp	0.00	14.10	5.97	1.30	1.69	Trp	0.00	6.90	-2.68	-4.73	-1.99
Cys	0.00	14.04	5.59	1.50	1.83	Cys	0.00	5.77	-5.41	-5.21	-3.08
Ser	0.00	13.23	6.50	1.79	4.70	Ser	0.00	6.08	-3.40	-3.93	-0.77
Thr	0.00	17.71	4.31	1.89	2.56	Thr	0.00	4.14	-3.05	-1.94	-2.14
Asn	0.00	9.58	-0.88	-0.04	-0.08	Asn	0.00	4.40	-6.38	-6.34	-3.07
Gln	0.00	16.89	3.27	-0.82	-5.87	Gln	0.00	7.34	-4.62	-4.19	-7.52
Asp	0.00	28.58	3.09	7.49	13.20	Asp	0.00	-0.68	-7.73	-6.83	-7.50
Glu	0.00	18.20	4.05	0.98	5.68	Glu	0.00	6.04	2.47	-5.06	-3.50
Lys	0.00	14.22	4.67	0.91	-1.66	Lys	0.00	4.93	-6.96	-6.13	-4.16
Arg	0.00	5.47	-1.65	-12.97	-9.12	Arg	0.00	7.10	-4.59	-5.20	-2.88

	GROMO	S(G45a3)//	GROMOS(G45a3)			GROMOS	S(G53a6)//	GROMOS	(G53a6)	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	42.57	-0.42	3.85	-4.43	Pro	0.00	44.77	-0.21	16.41	-6.06
Gly	0.00	2.45	-5.74	-5.37	-3.23	Gly	0.00	2.36	-8.57	-8.69	-5.15
Ala	0.00	3.93	-5.84	-5.52	-2.98	Ala	0.00	3.92	-8.67	-8.81	-4.97
Val	0.00	5.36	-6.64	-5.36	-3.56	Val	0.00	5.64	-9.51	-8.45	-5.26
Leu	0.00	3.39	-6.44	-5.75	-3.01	Leu	0.00	3.12	-9.46	-9.02	-6.23
Ile	0.00	6.27	-6.61	-5.05	-3.61	Ile	0.00	6.61	-9.47	-8.11	-5.78
Met	0.00	4.20	-5.51	-4.85	-2.92	Met	0.00	2.02	-6.96	-6.81	-3.59
Phe	0.00	2.75	-8.68	-7.84	-2.98	Phe	0.00	1.85	-11.63	-10.88	-5.42
Tyr	0.00	2.91	-8.85	-8.13	-2.64	Tyr	0.00	2.07	-11.80	-11.18	-5.05
His	0.00	3.04	-7.07	-5.31	-4.14	His	0.00	2.77	-10.45	-7.78	-5.19
Trp	0.00	4.81	-3.18	-5.21	-2.29	Trp	0.00	4.04	-6.31	-8.09	-5.03
Cys	0.00	3.79	-5.93	-5.62	-3.14	Cys	0.00	1.78	-8.33	-8.83	-4.35
Ser	0.00	4.08	-3.90	-4.35	-0.77	Ser	0.00	3.00	-6.17	-7.26	-4.04
Thr	0.00	3.27	-3.58	-2.22	-1.81	Thr	0.00	4.26	-5.49	-4.13	-5.39
Asn	0.00	2.45	-6.82	-6.79	-3.13	Asn	0.00	2.43	-9.75	-7.49	-4.91
Gln	0.00	5.79	-5.17	-4.56	-6.96	Gln	0.00	7.54	-7.45	-7.36	-9.85
Asp	0.00	17.26	0.92	-1.14	2.00	Asp	0.00	20.61	-1.39	-1.65	3.44
Glu	0.00	8.07	5.54	-3.62	-0.88	Glu	0.00	7.56	0.40	-6.29	-1.32
Lys	0.00	2.32	-6.68	-5.20	-3.77	Lys	0.00	2.94	-8.83	-8.08	-6.30
Arg	0.00	-1.14	-8.73	-11.09	-7.22	Arg	0.00	-1.74	-12.16	-16.21	-10.85

Table S3a. Energy offset (E_c) (kcal/mol) for each tetrapeptide obtained from Eq. 2 in minimizing RMS over the 5 conformations.

	Pro	Gly	Ala	Val	Leu	Ile	Met	Phe	Tyr	His	Trp	Cys	Ser	Thr	Asn	Gln	Asp	Glu	Lys	Arg
M05-2X/cc-pVTZ	1.12	1.34	1.25	1.19	1.14	1.14	1.06	1.59	1.69	1.45	1.90	0.74	1.21	1.01	1.16	1.01	0.35	0.85	1.22	1.14
M05-2X-D ^a /cc-pVTZ	-2.38	-0.89	-1.02	-1.17	-0.94	-1.03	-0.89	-0.11	-0.03	-0.12	-0.74	-1.49	-1.02	-0.91	-0.66	-1.09	-1.66	-1.67	-0.60	-0.25
M05-2X/6-31G**	0.21	0.31	0.36	0.45	0.16	0.37	0.18	0.83	1.05	0.60	0.80	-0.06	0.32	0.22	0.40	0.11	0.32	0.58	0.15	0.65
M05-2X-D ^a /6-31G**	-3.29	-1.92	-1.92	-1.90	-1.92	-1.80	-1.77	-0.87	-0.66	-0.98	-1.84	-2.29	-1.91	-1.70	-1.42	-1.99	-1.70	-1.94	-1.67	-0.74
PBE/cc-pVTZ	3.34	3.53	3.44	3.37	3.47	3.16	2.91	3.31	3.16	3.57	3.92	3.09	3.25	3.50	2.97	2.70	1.85	3.26	3.65	2.41
PBE-D ^a /cc-pVTZ	-0.16	1.29	1.16	1.01	1.39	1.00	0.95	1.60	1.45	2.00	1.28	0.86	1.02	1.57	1.15	0.61	-0.16	0.74	1.84	1.02
PBE/6-31G**	2.18	2.28	2.36	2.35	2.19	2.17	1.84	2.28	2.20	2.40	2.67	2.06	2.12	2.35	2.02	1.60	1.29	2.70	2.32	1.88
PBE-D ^a /6-31G**	-1.32	0.05	0.08	0.00	0.11	0.01	-0.12	0.58	0.49	0.83	0.04	-0.17	-0.11	0.43	0.20	-0.50	-0.72	0.18	0.50	0.49
B3LYP/cc-pVTZ	3.99	4.20	4.17	4.02	4.22	3.85	3.49	3.96	3.85	4.25	4.81	3.88	4.11	4.23	3.71	3.31	1.91	3.54	4.41	2.90
B3LYP-D ^a /cc-pVTZ	0.49	1.97	1.89	1.66	2.14	1.68	1.54	2.26	2.14	2.68	2.17	1.65	1.88	2.30	1.89	1.21	-0.11	1.01	2.59	1.51
B3LYP/6-31G**	2.78	2.86	3.03	2.92	2.86	2.76	2.38	2.81	2.68	2.96	3.40	2.80	2.95	3.01	2.72	2.17	1.40	2.75	2.99	2.27
B3LYP-D ^a /6-31G**	-0.72	0.63	0.75	0.57	0.78	0.59	0.43	1.10	0.97	1.39	0.76	0.56	0.72	1.09	0.90	0.07	-0.61	0.23	1.17	0.88
AM1	2.43	2.75	2.07	1.65	2.84	1.62	0.44	2.92	2.82	3.03	3.45	1.58	0.74	1.21	0.55	0.35	0.39	2.96	2.30	-1.04
AM1-D ^a	-1.07	0.52	-0.21	-0.70	0.76	-0.54	-1.51	1.22	1.11	1.45	0.81	-0.65	-1.49	-0.72	-1.27	-1.74	-1.62	0.44	0.49	-2.43
PM3	6.36	5.56	5.77	5.82	7.20	5.63	4.14	5.93	5.96	6.11	6.62	5.03	3.90	7.11	3.76	3.97	4.81	6.36	5.75	2.22
PM3-D ^a	2.86	3.33	3.49	3.47	5.12	3.46	2.19	4.23	4.25	4.54	3.99	2.80	1.67	5.19	1.94	1.87	2.80	3.84	3.94	0.82
PM3MM	6.31	6.26	5.84	5.74	7.11	5.59	4.26	6.12	5.99	6.06	6.60	5.54	4.67	7.62	4.49	4.25	4.87	5.34	6.63	3.48
PM3MM-D ^a	2.82	4.03	3.57	3.38	5.03	3.43	2.30	4.41	4.28	4.49	3.96	3.31	2.44	5.69	2.67	2.15	2.86	2.82	4.81	2.09
AMOEBA	-2.74	0.29	0.45	0.03	0.12	-0.34	-0.41	-0.27	-0.03	2.68	0.43	1.18	-0.25	1.88	1.89	0.06	-0.09	-0.64	2.08	-0.66
AMBEREP	-13.08	-1.03	-2.70	-1.91	-2.66	-2.65	-3.43	-2.88	-2.55	-0.55	-4.14	-3.84	-2.69	-2.56	-2.93	-2.53	-1.94	-5.96	-1.94	-3.22
AMBERPOL	-4.99	-1.28	-2.91	-2.00	-2.83	-2.90	-3.81	-2.95	-2.85	-1.37	-4.18	-3.05	-2.50	-3.76	-2.07	-2.56	-1.35	-5.69	-2.25	-3.92
AMBER94	-5.55	-2.86	-4.49	-3.70	-4.57	-3.37	-4.75	-4.62	-4.21	-4.40	-4.85	-4.65	-3.69	-4.57	-2.93	-5.07	-5.04	-7.30	-3.90	-5.40
AMBER96	-0.69	2.01	0.37	1.17	0.29	1.50	0.12	0.25	0.66	0.46	0.02	0.22	1.18	0.30	1.93	-0.20	-0.17	-2.44	0.97	-0.53
AMBER99	-3.87	-1.48	-2.64	-1.83	-2.74	-1.44	-2.89	-2.76	-2.35	-2.55	-2.99	-2.80	-1.85	-2.68	-1.23	-3.49	-3.19	-5.53	-2.04	-3.59
AMBER99SB	-1.92	2.78	2.67	3.49	2.55	3.90	2.41	2.53	2.93	2.78	2.30	2.52	3.47	3.28	3.92	1.51	2.05	-0.17	3.26	1.70
AMBER03	-1.56	0.32	-0.74	1.08	-0.80	1.41	-1.25	-1.17	-3.43	-3.75	-3.04	-1.04	-0.52	0.93	-0.08	0.02	-2.60	-1.02	3.96	-1.05
CHARMM27	-1.96	0.18	-2.52	-2.46	-1.88	-2.36	-2.83	-1.12	-0.99	0.05	-1.74	-2.26	-2.16	-2.53	-2.11	-3.17	-7.76	-6.48	-1.06	-2.44
OPLS-AA	-0.62	2.31	2.02	2.30	2.71	2.63	1.04	3.54	3.65	3.14	1.26	2.79	2.84	3.11	4.38	1.81	0.71	-0.38	4.19	1.23
OPLS-AA/L	-0.91	4.62	1.59	1.77	2.45	1.45	0.63	3.08	3.19	2.90	1.25	2.86	3.17	2.36	3.19	1.77	-2.33	-3.13	3.11	1.15
AMBERUA	-10.27	0.04	-2.67	-0.32	-2.93	-1.91	-2.53	-2.47	-5.36	-3.01	-3.71	-3.00	-3.25	-2.16	-0.60	-2.02	-3.22	-2.82	-2.10	-2.10
GROMOS(G43b1)	-6.63	3.81	3.26	3.56	3.85	3.28	2.44	2.96	3.03	2.93	1.40	3.18	2.40	3.73	3.39	2.48	11.79	2.98	3.99	-4.64
GROMOS(G45a3)	-5.60	4.34	4.00	3.86	4.44	3.51	2.88	3.69	3.64	3.45	2.07	3.77	2.98	4.00	3.97	2.86	3.44	1.14	4.19	-0.12
GROMOS(G53a6)	-8.27	5.97	5.62	5.33	6.40	5.06	4.13	5.56	5.49	4.89	3.97	5.54	4.89	5.28	5.06	4.10	3.04	2.90	5.58	2.44

	M05-2X/	cc-pVTZ//]	M05-2X/6-3	31G**			M05-2X-I	D ^a /cc-pVTZ	//M05-2X/6	6-31G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	1.12	1.11	-0.55	-0.62	-1.06	Pro	-2.38	-1.44	1.87	3.35	-1.40
Gly	1.34	0.95	-0.36	-1.33	-0.61	Gly	-0.89	-0.09	0.54	-0.06	0.50
Ala	1.25	0.71	-0.43	-0.65	-0.89	Ala	-1.02	0.02	0.54	0.43	0.04
Val	1.19	0.73	-0.25	-0.83	-0.84	Val	-1.17	1.27	-0.04	-0.16	0.10
Leu	1.14	0.63	-0.28	-0.83	-0.66	Leu	-0.94	0.54	0.28	-0.06	0.18
Ile	1.14	0.61	-0.27	-0.78	-0.70	Ile	-1.03	1.76	0.01	0.08	-0.83
Met	1.06	0.43	-0.37	-0.63	-0.50	Met	-0.89	0.13	0.45	0.30	0.02
Phe	1.59	0.28	-0.25	-0.76	-0.86	Phe	-0.11	0.78	-0.51	-0.87	0.72
Tyr	1.69	0.49	-0.63	-0.88	-0.66	Tyr	-0.03	0.93	-1.01	-1.00	1.11
His	1.45	0.24	-0.36	-0.57	-0.76	His	-0.12	0.76	-0.95	-0.46	0.77
Trp	1.90	0.38	-0.76	-0.72	-0.78	Trp	-0.74	0.59	0.79	-1.15	0.52
Cys	0.74	0.00	1.32	-1.00	-1.06	Cys	-1.49	-0.38	2.07	-0.02	-0.17
Ser	1.21	0.26	-0.17	-0.81	-0.48	Ser	-1.02	0.18	0.75	0.20	-0.10
Thr	1.01	0.48	-0.29	-0.68	-0.51	Thr	-0.91	-0.04	0.49	0.33	0.13
Asn	1.16	0.29	-0.68	-0.16	-0.61	Asn	-0.66	0.32	0.06	0.03	0.24
Gln	1.01	1.07	-0.56	-1.05	-0.47	Gln	-1.09	0.27	0.73	0.28	-0.20
Asp	0.35	0.63	-0.32	-0.24	-0.42	Asp	-1.66	1.40	0.60	-0.71	0.38
Glu	0.85	0.37	0.61	-1.21	-0.62	Glu	-1.67	0.45	1.34	-0.33	0.21
Lys	1.22	0.70	-0.23	-0.75	-0.93	Lys	-0.60	1.51	-0.91	0.19	-0.19
Arg	1.14	0.72	-0.43	-0.02	-1.42	Arg	-0.25	0.78	-1.03	0.47	0.03

Table S3b. Signed error (*error* = $E_{ai} - E_{bi} + E_c$) using the MP2 energy as the true value.

	M05-2X/	6-31G**//	M05-2X/6-2	31G**			M05-2X-E	D/6-31G**/	/ M05-2X/6	-31G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.21	-1.04	-0.02	0.01	0.83	Pro	-3.29	-3.59	2.40	3.99	0.49
Gly	0.31	-1.01	0.72	-0.58	0.57	Gly	-1.92	-2.05	1.62	0.68	1.67
Ala	0.36	-1.51	0.62	0.30	0.24	Ala	-1.92	-2.21	1.58	1.38	1.17
Val	0.45	-1.87	1.09	0.11	0.22	Val	-1.90	-1.34	1.31	0.78	1.15
Leu	0.16	-1.72	1.01	-0.11	0.66	Leu	-1.92	-1.82	1.57	0.66	1.51
Ile	0.37	-2.05	1.08	0.32	0.29	Ile	-1.80	-0.90	1.36	1.18	0.16
Met	0.18	-1.99	0.80	0.34	0.67	Met	-1.77	-2.30	1.62	1.26	1.19
Phe	0.83	-1.95	0.49	0.00	0.63	Phe	-0.87	-1.45	0.22	-0.11	2.21
Tyr	1.05	-1.66	0.13	-0.40	0.87	Tyr	-0.66	-1.22	-0.24	-0.52	2.63
His	0.60	-1.85	0.29	0.22	0.74	His	-0.98	-1.33	-0.30	0.33	2.28
Trp	0.80	-1.91	0.26	0.18	0.68	Trp	-1.84	-1.70	1.81	-0.25	1.98
Cys	-0.06	-2.54	2.55	-0.20	0.25	Cys	-2.29	-2.92	3.29	0.78	1.14
Ser	0.32	-1.89	0.96	0.03	0.59	Ser	-1.91	-1.97	1.87	1.04	0.97
Thr	0.22	-2.68	1.44	0.43	0.59	Thr	-1.70	-3.19	2.21	1.44	1.24
Asn	0.40	-2.01	0.11	0.80	0.70	Asn	-1.42	-1.98	0.85	1.00	1.55
Gln	0.11	-1.39	0.61	-0.29	0.97	Gln	-1.99	-2.19	1.90	1.04	1.24
Asp	0.32	-1.10	-0.74	0.05	1.48	Asp	-1.70	-0.34	0.19	-0.42	2.27
Glu	0.58	-1.47	-0.10	0.07	0.91	Glu	-1.94	-1.39	0.63	0.96	1.75
Lys	0.15	-1.59	1.07	0.01	0.36	Lys	-1.67	-0.77	0.39	0.95	1.11
Arg	0.65	-1.43	0.77	-0.26	0.27	Arg	-0.74	-1.38	0.17	0.23	1.71

	PBE/	cc-pVTZ//l	PBE/6-31G	**			PBE-D	^a /cc-pVTZ	//PBE/6-31	G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	3.34	3.24	-3.13	-2.37	-1.09	Pro	-0.16	0.69	-0.71	1.61	-1.43
Gly	3.53	3.52	-3.22	-3.40	-0.43	Gly	1.29	2.48	-2.31	-2.14	0.67
Ala	3.44	3.48	-3.44	-3.03	-0.45	Ala	1.16	2.78	-2.47	-1.95	0.48
Val	3.37	3.13	-3.16	-2.59	-0.75	Val	1.01	3.67	-2.94	-1.93	0.19
Leu	3.47	3.11	-3.13	-2.78	-0.66	Leu	1.39	3.01	-2.57	-2.01	0.18
Ile	3.16	3.22	-3.22	-2.63	-0.53	Ile	1.00	4.37	-2.94	-1.77	-0.66
Met	2.91	3.45	-3.40	-2.91	-0.04	Met	0.95	3.15	-2.58	-1.99	0.47
Phe	3.31	3.15	-2.57	-2.44	-1.44	Phe	1.60	3.64	-2.83	-2.56	0.14
Tyr	3.16	3.10	-2.37	-2.46	-1.43	Tyr	1.45	3.54	-2.74	-2.58	0.33
His	3.57	3.03	-2.58	-2.76	-1.26	His	2.00	3.55	-3.17	-2.65	0.27
Trp	3.92	3.22	-3.35	-2.63	-1.17	Trp	1.28	3.43	-1.80	-3.06	0.14
Cys	3.09	3.42	-3.04	-2.75	-0.72	Cys	0.86	3.04	-2.29	-1.77	0.16
Ser	3.25	3.45	-3.27	-2.94	-0.49	Ser	1.02	3.37	-2.35	-1.93	-0.11
Thr	3.50	3.22	-3.24	-2.86	-0.62	Thr	1.57	2.71	-2.46	-1.84	0.02
Asn	2.97	3.65	-2.97	-2.67	-0.98	Asn	1.15	3.68	-2.23	-2.48	-0.12
Gln	2.70	3.63	-3.56	-3.15	0.37	Gln	0.61	2.83	-2.27	-1.82	0.65
Asp	1.85	1.38	-1.28	-0.35	-1.60	Asp	-0.16	2.15	-0.36	-0.82	-0.81
Glu	3.26	2.29	-1.83	-2.86	-0.86	Glu	0.74	2.37	-1.11	-1.97	-0.03
Lys	3.65	2.82	-3.24	-2.66	-0.58	Lys	1.84	3.64	-3.92	-1.72	0.17
Arg	2.41	3.28	-3.33	-1.53	-0.83	Arg	1.02	3.33	-3.92	-1.04	0.61

	PBE/	6-31G**//]	PBE/6-31G	**			PBE-D	^a /6-31G**/	/ PBE/6-31	G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	2.18	1.07	-2.48	-1.59	0.83	Pro	-1.32	-1.49	-0.06	2.38	0.49
Gly	2.28	1.55	-1.96	-2.50	0.63	Gly	0.05	0.51	-1.05	-1.24	1.74
Ala	2.36	1.18	-2.11	-1.91	0.49	Ala	0.08	0.48	-1.14	-0.83	1.41
Val	2.35	0.67	-1.60	-1.51	0.08	Val	0.00	1.20	-1.38	-0.84	1.01
Leu	2.19	0.86	-1.60	-1.91	0.46	Leu	0.11	0.77	-1.04	-1.14	1.31
Ile	2.17	0.66	-1.64	-1.52	0.33	Ile	0.01	1.81	-1.36	-0.65	0.20
Met	1.84	1.04	-1.94	-1.80	0.87	Met	-0.12	0.73	-1.12	-0.88	1.38
Phe	2.28	0.85	-1.53	-1.30	-0.30	Phe	0.58	1.34	-1.79	-1.41	1.28
Tyr	2.20	0.85	-1.50	-1.29	-0.26	Tyr	0.49	1.29	-1.87	-1.42	1.50
His	2.40	0.81	-1.49	-1.64	-0.09	His	0.83	1.33	-2.08	-1.53	1.44
Trp	2.67	0.91	-2.13	-1.41	-0.04	Trp	0.04	1.12	-0.58	-1.85	1.27
Cys	2.06	0.94	-1.63	-1.79	0.42	Cys	-0.17	0.56	-0.89	-0.82	1.31
Ser	2.12	1.27	-1.93	-1.89	0.42	Ser	-0.11	1.20	-1.01	-0.88	0.80
Thr	2.35	0.11	-1.34	-1.54	0.42	Thr	0.43	-0.41	-0.56	-0.52	1.06
Asn	2.02	1.26	-1.89	-1.53	0.14	Asn	0.20	1.28	-1.15	-1.33	0.99
Gln	1.60	1.16	-2.18	-2.19	1.60	Gln	-0.50	0.36	-0.89	-0.85	1.87
Asp	1.29	0.05	-1.92	0.42	0.15	Asp	-0.72	0.82	-0.99	-0.05	0.94
Glu	2.70	0.74	-2.24	-1.51	0.30	Glu	0.18	0.82	-1.51	-0.63	1.14
Lys	2.32	0.56	-1.80	-1.66	0.58	Lys	0.50	1.37	-2.48	-0.72	1.32
Arg	1.88	1.08	-1.73	-2.00	0.76	Arg	0.49	1.14	-2.32	-1.51	2.20

	B3LYP/	cc-pVTZ//I	B3LYP/6-3	lG**			B3LYP-D	a/cc-pVTZ	//B3LYP/6-	31G**	
	α_R	α_{L}	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	3.99	4.17	-3.20	-2.69	-2.26	Pro	0.49	1.61	-0.78	1.29	-2.60
Gly	4.20	4.34	-3.55	-3.48	-1.51	Gly	1.97	3.30	-2.65	-2.22	-0.41
Ala	4.17	4.52	-3.74	-3.58	-1.37	Ala	1.89	3.82	-2.77	-2.50	-0.45
Val	4.02	4.12	-3.54	-3.04	-1.55	Val	1.66	4.65	-3.32	-2.37	-0.62
Leu	4.22	4.09	-3.46	-3.21	-1.64	Leu	2.14	3.99	-2.89	-2.44	-0.80
Ile	3.85	4.31	-3.60	-3.05	-1.50	Ile	1.68	5.46	-3.32	-2.18	-1.63
Met	3.49	4.63	-3.85	-3.52	-0.75	Met	1.54	4.33	-3.03	-2.60	-0.24
Phe	3.96	4.05	-2.67	-2.83	-2.52	Phe	2.26	4.55	-2.93	-2.94	-0.93
Tyr	3.85	4.03	-2.60	-2.76	-2.53	Tyr	2.14	4.47	-2.97	-2.88	-0.76
His	4.25	3.83	-2.64	-3.11	-2.33	His	2.68	4.36	-3.23	-3.01	-0.79
Trp	4.81	4.10	-3.68	-3.01	-2.21	Trp	2.17	4.31	-2.13	-3.45	-0.91
Cys	3.88	4.27	-3.25	-3.16	-1.73	Cys	1.65	3.89	-2.51	-2.18	-0.85
Ser	4.11	4.26	-3.69	-3.51	-1.17	Ser	1.88	4.18	-2.77	-2.50	-0.79
Thr	4.23	4.34	-3.71	-3.33	-1.52	Thr	2.30	3.82	-2.93	-2.31	-0.88
Asn	3.71	4.50	-3.35	-2.92	-1.94	Asn	1.89	4.53	-2.61	-2.73	-1.09
Gln	3.31	4.79	-3.96	-3.73	-0.41	Gln	1.21	3.99	-2.67	-2.40	-0.14
Asp	1.91	2.38	-1.37	-0.70	-2.21	Asp	-0.11	3.15	-0.45	-1.17	-1.42
Glu	3.54	2.80	-0.95	-3.51	-1.88	Glu	1.01	2.87	-0.22	-2.62	-1.05
Lys	4.41	3.89	-3.54	-3.12	-1.64	Lys	2.59	4.71	-4.23	-2.18	-0.89
Arg	2.90	4.29	-3.74	-1.25	-2.20	Arg	1.51	4.35	-4.33	-0.77	-0.75

	B3LYP/	6-31G**//	B3LYP/6-3	1G**			B3LYP-D	^a /6-31G**/	/ B3LYP/6-	31G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	2.78	2.04	-2.54	-1.92	-0.36	Pro	-0.72	-0.52	-0.12	2.05	-0.70
Gly	2.86	2.32	-2.34	-2.47	-0.38	Gly	0.63	1.28	-1.44	-1.20	0.72
Ala	3.03	2.19	-2.44	-2.47	-0.31	Ala	0.75	1.49	-1.48	-1.39	0.62
Val	2.92	1.69	-2.02	-1.97	-0.62	Val	0.57	2.23	-1.80	-1.30	0.31
Leu	2.86	1.85	-1.98	-2.34	-0.39	Leu	0.78	1.75	-1.41	-1.56	0.45
Ile	2.76	1.77	-2.08	-1.97	-0.48	Ile	0.59	2.92	-1.80	-1.10	-0.61
Met	2.38	2.21	-2.42	-2.43	0.26	Met	0.43	1.91	-1.60	-1.51	0.78
Phe	2.81	1.84	-1.65	-1.71	-1.29	Phe	1.10	2.33	-1.91	-1.82	0.30
Tyr	2.68	1.77	-1.43	-1.69	-1.33	Tyr	0.97	2.21	-1.81	-1.81	0.44
His	2.96	1.65	-1.53	-2.03	-1.05	His	1.39	2.17	-2.12	-1.92	0.49
Trp	3.40	1.82	-2.38	-1.86	-0.97	Trp	0.76	2.03	-0.83	-2.30	0.33
Cys	2.80	1.81	-1.87	-2.23	-0.50	Cys	0.56	1.43	-1.13	-1.25	0.39
Ser	2.95	2.09	-2.39	-2.47	-0.17	Ser	0.72	2.01	-1.48	-1.46	0.21
Thr	3.01	1.26	-1.84	-2.01	-0.41	Thr	1.09	0.74	-1.07	-1.00	0.23
Asn	2.72	2.06	-2.33	-1.77	-0.67	Asn	0.90	2.09	-1.59	-1.58	0.18
Gln	2.17	2.30	-2.61	-2.77	0.91	Gln	0.07	1.51	-1.32	-1.44	1.18
Asp	1.40	1.08	-2.00	-0.16	-0.33	Asp	-0.61	1.85	-1.07	-0.63	0.46
Glu	2.75	1.20	-1.29	-2.18	-0.48	Glu	0.23	1.28	-0.57	-1.29	0.35
Lys	2.99	1.65	-2.13	-2.12	-0.39	Lys	1.17	2.47	-2.81	-1.18	0.35
Arg	2.27	2.13	-2.16	-1.69	-0.56	Arg	0.88	2.19	-2.75	-1.20	0.88

		AM1//	AM1					AM1-D ^a /	// AM1		
	αρ	αι	ß	ßa	PPII		Ω₽	αι	ß	ßa	PPII
Pro	2.43	3.50	-3.77	-1.27	-0.88	Pro	-1.07	0.94	-1.35	2.70	-1.22
Gly	2.75	4.57	-3.73	-1.65	-1.95	Gly	0.52	3.54	-2.82	-0.38	-0.85
Ala	2.07	5.18	-3.70	-1.18	-2.36	Ala	-0.21	4.48	-2.73	-0.10	-1.44
Val	1.65	4.81	-3.19	-0.60	-2.68	Val	-0.70	5.35	-2.97	0.07	-1.75
Leu	2.84	3.96	-3.05	-1.19	-2.56	Leu	0.76	3.87	-2.49	-0.42	-1.72
Ile	1.62	4.94	-2.97	-0.49	-3.11	Ile	-0.54	6.09	-2.68	0.37	-3.24
Met	0.44	5.69	-3.75	-1.20	-1.18	Met	-1.51	5.39	-2.93	-0.28	-0.66
Phe	2.92	4.64	-3.05	-0.70	-3.81	Phe	1.22	5.13	-3.31	-0.81	-2.23
Tyr	2.82	4.48	-2.90	-0.59	-3.81	Tyr	1.11	4.92	-3.27	-0.72	-2.04
His	3.03	4.09	-2.96	-0.82	-3.33	His	1.45	4.61	-3.55	-0.72	-1.80
Trp	3.45	4.31	-3.24	-0.97	-3.55	Trp	0.81	4.52	-1.69	-1.40	-2.24
Cys	1.58	4.42	-2.30	-1.24	-2.46	Cys	-0.65	4.04	-1.56	-0.26	-1.58
Ser	0.74	5.38	-3.69	0.91	-3.34	Ser	-1.49	5.30	-2.77	1.92	-2.96
Thr	1.21	4.66	-3.32	-1.00	-1.55	Thr	-0.72	4.15	-2.54	0.02	-0.90
Asn	0.55	6.65	-2.05	-1.92	-3.22	Asn	-1.27	6.67	-1.31	-1.73	-2.36
Gln	0.35	5.00	-3.88	-1.49	0.01	Gln	-1.74	4.20	-2.59	-0.15	0.28
Asp	0.39	4.91	-0.09	-1.47	-3.75	Asp	-1.62	5.68	0.83	-1.93	-2.96
Glu	2.96	2.88	0.41	-2.70	-3.55	Glu	0.44	2.95	1.13	-1.81	-2.71
Lys	2.30	4.39	-3.34	-0.97	-2.38	Lys	0.49	5.20	-4.02	-0.03	-1.63
Arg	-1.04	3.72	-4.81	5.42	-3.29	Arg	-2.43	3.77	-5.40	5.91	-1.85

		PM3//]	PM3					PM3-D ^a /	/ PM3		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	6.36	8.15	-5.01	-4.87	-4.64	Pro	2.86	5.60	-2.59	-0.89	-4.98
Gly	5.56	7.14	-2.90	-2.53	-7.28	Gly	3.33	6.10	-2.00	-1.26	-6.17
Ala	5.77	8.29	-4.44	-2.39	-7.23	Ala	3.49	7.59	-3.47	-1.31	-6.30
Val	5.82	7.92	-4.37	-2.16	-7.21	Val	3.47	8.45	-4.16	-1.49	-6.28
Leu	7.20	6.81	-4.17	-2.25	-7.58	Leu	5.12	6.71	-3.61	-1.48	-6.74
Ile	5.63	8.18	-4.19	-2.23	-7.38	Ile	3.46	9.33	-3.91	-1.37	-7.51
Met	4.14	9.35	-4.75	-2.82	-5.92	Met	2.19	9.05	-3.93	-1.90	-5.41
Phe	5.93	7.94	-3.03	-2.07	-8.77	Phe	4.23	8.43	-3.30	-2.18	-7.18
Tyr	5.96	7.94	-3.43	-1.85	-8.62	Tyr	4.25	8.38	-3.80	-1.97	-6.85
His	6.11	8.43	-3.94	-2.44	-8.17	His	4.54	8.95	-4.53	-2.33	-6.63
Trp	6.62	7.94	-3.78	-2.37	-8.41	Trp	3.99	8.15	-2.23	-2.80	-7.11
Cys	5.03	7.53	-3.45	-1.95	-7.16	Cys	2.80	7.15	-2.71	-0.97	-6.27
Ser	3.90	7.71	-1.93	-2.89	-6.79	Ser	1.67	7.63	-1.01	-1.88	-6.41
Thr	7.11	8.05	-4.92	-3.56	-6.68	Thr	5.19	7.54	-4.15	-2.54	-6.04
Asn	3.76	9.71	-2.58	-2.89	-7.99	Asn	1.94	9.74	-1.84	-2.70	-7.14
Gln	3.97	8.16	-4.85	-2.79	-4.49	Gln	1.87	7.36	-3.56	-1.45	-4.22
Asp	4.81	8.44	0.05	-5.76	-7.54	Asp	2.80	9.20	0.98	-6.23	-6.75
Glu	6.36	5.16	-0.13	-3.87	-7.52	Glu	3.84	5.23	0.60	-2.98	-6.69
Lys	5.75	8.29	-4.61	-2.30	-7.14	Lys	3.94	9.10	-5.29	-1.36	-6.39
Arg	2.22	8.05	-6.15	3.10	-7.21	Arg	0.82	8.10	-6.74	3.58	-5.77

		PM3MM//	PM3MM				PI	M3MM-D ^a /	/ PM3MM		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_R	$\alpha_{\rm L}$	β	β_a	PPII
Pro	6.31	8.65	-5.58	-5.19	-4.19	Pro	2.82	6.09	-3.16	-1.21	-4.53
Gly	6.26	8.28	-5.14	-3.28	-6.12	Gly	4.03	7.24	-4.23	-2.01	-5.02
Ala	5.84	9.06	-5.30	-3.12	-6.49	Ala	3.57	8.36	-4.33	-2.04	-5.56
Val	5.74	8.57	-5.09	-2.66	-6.57	Val	3.38	9.11	-4.87	-1.99	-5.63
Leu	7.11	7.58	-5.02	-2.78	-6.88	Leu	5.03	7.48	-4.46	-2.01	-6.04
Ile	5.59	8.78	-4.96	-2.75	-6.66	Ile	3.43	9.93	-4.68	-1.88	-6.79
Met	4.26	9.82	-5.57	-3.43	-5.08	Met	2.30	9.52	-4.75	-2.50	-4.57
Phe	6.12	8.89	-4.53	-2.42	-8.05	Phe	4.41	9.38	-4.80	-2.53	-6.47
Tyr	5.99	8.72	-4.35	-2.29	-8.06	Tyr	4.28	9.16	-4.72	-2.42	-6.30
His	6.06	8.93	-4.53	-2.74	-7.71	His	4.49	9.45	-5.13	-2.63	-6.18
Trp	6.60	8.66	-4.73	-2.62	-7.91	Trp	3.96	8.87	-3.18	-3.06	-6.60
Cys	5.54	8.54	-4.13	-3.62	-6.32	Cys	3.31	8.16	-3.39	-2.65	-5.43
Ser	4.67	9.49	-5.65	-1.20	-7.30	Ser	2.44	9.41	-4.73	-0.19	-6.92
Thr	7.62	9.51	-5.70	-6.15	-5.27	Thr	5.69	8.99	-4.93	-5.14	-4.63
Asn	4.49	10.66	-4.27	-3.54	-7.35	Asn	2.67	10.69	-3.52	-3.34	-6.49
Gln	4.25	9.14	-5.68	-3.77	-3.94	Gln	2.15	8.34	-4.39	-2.44	-3.67
Asp	4.87	5.77	1.26	-4.32	-7.58	Asp	2.86	6.54	2.18	-4.79	-6.79
Glu	5.34	6.73	-0.73	-4.23	-7.11	Glu	2.82	6.80	0.00	-3.34	-6.28
Lys	6.63	9.05	-5.77	-3.30	-6.61	Lys	4.81	9.87	-6.45	-2.36	-5.87
Arg	3.48	8.76	-7.34	2.00	-6.90	Arg	2.09	8.81	-7.93	2.49	-5.45

	А	MOEBA//	AMOEBA				AN	MBEREP//	AMBEREP		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	-2.74	-3.37	2.86	6.28	-3.04	Pro	-13.08	36.00	-6.23	-6.27	-10.43
Gly	0.29	-0.27	0.56	0.55	-1.13	Gly	-1.03	4.79	-1.66	-2.93	0.83
Ala	0.45	-0.53	0.49	0.66	-1.07	Ala	-2.70	6.50	-1.08	-1.87	-0.85
Val	0.03	-0.96	1.26	1.97	-2.30	Val	-1.91	5.72	-1.04	-1.79	-0.98
Leu	0.12	-0.66	0.22	1.32	-1.01	Leu	-2.66	6.33	-0.57	-2.34	-0.75
Ile	-0.34	-1.43	0.94	1.78	-0.95	Ile	-2.65	7.62	-1.14	-2.07	-1.75
Met	-0.41	-0.15	0.66	0.47	-0.57	Met	-3.43	6.24	-0.98	-1.94	0.10
Phe	-0.27	-0.72	0.48	0.78	-0.26	Phe	-2.88	7.05	-1.19	-1.93	-1.06
Tyr	-0.03	-0.82	0.31	0.61	-0.07	Tyr	-2.55	6.82	-1.44	-2.28	-0.55
His	2.68	-0.26	-0.40	-0.57	-1.45	His	-0.55	4.92	-1.92	-1.43	-1.03
Trp	0.43	-0.89	1.17	0.75	-1.47	Trp	-4.14	7.66	-0.26	-1.96	-1.29
Cys	1.18	-0.70	0.11	0.65	-1.24	Cys	-3.84	6.68	1.45	-1.67	-2.62
Ser	-0.25	-2.02	1.17	0.56	0.54	Ser	-2.69	5.95	-0.67	-2.13	-0.45
Thr	1.88	1.51	-0.27	0.31	-3.44	Thr	-2.56	7.08	-0.43	-1.04	-3.05
Asn	1.89	0.79	0.04	-2.57	-0.15	Asn	-2.93	8.72	-0.40	-4.54	-0.86
Gln	0.06	1.14	-0.54	-0.43	-0.22	Gln	-2.53	6.12	-0.62	-1.52	-1.45
Asp	-0.09	-4.39	5.34	0.27	-1.12	Asp	-1.94	1.89	1.50	-2.28	0.83
Glu	-0.64	-2.12	3.37	1.55	-2.16	Glu	-5.96	7.32	1.86	-2.97	-0.25
Lys	2.08	-1.34	-0.24	1.08	-1.58	Lys	-1.94	7.04	-1.69	-2.13	-1.29
Arg	-0.66	0.29	0.75	0.88	-1.25	Arg	-3.22	6.12	-2.42	1.34	-1.82

								(DED 0 4//			
	AME	BERPOL//	AMBERPO	L			AN	ABER94// .	AMBER94		
	α_R	$\alpha_{ m L}$	β	β_a	PPII		α_{R}	$\alpha_{ m L}$	β	β_a	PPII
Pro	-4.99	0.88	3.44	3.85	-3.17	Pro	-5.55	0.63	1.71	5.23	-2.01
Gly	-1.28	4.29	-0.41	-0.68	-1.91	Gly	-2.86	3.40	0.24	0.57	-1.35
Ala	-2.91	5.95	-0.03	-0.38	-2.63	Ala	-4.49	5.64	0.46	0.78	-2.39
Val	-2.00	4.90	-0.15	-0.35	-2.41	Val	-3.70	4.79	0.28	0.61	-1.98
Leu	-2.83	5.72	0.38	-1.01	-2.27	Leu	-4.57	5.33	-0.40	1.20	-1.56
Ile	-2.90	6.92	-0.12	-0.57	-3.33	Ile	-3.37	5.30	0.53	0.98	-3.44
Met	-3.81	6.38	-0.23	-0.67	-1.68	Met	-4.75	4.62	0.61	0.55	-1.03
Phe	-2.95	6.37	-0.35	-0.63	-2.45	Phe	-4.62	6.09	0.10	0.55	-2.13
Tyr	-2.85	6.59	-0.59	-0.73	-2.42	Tyr	-4.21	5.65	-0.04	0.58	-1.98
His	-1.37	5.28	-0.97	-0.52	-2.41	His	-4.40	5.01	0.13	1.34	-2.08
Trp	-4.18	6.71	0.81	-0.62	-2.71	Trp	-4.85	5.35	1.21	0.53	-2.24
Cys	-3.05	5.88	1.45	-1.07	-3.21	Cys	-4.65	3.84	2.81	0.83	-2.84
Ser	-2.50	5.21	0.11	-0.90	-1.93	Ser	-3.69	2.68	1.85	1.55	-2.38
Thr	-3.76	8.24	-0.46	-0.55	-3.46	Thr	-4.57	5.58	-0.36	0.23	-0.88
Asn	-2.07	7.58	-0.01	-3.38	-2.11	Asn	-2.93	4.47	-0.85	0.83	-1.51
Gln	-2.56	5.56	0.19	-0.21	-2.99	Gln	-5.07	6.51	0.64	0.66	-2.74
Asp	-1.35	1.04	2.20	-1.22	-0.68	Asp	-5.04	1.59	2.80	0.46	0.18
Glu	-5.69	6.47	2.66	-1.48	-1.97	Glu	-7.30	5.21	3.92	-0.84	-0.99
Lys	-2.25	6.50	-1.32	-0.53	-2.41	Lys	-3.90	4.94	0.48	1.49	-3.01
Arg	-3.92	6.17	-1.68	2.37	-2.94	Arg	-5.40	4.88	-0.42	4.91	-3.98

	A	MBER96//	AMBER96				AN	/IBER99// .	AMBER99		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	-0.69	5.49	-1.98	0.12	-2.94	Pro	-3.87	0.27	2.19	2.03	-0.62
Gly	2.01	8.27	-3.45	-4.54	-2.28	Gly	-1.48	2.78	1.19	-2.45	-0.05
Ala	0.37	10.51	-3.23	-4.33	-3.32	Ala	-2.64	4.51	1.14	-2.19	-0.81
Val	1.17	9.66	-3.41	-4.50	-2.91	Val	-1.83	3.63	0.96	-2.36	-0.40
Leu	0.29	10.20	-4.09	-3.91	-2.49	Leu	-2.74	4.19	0.25	-1.71	0.01
Ile	1.50	10.17	-3.16	-4.13	-4.37	Ile	-1.44	4.03	1.22	-1.97	-1.84
Met	0.12	9.49	-3.08	-4.56	-1.96	Met	-2.89	3.49	1.28	-2.43	0.55
Phe	0.25	10.96	-3.59	-4.56	-3.06	Phe	-2.76	4.97	0.78	-2.43	-0.56
Tyr	0.66	10.52	-3.73	-4.53	-2.91	Tyr	-2.35	4.53	0.63	-2.39	-0.41
His	0.46	9.88	-3.57	-3.77	-3.01	His	-2.55	3.88	0.80	-1.62	-0.51
Trp	0.02	10.22	-2.48	-4.59	-3.17	Trp	-2.99	4.24	1.88	-2.45	-0.67
Cys	0.22	8.70	-0.88	-4.28	-3.76	Cys	-2.80	2.70	3.49	-2.13	-1.26
Ser	1.18	7.54	-1.85	-3.56	-3.31	Ser	-1.85	1.52	2.53	-1.41	-0.79
Thr	0.30	10.45	-4.05	-4.89	-1.80	Thr	-2.68	4.35	0.34	-2.73	0.72
Asn	1.93	9.34	-4.55	-4.28	-2.44	Asn	-1.23	3.17	-0.34	-1.53	-0.07
Gln	-0.20	11.38	-3.06	-4.45	-3.66	Gln	-3.49	5.80	1.05	-2.58	-0.78
Asp	-0.17	6.46	-0.89	-4.65	-0.74	Asp	-3.19	0.30	3.67	-2.51	1.74
Glu	-2.44	10.08	0.23	-5.95	-1.92	Glu	-5.53	4.37	4.52	-3.88	0.52
Lys	0.97	9.80	-3.22	-3.62	-3.94	Lys	-2.04	3.85	1.14	-1.50	-1.45
Arg	-0.53	9.75	-4.11	-0.20	-4.90	Arg	-3.59	3.79	0.19	2.08	-2.47

	AMB	ER99SB//	AMBER99	SB			Al	MBER03//	AMBER03		
	$\alpha_{\rm R}$	$\alpha_{\rm L}$	β	βa	PPII		$\alpha_{\rm R}$	$\alpha_{\rm L}$	β	βa	PPII
Pro	1.16	1.70	1.12	0.37	-4.35	Pro	-1.56	6.10	1.69	-1.09	-5.14
Gly	2.78	2.81	-0.18	-1.93	-3.47	Gly	0.32	7.16	-1.39	-2.33	-3.76
Ala	2.67	3.52	-0.39	-2.13	-3.67	Ala	-0.74	10.58	-1.74	-3.18	-4.92
Val	3.49	2.65	-0.56	-2.29	-3.29	Val	1.08	7.98	-2.04	-3.58	-3.44
Leu	2.55	3.23	-1.28	-1.65	-2.84	Leu	-0.80	10.34	-2.28	-2.56	-4.70
Ile	3.90	3.08	-0.26	-1.87	-4.84	Ile	1.41	12.02	-2.92	-4.27	-6.24
Met	2.41	2.50	-0.26	-2.36	-2.28	Met	-1.25	8.28	-0.76	-2.55	-3.72
Phe	2.53	3.98	-0.76	-2.36	-3.39	Phe	-1.17	9.18	-1.29	-2.48	-4.24
Tyr	2.93	3.53	-0.89	-2.30	-3.27	Tyr	-3.43	8.87	-0.46	-1.46	-3.51
His	2.78	2.90	-0.71	-1.53	-3.44	His	-3.75	7.66	0.09	-0.42	-3.59
Trp	2.30	3.26	0.33	-2.35	-3.54	Trp	-3.04	7.91	-0.35	-1.51	-3.01
Cys	2.52	1.74	1.81	-2.04	-4.03	Cys	-1.04	8.25	0.84	-2.74	-5.32
Ser	3.47	0.57	0.98	-1.38	-3.65	Ser	-0.52	9.44	-0.96	-3.19	-4.78
Thr	3.28	3.13	-1.13	-2.62	-2.66	Thr	0.93	11.62	-2.77	-3.04	-6.75
Asn	3.92	2.24	-1.92	-1.26	-2.97	Asn	-0.08	6.95	-2.28	-1.33	-3.27
Gln	1.51	5.38	-0.76	-2.82	-3.31	Gln	0.02	14.78	-3.43	-5.54	-5.83
Asp	2.05	-0.72	2.20	-2.41	-1.13	Asp	-2.60	6.67	1.44	-4.05	-1.46
Glu	-0.17	3.24	3.06	-3.77	-2.35	Glu	-1.02	10.81	1.28	-6.53	-4.54
Lys	3.26	2.91	-0.39	-1.45	-4.34	Lys	3.96	6.19	-1.82	-1.79	-6.54
Arg	1.70	2.83	-1.35	2.20	-5.38	Arg	-1.05	5.63	-2.26	4.64	-6.96

	CHA	RMM27//	CHARMM	27		OPLS-AA// OPLS-AA					
	α_{R}	$\alpha_{ m L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	-1.96	9.14	-1.01	0.05	-6.23	Pro	-0.62	0.23	-1.34	6.55	-4.81
Gly	0.18	11.84	-4.69	-3.77	-3.57	Gly	2.31	4.38	-2.55	-2.47	-1.66
Ala	-2.52	15.53	-4.20	-2.86	-5.95	Ala	2.02	5.62	-3.02	-2.18	-2.45
Val	-2.46	15.67	-4.54	-2.59	-6.07	Val	2.30	5.29	-2.84	-1.86	-2.89
Leu	-1.88	14.74	-4.57	-2.25	-6.04	Leu	2.71	4.91	-3.28	-1.87	-2.47
Ile	-2.36	16.06	-4.41	-2.39	-6.90	Ile	2.63	6.02	-2.56	-1.46	-4.63
Met	-2.83	15.70	-4.35	-3.33	-5.19	Met	1.04	6.36	-4.09	-3.62	0.31
Phe	-1.12	15.03	-4.50	-2.93	-6.48	Phe	3.54	4.26	-3.11	-1.78	-2.92
Tyr	-0.99	14.93	-4.61	-2.97	-6.37	Tyr	3.65	4.15	-3.18	-1.80	-2.82
His	0.05	11.91	-3.79	-1.98	-6.19	His	3.14	3.86	-2.85	-1.51	-2.64
Trp	-1.74	14.66	-4.18	-2.89	-5.85	Trp	1.26	5.92	-4.17	-1.12	-1.89
Cys	-2.26	14.41	-2.47	-2.95	-6.73	Cys	2.79	4.05	-1.89	-2.60	-2.34
Ser	-2.16	12.74	-3.89	-3.17	-3.52	Ser	2.84	3.73	-2.77	-2.47	-1.34
Thr	-2.53	16.46	-5.36	-3.23	-5.34	Thr	3.11	4.29	-2.46	-1.22	-3.72
Asn	-2.11	15.45	-2.63	-4.28	-6.43	Asn	4.38	2.90	-5.77	-0.79	-0.72
Gln	-3.17	16.67	-4.47	-3.38	-5.65	Gln	1.81	4.68	-1.38	-0.96	-4.15
Asp	-7.76	13.61	3.22	-2.83	-6.24	Asp	0.71	-1.22	-2.48	2.74	0.25
Glu	-6.48	15.06	0.21	-3.03	-5.77	Glu	-0.38	4.13	2.22	-3.10	-2.88
Lys	-1.06	14.61	-4.70	-2.50	-6.35	Lys	4.19	5.28	-3.89	-2.41	-3.18
Arg	-2.44	14.59	-5.67	1.44	-7.93	Arg	1.23	5.43	-4.57	2.70	-4.79

	OPI	LS-AA/L//	OPLS-AA/I	L			AN	IBERUA//	AMBERUA	A	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	-0.91	0.87	-0.50	6.99	-6.44	Pro	-10.27	42.71	-9.13	-8.37	-14.95
Gly	4.62	7.54	-5.25	-5.18	-1.74	Gly	0.04	9.11	-1.97	-3.11	-4.07
Ala	1.59	6.50	-1.87	-2.51	-3.71	Ala	-2.67	11.72	-1.38	-2.87	-4.81
Val	1.77	6.05	-1.74	-2.27	-3.80	Val	-0.32	8.02	-0.59	-1.92	-5.20
Leu	2.45	5.55	-1.87	-2.17	-3.96	Leu	-2.93	11.43	-1.57	-2.54	-4.39
Ile	1.45	6.33	-2.09	-2.48	-3.21	Ile	-1.91	9.72	-0.76	-2.10	-4.95
Met	0.63	7.30	-3.04	-3.96	-0.93	Met	-2.53	9.68	-1.04	-2.47	-3.63
Phe	3.08	5.09	-1.99	-1.90	-4.28	Phe	-2.47	11.41	-1.33	-2.73	-4.87
Tyr	3.19	4.95	-2.10	-1.87	-4.16	Tyr	-5.36	11.05	-0.39	-1.61	-3.70
His	2.90	4.06	-1.74	-1.50	-3.71	His	-3.01	10.57	-0.98	-1.91	-4.67
Trp	1.25	6.27	-2.67	-1.51	-3.33	Trp	-3.71	10.57	-0.29	-2.14	-4.43
Cys	2.86	5.54	-1.51	-3.79	-3.09	Cys	-3.00	10.08	0.81	-2.65	-5.23
Ser	3.17	5.47	-0.82	-2.33	-5.49	Ser	-3.25	8.65	-0.64	-2.59	-2.17
Thr	2.36	5.40	-1.55	-1.57	-4.65	Thr	-2.16	13.56	-3.30	-4.49	-3.60
Asn	3.19	5.77	-2.11	-3.78	-3.07	Asn	-0.60	9.82	-2.85	-2.17	-4.20
Gln	1.77	6.22	-1.67	-2.19	-4.14	Gln	-2.02	12.82	-1.38	-3.27	-6.14
Asp	-2.33	1.48	2.00	1.10	-2.26	Asp	-3.22	8.65	0.31	-2.74	-3.00
Glu	-3.13	6.62	1.20	-1.96	-2.74	Glu	-2.82	10.04	1.86	-4.75	-4.33
Lys	3.11	6.18	-2.62	-2.47	-4.21	Lys	-2.10	9.20	-0.94	-1.61	-4.54
Arg	1.15	6.00	-3.38	2.27	-6.04	Arg	-2.10	7.43	-2.42	3.41	-6.32

	GROMOS	S(G43b1)//	GROMOS((G43b1)			GROMOS	S(G45a3)//	GROMOS(G45a3)	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	-6.63	35.92	-10.21	-6.88	-12.19	Pro	-5.60	34.73	-10.28	-7.05	-11.79
Gly	3.81	6.39	-5.16	-2.88	-2.16	Gly	4.34	5.24	-5.07	-2.77	-1.74
Ala	3.26	7.49	-5.45	-2.72	-2.58	Ala	4.00	5.70	-5.28	-2.53	-1.89
Val	3.56	6.18	-4.81	-1.74	-3.20	Val	3.86	5.61	-4.92	-1.68	-2.86
Leu	3.85	6.41	-5.22	-2.70	-2.34	Leu	4.44	4.60	-5.36	-2.10	-1.58
Ile	3.28	6.75	-4.97	-1.85	-3.21	Ile	3.51	5.63	-5.08	-1.68	-2.37
Met	2.44	8.40	-5.68	-2.95	-2.20	Met	2.88	7.21	-5.68	-2.84	-1.57
Phe	2.96	8.45	-5.56	-3.38	-2.47	Phe	3.69	7.07	-5.54	-3.24	-1.98
Tyr	3.03	8.39	-5.55	-3.89	-1.99	Tyr	3.64	6.98	-5.59	-3.52	-1.51
His	2.93	7.99	-4.83	-2.73	-3.36	His	3.45	6.44	-4.89	-1.99	-3.01
Trp	1.40	8.49	-3.83	-3.07	-2.99	Trp	2.07	7.07	-3.65	-2.87	-2.62
Cys	3.18	7.99	-4.01	-3.18	-3.97	Cys	3.77	6.60	-3.94	-3.00	-3.43
Ser	2.40	7.15	-4.90	-2.66	-1.99	Ser	2.98	5.73	-4.82	-2.50	-1.40
Thr	3.73	5.88	-4.76	-2.43	-2.42	Thr	4.00	5.28	-5.02	-2.44	-1.81
Asn	3.39	8.63	-4.34	-4.48	-3.20	Asn	3.97	7.26	-4.21	-4.35	-2.68
Gln	2.48	7.75	-4.77	-2.15	-3.31	Gln	2.86	6.59	-4.95	-2.13	-2.36
Asp	11.79	-5.59	4.51	-2.04	-8.68	Asp	3.44	4.00	4.80	-4.71	-7.53
Glu	2.98	3.67	6.07	-5.00	-7.72	Glu	1.14	3.87	7.31	-5.39	-6.94
Lys	3.99	6.00	-6.48	-2.56	-0.96	Lys	4.19	3.59	-6.00	-1.43	-0.36
Arg	-4.64	6.52	-7.90	8.65	-2.62	Arg	-0.12	2.80	-7.51	7.27	-2.44

	GROMOS	S(G53a6)//	GROMOS(G53a6)	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	-8.27	34.26	-12.74	2.84	-16.09
Gly	5.97	6.78	-6.27	-4.45	-2.03
Ala	5.62	7.32	-6.49	-4.20	-2.26
Val	5.33	7.37	-6.32	-3.29	-3.09
Leu	6.40	6.29	-6.43	-3.41	-2.84
Ile	5.06	7.51	-6.39	-3.19	-2.99
Met	4.13	6.28	-5.88	-3.55	-0.99
Phe	5.56	8.02	-6.63	-4.40	-2.55
Tyr	5.49	7.99	-6.69	-4.72	-2.07
His	4.89	7.61	-6.85	-3.02	-2.63
Trp	3.97	8.21	-4.87	-3.85	-3.46
Cys	5.54	6.36	-4.57	-4.45	-2.88
Ser	4.89	6.56	-5.18	-3.50	-2.77
Thr	5.28	7.55	-5.65	-3.07	-4.11
Asn	5.06	8.33	-6.05	-3.96	-3.37
Gln	4.10	9.58	-5.98	-3.69	-4.01
Asp	3.04	6.95	2.10	-5.61	-6.48
Glu	2.90	5.11	3.92	-6.31	-5.62
Lys	5.58	5.59	-6.75	-2.92	-1.50
Arg	2.44	4.75	-8.39	4.71	-3.51

|--|

Tuble 550. Digited Rivis			ormation over	20 diffillo dell		nethou.	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII	Mean(µ)	1 SD(σ)
M05-2X/cc-pVTZ	1.22	0.62	-0.52	-0.79	-0.78	0.79	0.24
M05-2X-D ^a /cc-pVTZ	-1.09	0.86	0.92	0.89	0.54	0.86	0.18
M05-2X/6-31G**	0.48	-1.79	0.93	0.31	0.70	0.84	0.52
M05-2X-D ^a /6-31G**	-1.81	-1.97	1.54	1.24	1.59	1.63	0.25
PBE/cc-pVTZ	3.22	3.18	-3.02	-2.66	-0.91	2.60	0.87
PBE-D ^a /cc-pVTZ	1.21	3.16	-2.55	-2.05	0.51	1.90	0.94
PBE/6-31G**	2.19	0.95	-1.85	-1.69	0.58	1.45	0.60
PBE-D ^a /6-31G**	0.48	1.08	-1.39	-1.19	1.31	1.09	0.32
B3LYP/cc-pVTZ	3.89	4.12	-3.30	-3.06	-1.83	3.24	0.80
B3LYP-D ^a /cc-pVTZ	1.85	4.09	-2.83	-2.42	-1.04	2.45	1.02
B3LYP/6-31G**	2.75	1.87	-2.11	-2.08	-0.68	1.90	0.68
B3LYP-D ^a /6-31G**	0.81	1.91	-1.63	-1.50	0.56	1.28	0.51
AM1	2.11	4.68	-3.20	-1.74	-2.83	2.91	1.02
AM1-D ^a	-1.17	4.70	-2.81	1.74	-1.98	2.48	1.23
PM3	5.54	8.01	-3.93	-3.01	-7.27	5.55	1.90
PM3-D ^a	3.48	7.99	-3.54	-2.44	-6.39	4.77	2.08
PM3MM	5.73	8.74	-4.98	-3.45	-6.71	5.92	1.77
PM3MM-D ^a	3.67	8.69	-4.56	-2.76	-5.83	5.10	2.06
AMOEBA	1.21	-1.61	1.67	1.78	-1.54	1.56	0.19
AMBEREP	-4.11	10.24	-1.89	-2.59	-2.68	4.30	3.06
AMBERPOL	-3.17	5.91	1.29	-1.45	-2.54	2.87	1.67
AMBER94	-4.60	4.80	1.45	1.81	-2.22	2.98	1.43
AMBER96	1.04	9.55	-3.15	-4.20	-3.09	4.21	2.86
AMBER99	-2.86	3.78	1.90	-2.28	-1.02	2.37	0.93
AMBER99SB	2.72	2.98	-1.25	-2.16	-3.53	2.53	0.78
AMBER03	-1.89	9.11	-1.83	-3.28	-4.79	4.18	2.69
CHARMM27	-2.99	14.55	-4.10	-2.87	-6.02	6.11	4.37
OPLS-AA	2.60	4.58	-3.20	-2.57	-2.96	3.18	0.74
OPLS-AA/L	2.54	5.70	-2.31	-3.02	-3.97	3.51	1.23
AMBERUA	-3.50	13.86	-2.54	-3.32	-5.54	5.75	4.17
GROMOS(G43b1)	4.33	10.65	-5.63	-3.79	-4.53	5.79	2.50
GROMOS(G45a3)	3.59	9.60	-5.68	-3.66	-4.05	5.32	2.27
GROMOS(G53a6)	5.14	10.36	-6.51	-4.06	-4.87	6.19	2.23

¹ Standard deviation. ^a AMBER99 dispersion correction.

Table S3d. RMS(kcal/mol) over the five conformations of the tetrapeptides.

	Pro	Gly	Ala	Val	Leu	Ile	Met	Phe	Tyr	His	Trp	Cys	Ser	Thr	Asn	Gln	Asp	Glu	Lys	Arg	$Mean(\mu)$	$^{1}\text{SD}(\sigma)$
M05-2X/cc-pVTZ	0.93	1.00	0.83	0.82	0.76	0.75	0.65	0.89	0.97	0.80	1.04	0.94	0.70	0.64	0.68	0.87	0.42	0.79	0.83	0.90	0.81	0.14
M05-2X-D ^a /cc-pVTZ	2.21	0.52	0.55	0.77	0.51	0.98	0.47	0.66	0.91	0.68	0.79	1.16	0.58	0.49	0.35	0.62	1.07	0.99	0.84	0.62	0.79	0.39
M05-2X/6-31G**	0.60	0.68	0.77	1.00	0.94	1.07	1.02	1.01	0.98	0.94	0.98	1.62	0.99	1.40	1.03	0.82	0.90	0.82	0.88	0.80	0.96	0.22
M05-2X-D ^a /6-31G**	3.02	1.66	1.69	1.35	1.56	1.21	1.68	1.25	1.35	1.27	1.65	2.30	1.62	2.08	1.42	1.73	1.29	1.42	1.06	1.05	1.58	0.45
PBE/cc-pVTZ	2.77	3.06	3.00	2.77	2.82	2.76	2.84	2.66	2.58	2.75	3.01	2.78	2.90	2.89	2.79	2.94	1.39	2.37	2.80	2.48	2.72	0.35
PBE-D ^a /cc-pVTZ	1.06	1.91	1.96	2.32	2.08	2.54	2.08	2.47	2.40	2.60	2.28	1.92	2.08	1.96	2.28	1.86	1.10	1.50	2.64	2.41	2.07	0.43
PBE/6-31G**	1.75	1.90	1.75	1.47	1.55	1.43	1.56	1.42	1.38	1.50	1.70	1.50	1.65	1.41	1.52	1.79	1.05	1.75	1.55	1.57	1.56	0.18
PBE-D ^a /6-31G**	1.40	1.09	0.92	1.01	0.97	1.06	0.95	1.34	1.39	1.50	1.15	0.84	0.88	0.64	1.07	1.04	0.78	0.97	1.45	1.68	1.11	0.26
B3LYP/cc-pVTZ	3.34	3.56	3.65	3.38	3.45	3.40	3.50	3.27	3.22	3.31	3.67	3.37	3.53	3.57	3.39	3.57	1.82	2.72	3.45	3.07	3.31	0.40
B3LYP-D ^a /cc-pVTZ	1.54	2.32	2.54	2.88	2.66	3.20	2.72	2.96	2.91	3.04	2.85	2.43	2.67	2.63	2.81	2.46	1.64	1.86	3.23	2.87	2.61	0.46
B3LYP/6-31G**	2.10	2.25	2.29	1.99	2.05	1.96	2.12	1.93	1.84	1.95	2.23	1.99	2.23	1.91	2.03	2.25	1.21	1.77	2.04	1.87	2.00	0.23
B3LYP-D ^a /6-31G**	1.05	1.10	1.21	1.44	1.29	1.65	1.36	1.66	1.59	1.74	1.47	1.03	1.34	0.89	1.43	1.22	1.05	0.87	1.84	1.75	1.35	0.29
AM1	2.64	3.13	3.22	2.95	2.86	3.03	3.15	3.30	3.20	3.04	3.30	2.64	3.32	2.74	3.54	2.91	2.85	2.72	2.91	3.96	3.07	0.31
AM1-D ^a	1.59	2.08	2.43	2.86	2.23	3.32	2.84	2.98	2.86	2.82	2.49	2.08	3.18	2.24	3.36	2.34	3.10	2.04	3.04	4.19	2.70	0.58
PM3	5.95	5.47	6.00	5.87	5.97	5.93	5.83	6.14	6.13	6.27	6.29	5.46	5.15	6.28	6.12	5.17	6.07	5.27	5.99	5.82	5.86	0.35
PM3-D ^a	3.79	4.29	4.97	5.34	5.14	5.87	5.20	5.59	5.54	5.84	5.40	4.61	4.62	5.36	5.66	4.25	5.96	4.38	5.81	5.62	5.16	0.62
PM3MM	6.17	6.04	6.26	6.04	6.14	6.08	6.05	6.44	6.34	6.39	6.49	5.89	6.30	7.02	6.61	5.72	5.19	5.34	6.54	6.23	6.16	0.41
PM3MM-D ^a	3.93	4.81	5.22	5.55	5.32	6.03	5.40	5.98	5.83	6.01	5.61	5.01	5.74	6.09	6.12	4.75	4.99	4.58	6.36	6.01	5.47	0.62
AMOEBA	3.89	0.64	0.68	1.53	0.81	1.19	0.48	0.55	0.48	1.40	1.01	0.88	1.11	1.89	1.47	0.60	3.13	2.16	1.40	0.83	1.31	0.87
AMBEREP	18.19	2.68	3.31	2.89	3.27	3.84	3.33	3.59	3.48	2.50	4.04	3.77	3.09	3.67	4.61	3.12	1.76	4.51	3.53	3.43	4.13	3.29
AMBERPOL	3.53	2.21	3.19	2.61	3.07	3.68	3.42	3.34	3.41	2.71	3.76	3.39	2.76	4.35	3.94	3.05	1.39	4.18	3.32	3.76	3.25	0.67
AMBER94	3.62	2.10	3.42	2.86	3.27	3.24	3.02	3.56	3.28	3.18	3.43	3.25	2.54	3.25	2.54	3.91	2.69	4.42	3.20	4.31	3.25	0.55
AMBER96	2.94	4.69	5.49	5.20	5.34	5.51	4.98	5.71	5.55	5.17	5.32	4.67	4.13	5.53	5.21	5.87	3.60	5.41	5.22	5.22	5.04	0.71
AMBER99	2.21	1.86	2.61	2.15	2.37	2.33	2.38	2.80	2.54	2.24	2.72	2.59	1.72	2.62	1.67	3.29	2.57	4.13	2.22	2.75	2.49	0.53
AMBER99SB	2.21	2.51	2.74	2.67	2.43	3.22	2.14	2.82	2.75	2.48	2.61	2.57	2.39	2.67	2.62	3.18	1.82	2.81	2.83	3.05	2.63	0.33
AMBER03	3.75	3.82	5.47	4.33	5.32	6.52	4.27	4.72	4.58	4.14	4.08	4.60	4.97	6.30	3.63	7.68	3.79	6.05	4.55	4.64	4.86	1.04
CHARMM27	5.05	6.15	7.86	7.95	7.53	8.20	7.89	7.72	7.67	6.30	7.46	7.39	6.40	8.31	7.87	8.38	7.78	7.89	7.53	7.95	7.46	0.82
OPLS-AA	3.69	2.82	3.33	3.26	3.22	3.83	3.78	3.23	3.22	2.90	3.43	2.83	2.74	3.14	3.52	3.01	1.77	2.83	3.91	4.05	3.23	0.51
OPLS-AA/L	4.29	5.21	3.70	3.53	3.48	3.55	3.99	3.50	3.46	2.97	3.50	3.61	3.90	3.50	3.78	3.65	1.90	3.64	3.96	4.25	3.67	0.60
AMBERUA	21.48	4.76	5.96	4.37	5.79	5.05	4.91	5.82	5.78	5.42	5.47	5.40	4.41	6.82	5.04	6.61	4.51	5.54	4.76	4.84	6.14	3.58
GROMOS(G43b1)	18.08	4.36	4.70	4.18	4.38	4.35	4.95	5.07	5.09	4.79	4.63	4.81	4.29	4.07	5.20	4.57	7.35	5.36	4.50	6.45	5.56	2.97
GROMOS(G45a3)	17.50	4.07	4.15	4.04	3.91	3.95	4.54	4.66	4.64	4.25	4.07	4.34	3.83	3.96	4.74	4.15	5.10	5.42	3.70	4.96	5.00	2.90
GROMOS(G53a6)	18.28	5.38	5.48	5.35	5.32	5.33	4.57	5.75	5.75	5.38	5.17	4.90	4.77	5.35	5.63	5.90	5.21	4.92	4.88	5.17	5.92	2.86

¹ Standard deviation. ^a AMBER99 dispersion correction.

Table S4a. Energy offset (E_c) for each tetrapeptide obtained from Eq. 2 in minimizing RMS of each method over 4 conformations (excluding α_L).

	Pro	Gly	Ala	Val	Leu	Ile	Met	Phe	Tyr	His	Trp	Cys	Ser	Thr	Asn	Gln	Asp	Glu	Lys	Arg
M05-2X/cc-pVTZ	1.40	1.58	1.43	1.37	1.30	1.29	1.17	1.66	1.81	1.51	1.99	0.74	1.27	1.13	1.23	1.27	0.51	0.94	1.39	1.32
M05-2X-D ^a /cc-pVTZ	-2.74	-0.91	-1.02	-0.85	-0.81	-0.59	-0.86	0.08	0.21	0.07	-0.60	-1.59	-0.98	-0.92	-0.58	-1.02	-1.31	-1.56	-0.22	-0.05
M05-2X/6-31G**	-0.05	0.06	-0.02	-0.02	-0.27	-0.15	-0.32	0.34	0.64	0.13	0.32	-0.69	-0.15	-0.45	-0.10	-0.24	0.04	0.22	-0.25	0.30
M05-2X-D ^a /6-31G**	-4.19	-2.44	-2.47	-2.24	-2.38	-2.03	-2.35	-1.24	-0.96	-1.31	-2.27	-3.02	-2.40	-2.50	-1.92	-2.53	-1.78	-2.29	-1.86	-1.08
PBE/cc-pVTZ	4.15	4.41	4.31	4.15	4.25	3.97	3.77	4.09	3.93	4.33	4.73	3.94	4.11	4.30	3.88	3.61	2.19	3.83	4.36	3.23
PBE-D ^a /cc-pVTZ	0.01	1.91	1.85	1.93	2.14	2.09	1.74	2.52	2.33	2.88	2.14	1.62	1.86	2.25	2.07	1.31	0.37	1.33	2.74	1.86
PBE/6-31G**	2.45	2.67	2.65	2.52	2.40	2.34	2.10	2.49	2.42	2.61	2.90	2.30	2.44	2.38	2.34	1.89	1.30	2.89	2.46	2.15
PBE-D ^a /6-31G**	-1.69	0.17	0.20	0.30	0.30	0.46	0.07	0.91	0.82	1.16	0.32	-0.03	0.19	0.33	0.52	-0.40	-0.52	0.39	0.85	0.78
B3LYP/cc-pVTZ	5.03	5.29	5.30	5.04	5.24	4.92	4.65	4.98	4.86	5.21	5.83	4.95	5.18	5.31	4.84	4.51	2.50	4.24	5.39	3.97
B3LYP-D ^a /cc-pVTZ	0.89	2.79	2.85	2.82	3.14	3.04	2.62	3.40	3.26	3.77	3.25	2.62	2.93	3.26	3.02	2.21	0.68	1.73	3.77	2.59
B3LYP/6-31G**	3.29	3.44	3.58	3.34	3.32	3.20	2.93	3.27	3.12	3.37	3.85	3.25	3.47	3.33	3.23	2.75	1.67	3.05	3.40	2.81
B3LYP-D ^a /6-31G**	-0.85	0.95	1.13	1.12	1.21	1.32	0.90	1.69	1.52	1.93	1.27	0.92	1.22	1.28	1.42	0.45	-0.15	0.55	1.79	1.43
AM1	3.30	3.90	3.36	2.86	3.83	2.86	1.86	4.08	3.94	4.05	4.53	2.69	2.08	2.37	2.21	1.60	1.62	3.68	3.40	-0.11
AM1-D ^a	-0.84	1.40	0.91	0.64	1.72	0.98	-0.17	2.50	2.34	2.60	1.94	0.36	-0.16	0.32	0.39	-0.69	-0.20	1.18	1.79	-1.49
PM3	8.40	7.34	7.84	7.80	8.90	7.67	6.48	7.91	7.94	8.22	8.61	6.91	5.83	9.13	6.19	6.01	6.92	7.65	7.83	4.23
PM3-D ^a	4.26	4.85	5.39	5.58	6.79	5.79	4.45	6.33	6.34	6.78	6.02	4.58	3.58	7.07	4.37	3.71	5.10	5.15	6.21	2.85
PM3MM	8.48	8.33	8.11	7.88	9.00	7.79	6.71	8.34	8.17	8.29	8.77	7.67	7.04	9.99	7.15	6.53	6.31	7.03	8.89	5.67
PM3MM-D ^a	4.34	5.84	5.66	5.66	6.90	5.91	4.68	6.76	6.57	6.85	6.18	5.35	4.79	7.94	5.34	4.24	4.49	4.52	7.28	4.29
AMOEBA	-3.58	0.22	0.32	-0.21	-0.04	-0.70	-0.45	-0.45	-0.24	2.61	0.21	1.00	-0.76	2.26	2.08	0.34	-1.19	-1.17	1.74	-0.59
AMBEREP	-4.08	0.17	-1.07	-0.48	-1.08	-0.74	-1.87	-1.11	-0.84	0.68	-2.23	-2.17	-1.20	-0.79	-0.75	-1.00	-1.47	-4.13	-0.18	-1.69
AMBERPOL	-4.77	-0.21	-1.42	-0.77	-1.40	-1.17	-2.21	-1.35	-1.20	-0.05	-2.51	-1.58	-1.20	-1.70	-0.18	-1.17	-1.08	-4.07	-0.62	-2.38
AMBER94	-5.40	-2.01	-3.08	-2.50	-3.24	-2.04	-3.59	-3.09	-2.79	-3.15	-3.51	-3.69	-3.02	-3.18	-1.82	-3.44	-4.64	-6.00	-2.66	-4.18
AMBER96	0.68	4.08	3.00	3.58	2.84	4.04	2.49	2.99	3.29	2.93	2.57	2.39	3.06	2.91	4.27	2.64	1.44	0.08	3.42	1.91
AMBER99	-3.81	-0.78	-1.52	-0.93	-1.70	-0.44	-2.02	-1.52	-1.22	-1.58	-1.93	-2.12	-1.47	-1.60	-0.43	-2.04	-3.12	-4.43	-1.07	-2.64
AMBER99SB	1.59	3.48	3.55	4.15	3.36	4.67	3.03	3.52	3.82	3.51	3.12	2.95	3.62	4.06	4.47	2.86	1.87	0.64	3.99	2.41
AMBER03	-0.03	2.11	1.91	3.07	1.79	4.41	0.82	1.12	-1.21	-1.83	-1.06	1.03	1.85	3.84	1.66	3.71	-0.93	1.68	5.51	0.35
CHARMM27	0.33	3.15	1.37	1.46	1.81	1.66	1.10	2.64	2.75	3.03	1.92	1.34	1.02	1.58	1.76	1.00	-4.36	-2.72	2.60	1.21
OPLS-AA	-0.57	3.40	3.43	3.62	3.93	4.14	2.63	4.61	4.68	4.10	2.74	3.80	3.78	4.18	5.11	2.98	0.41	0.65	5.51	2.59
OPLS-AA/L	-0.69	6.51	3.22	3.28	3.84	3.04	2.45	4.36	4.42	3.92	2.81	4.25	4.54	3.71	4.63	3.33	-1.96	-1.47	4.66	2.65
AMBERUA	0.41	2.32	0.26	1.69	-0.07	0.52	-0.11	0.38	-2.60	-0.37	-1.07	-0.48	-1.09	1.23	1.85	1.19	-1.06	-0.31	0.20	-0.24
GROMOS(G43b1)	2.35	5.41	5.13	5.11	5.45	4.96	4.54	5.07	5.13	4.93	3.52	5.17	4.19	5.20	5.55	4.41	10.40	3.89	5.49	-3.01
GROMOS(G45a3)	3.08	5.65	5.42	5.26	5.59	4.91	4.68	5.46	5.38	5.06	3.84	5.42	4.42	5.32	5.79	4.50	4.44	2.11	5.09	0.58
GROMOS(G53a6)	0.30	7.67	7.45	7.18	7.97	6.93	5.70	7.56	7.49	6.79	6.03	7.13	6.53	7.17	7.14	6.50	4.78	4.17	6.98	3.63

M05-	2X/cc-pV	/TZ//M05	5-2X/6-3	lG**	M05-2	2X-D ^a /cc-p	VTZ//M	05-2X/6-	31G**	M05-	-2X/6-310	G**// M0	5-2X/6-3	1G**
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	1.40	-0.27	-0.34	-0.78	Pro	-2.74	1.51	2.99	-1.76	Pro	-0.05	-0.27	-0.25	0.57
Gly	1.58	-0.12	-1.09	-0.37	Gly	-0.91	0.52	-0.09	0.48	Gly	0.06	0.46	-0.83	0.31
Ala	1.43	-0.25	-0.48	-0.71	Ala	-1.02	0.55	0.43	0.04	Ala	-0.02	0.24	-0.08	-0.14
Val	1.37	-0.07	-0.65	-0.65	Val	-0.85	0.28	0.16	0.41	Val	-0.02	0.63	-0.36	-0.25
Leu	1.30	-0.12	-0.67	-0.50	Leu	-0.81	0.41	0.08	0.32	Leu	-0.27	0.58	-0.54	0.23
Ile	1.29	-0.12	-0.63	-0.54	Ile	-0.59	0.45	0.52	-0.39	Ile	-0.15	0.57	-0.20	-0.22
Met	1.17	-0.26	-0.52	-0.39	Met	-0.86	0.48	0.33	0.05	Met	-0.32	0.30	-0.16	0.17
Phe	1.66	-0.18	-0.69	-0.79	Phe	0.08	-0.32	-0.68	0.92	Phe	0.34	0.00	-0.48	0.14
Tyr	1.81	-0.51	-0.76	-0.54	Tyr	0.21	-0.77	-0.77	1.34	Tyr	0.64	-0.28	-0.81	0.45
His	1.51	-0.30	-0.51	-0.70	His	0.07	-0.76	-0.27	0.97	His	0.13	-0.18	-0.24	0.28
Trp	1.99	-0.67	-0.63	-0.69	Trp	-0.60	0.93	-1.01	0.67	Trp	0.32	-0.22	-0.29	0.20
Cys	0.74	1.32	-1.00	-1.06	Cys	-1.59	1.97	-0.12	-0.27	Cys	-0.69	1.91	-0.84	-0.38
Ser	1.27	-0.11	-0.75	-0.42	Ser	-0.98	0.79	0.24	-0.06	Ser	-0.15	0.48	-0.45	0.12
Thr	1.13	-0.17	-0.56	-0.39	Thr	-0.92	0.48	0.32	0.12	Thr	-0.45	0.77	-0.24	-0.08
Asn	1.23	-0.60	-0.09	-0.54	Asn	-0.58	0.15	0.12	0.32	Asn	-0.10	-0.39	0.30	0.19
Gln	1.27	-0.29	-0.78	-0.20	Gln	-1.02	0.80	0.35	-0.13	Gln	-0.24	0.26	-0.64	0.62
Asp	0.51	-0.17	-0.09	-0.26	Asp	-1.31	0.95	-0.36	0.73	Asp	0.04	-1.01	-0.23	1.20
Glu	0.94	0.71	-1.12	-0.53	Glu	-1.56	1.45	-0.22	0.33	Glu	0.22	-0.47	-0.30	0.55
Lys	1.39	-0.06	-0.58	-0.76	Lys	-0.22	-0.53	0.57	0.19	Lys	-0.25	0.68	-0.39	-0.03
Arg	1.32	-0.25	0.16	-1.24	Arg	-0.05	-0.83	0.66	0.22	Arg	0.30	0.41	-0.61	-0.09

Table S4b. Signed error (*error*= E_{ai} - E_{bi} + E_c , kcal/mol) using the MP2 energy as the true value (excluding α_L).

M05-2	2X-D ^a /6-3	IG**// M	05-2X/6-3	31G**		PBE/cc-pV	TZ//PBE	/6-31G**	:	PE	BE-D ^a /cc-p	oVTZ//PE	BE/6-31G*	**
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	-4.19	1.51	3.09	-0.41	Pro	4.15	-2.32	-1.55	-0.28	Pro	0.01	-0.54	1.78	-1.26
Gly	-2.44	1.11	0.17	1.16	Gly	4.41	-2.33	-2.52	0.45	Gly	1.91	-1.69	-1.52	1.30
Ala	-2.47	1.03	0.83	0.61	Ala	4.31	-2.57	-2.16	0.42	Ala	1.85	-1.77	-1.25	1.17
Val	-2.24	0.98	0.45	0.82	Val	4.15	-2.38	-1.81	0.04	Val	1.93	-2.03	-1.01	1.10
Leu	-2.38	1.12	0.20	1.05	Leu	4.25	-2.36	-2.01	0.11	Leu	2.14	-1.82	-1.26	0.93
Ile	-2.03	1.14	0.96	-0.07	Ile	3.97	-2.42	-1.83	0.28	Ile	2.09	-1.85	-0.67	0.43
Met	-2.35	1.05	0.69	0.61	Met	3.77	-2.54	-2.05	0.82	Met	1.74	-1.79	-1.21	1.26
Phe	-1.24	-0.14	-0.47	1.85	Phe	4.09	-1.78	-1.66	-0.66	Phe	2.52	-1.92	-1.65	1.05
Tyr	-0.96	-0.54	-0.82	2.33	Tyr	3.93	-1.59	-1.68	-0.66	Tyr	2.33	-1.85	-1.70	1.22
His	-1.31	-0.64	0.00	1.95	His	4.33	-1.82	-2.00	-0.50	His	2.88	-2.28	-1.76	1.16
Trp	-2.27	1.38	-0.67	1.56	Trp	4.73	-2.54	-1.82	-0.36	Trp	2.14	-0.94	-2.20	1.00
Cys	-3.02	2.56	0.05	0.41	Cys	3.94	-2.18	-1.89	0.13	Cys	1.62	-1.53	-1.01	0.92
Ser	-2.40	1.38	0.54	0.48	Ser	4.11	-2.40	-2.08	0.37	Ser	1.86	-1.50	-1.09	0.73
Thr	-2.50	1.42	0.65	0.44	Thr	4.30	-2.43	-2.05	0.18	Thr	2.25	-1.78	-1.16	0.70
Asn	-1.92	0.36	0.50	1.06	Asn	3.88	-2.05	-1.76	-0.07	Asn	2.07	-1.31	-1.56	0.80
Gln	-2.53	1.35	0.49	0.69	Gln	3.61	-2.65	-2.24	1.28	Gln	1.31	-1.56	-1.11	1.36
Asp	-1.78	0.10	-0.51	2.18	Asp	2.19	-0.94	0.00	-1.25	Asp	0.37	0.18	-0.28	-0.27
Glu	-2.29	0.28	0.61	1.40	Glu	3.83	-1.26	-2.28	-0.29	Glu	1.33	-0.52	-1.38	0.56
Lys	-1.86	0.20	0.75	0.91	Lys	4.36	-2.53	-1.96	0.13	Lys	2.74	-3.01	-0.81	1.08
Arg	-1.08	-0.17	-0.11	1.37	Arg	3.23	-2.51	-0.71	-0.01	Arg	1.86	-3.09	-0.21	1.44

Р	BE/6-310	G**// PBI	E/6-31G*	*	PE	BE-D ^a /6-3	1G**// PI	BE/6-31G	i**	B3I	YP/cc-pV	/TZ//B3L	XP/6-310	G**
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	2.45	-2.21	-1.33	1.09	Pro	-1.69	-0.43	2.01	0.11	Pro	5.03	-2.16	-1.65	-1.22
Gly	2.67	-1.57	-2.12	1.02	Gly	0.17	-0.93	-1.11	1.87	Gly	5.29	-2.47	-2.39	-0.43
Ala	2.65	-1.82	-1.62	0.78	Ala	0.20	-1.02	-0.71	1.53	Ala	5.30	-2.61	-2.45	-0.24
Val	2.52	-1.43	-1.34	0.25	Val	0.30	-1.08	-0.54	1.32	Val	5.04	-2.51	-2.01	-0.52
Leu	2.40	-1.39	-1.69	0.68	Leu	0.30	-0.85	-0.95	1.50	Leu	5.24	-2.43	-2.19	-0.62
Ile	2.34	-1.48	-1.35	0.49	Ile	0.46	-0.91	-0.20	0.65	Ile	4.92	-2.53	-1.97	-0.42
Met	2.10	-1.68	-1.54	1.13	Met	0.07	-0.93	-0.70	1.56	Met	4.65	-2.69	-2.36	0.41
Phe	2.49	-1.32	-1.09	-0.09	Phe	0.91	-1.46	-1.08	1.62	Phe	4.98	-1.66	-1.82	-1.50
Tyr	2.42	-1.29	-1.08	-0.05	Tyr	0.82	-1.55	-1.09	1.83	Tyr	4.86	-1.59	-1.75	-1.52
His	2.61	-1.28	-1.43	0.11	His	1.16	-1.74	-1.19	1.78	His	5.21	-1.68	-2.16	-1.37
Trp	2.90	-1.91	-1.19	0.19	Trp	0.32	-0.30	-1.57	1.55	Trp	5.83	-2.65	-1.99	-1.19
Cys	2.30	-1.40	-1.56	0.66	Cys	-0.03	-0.75	-0.68	1.45	Cys	4.95	-2.19	-2.09	-0.67
Ser	2.44	-1.61	-1.57	0.74	Ser	0.19	-0.72	-0.58	1.10	Ser	5.18	-2.62	-2.45	-0.10
Thr	2.38	-1.31	-1.51	0.44	Thr	0.33	-0.66	-0.62	0.96	Thr	5.31	-2.63	-2.24	-0.44
Asn	2.34	-1.57	-1.21	0.45	Asn	0.52	-0.83	-1.01	1.31	Asn	4.84	-2.22	-1.79	-0.82
Gln	1.89	-1.89	-1.89	1.89	Gln	-0.40	-0.80	-0.76	1.97	Gln	4.51	-2.76	-2.53	0.79
Asp	1.30	-1.90	0.43	0.16	Asp	-0.52	-0.79	0.16	1.15	Asp	2.50	-0.78	-0.11	-1.61
Glu	2.89	-2.05	-1.33	0.49	Glu	0.39	-1.31	-0.42	1.34	Glu	4.24	-0.25	-2.81	-1.18
Lys	2.46	-1.66	-1.52	0.72	Lys	0.85	-2.13	-0.37	1.66	Lys	5.39	-2.57	-2.15	-0.66
Arg	2.15	-1.45	-1.73	1.03	Arg	0.78	-2.03	-1.23	2.49	Arg	3.97	-2.67	-0.18	-1.12

B3LY	P-D ^a /cc-p	VTZ//B3	BLYP/6-3	1G**	B3I	XP/6-310	G**// B3I	YP/6-31	G**	B3LY	P-D ^a /6-31	lG**// B3	3LYP/6-3	1G**
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	0.89	-0.38	1.69	-2.20	Pro	3.29	-2.03	-1.41	0.15	Pro	-0.85	-0.25	1.92	-0.83
Gly	2.79	-1.82	-1.39	0.42	Gly	3.44	-1.76	-1.89	0.20	Gly	0.95	-1.11	-0.88	1.05
Ala	2.85	-1.82	-1.54	0.51	Ala	3.58	-1.90	-1.92	0.24	Ala	1.13	-1.10	-1.02	0.99
Val	2.82	-2.16	-1.21	0.54	Val	3.34	-1.60	-1.55	-0.20	Val	1.12	-1.24	-0.74	0.87
Leu	3.14	-1.90	-1.44	0.20	Leu	3.32	-1.52	-1.87	0.07	Leu	1.21	-0.98	-1.13	0.89
Ile	3.04	-1.96	-0.82	-0.27	Ile	3.20	-1.64	-1.53	-0.04	Ile	1.32	-1.07	-0.37	0.12
Met	2.62	-1.94	-1.52	0.84	Met	2.93	-1.87	-1.88	0.82	Met	0.90	-1.13	-1.03	1.26
Phe	3.40	-1.80	-1.81	0.21	Phe	3.27	-1.19	-1.25	-0.83	Phe	1.69	-1.33	-1.24	0.88
Tyr	3.26	-1.85	-1.76	0.36	Tyr	3.12	-0.99	-1.25	-0.89	Tyr	1.52	-1.25	-1.26	0.99
His	3.77	-2.14	-1.92	0.29	His	3.37	-1.12	-1.62	-0.63	His	1.93	-1.58	-1.38	1.03
Trp	3.25	-1.05	-2.37	0.17	Trp	3.85	-1.93	-1.41	-0.52	Trp	1.27	-0.32	-1.79	0.84
Cys	2.62	-1.54	-1.21	0.13	Cys	3.25	-1.42	-1.78	-0.05	Cys	0.92	-0.77	-0.90	0.74
Ser	2.93	-1.73	-1.46	0.26	Ser	3.47	-1.87	-1.95	0.35	Ser	1.22	-0.97	-0.96	0.71
Thr	3.26	-1.98	-1.36	0.07	Thr	3.33	-1.53	-1.70	-0.10	Thr	1.28	-0.88	-0.81	0.42
Asn	3.02	-1.47	-1.59	0.04	Asn	3.23	-1.82	-1.26	-0.16	Asn	1.42	-1.07	-1.05	0.70
Gln	2.21	-1.67	-1.40	0.86	Gln	2.75	-2.03	-2.20	1.48	Gln	0.45	-0.94	-1.06	1.55
Asp	0.68	0.34	-0.39	-0.63	Asp	1.67	-1.73	0.11	-0.06	Asp	-0.15	-0.61	-0.16	0.92
Glu	1.73	0.50	-1.90	-0.33	Glu	3.05	-0.99	-1.88	-0.18	Glu	0.55	-0.25	-0.97	0.67
Lys	3.77	-3.05	-1.01	0.28	Lys	3.40	-1.72	-1.70	0.02	Lys	1.79	-2.20	-0.56	0.97
Arg	2.59	-3.25	0.32	0.33	Arg	2.81	-1.63	-1.16	-0.02	Arg	1.43	-2.21	-0.66	1.43
^a AMB	ER99 d	ispersio	n correc	tion.										

	А	M1// AM	[1			AN	[1-D ^a // A	M1			P	M3// PM	3	
	α_{R}	β	β_a	PPII		α_R	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	3.30	-2.90	-0.40	-0.01	Pro	-0.84	-1.11	2.94	-0.99	Pro	8.40	-2.97	-2.83	-2.60
Gly	3.90	-2.58	-0.50	-0.81	Gly	1.40	-1.94	0.50	0.04	Gly	7.34	-1.11	-0.74	-5.49
Ala	3.36	-2.41	0.11	-1.07	Ala	0.91	-1.61	1.02	-0.32	Ala	7.84	-2.36	-0.32	-5.16
Val	2.86	-1.98	0.60	-1.48	Val	0.64	-1.63	1.40	-0.41	Val	7.80	-2.40	-0.18	-5.23
Leu	3.83	-2.06	-0.20	-1.57	Leu	1.72	-1.52	0.55	-0.75	Leu	8.90	-2.47	-0.55	-5.88
Ile	2.86	-1.73	0.74	-1.87	Ile	0.98	-1.16	1.90	-1.72	Ile	7.67	-2.14	-0.19	-5.34
Met	1.86	-2.33	0.22	0.24	Met	-0.17	-1.58	1.06	0.68	Met	6.48	-2.41	-0.48	-3.58
Phe	4.08	-1.89	0.46	-2.65	Phe	2.50	-2.03	0.47	-0.95	Phe	7.91	-1.05	-0.08	-6.78
Tyr	3.94	-1.78	0.53	-2.69	Tyr	2.34	-2.04	0.51	-0.81	Tyr	7.94	-1.45	0.14	-6.63
His	4.05	-1.93	0.20	-2.31	His	2.60	-2.40	0.44	-0.64	His	8.22	-1.83	-0.33	-6.06
Trp	4.53	-2.16	0.11	-2.47	Trp	1.94	-0.56	-0.27	-1.11	Trp	8.61	-1.79	-0.39	-6.43
Cys	2.69	-1.20	-0.13	-1.36	Cys	0.36	-0.55	0.75	-0.57	Cys	6.91	-1.57	-0.06	-5.28
Ser	2.08	-2.34	2.25	-1.99	Ser	-0.16	-1.44	3.24	-1.63	Ser	5.83	0.00	-0.96	-4.86
Thr	2.37	-2.16	0.17	-0.38	Thr	0.32	-1.51	1.05	0.13	Thr	9.13	-2.91	-1.55	-4.67
Asn	2.21	-0.39	-0.26	-1.55	Asn	0.39	0.36	-0.06	-0.69	Asn	6.19	-0.16	-0.46	-5.57
Gln	1.60	-2.63	-0.24	1.26	Gln	-0.69	-1.54	0.90	1.33	Gln	6.01	-2.81	-0.75	-2.45
Asp	1.62	1.14	-0.24	-2.52	Asp	-0.20	2.25	-0.51	-1.54	Asp	6.92	2.16	-3.65	-5.43
Glu	3.68	1.13	-1.98	-2.83	Glu	1.18	1.87	-1.08	-1.98	Glu	7.65	1.16	-2.58	-6.23
Lys	3.40	-2.25	0.13	-1.28	Lys	1.79	-2.72	1.27	-0.33	Lys	7.83	-2.53	-0.23	-5.06
Arg	-0.11	-3.88	6.35	-2.36	Arg	-1.49	-4.46	6.85	-0.91	Arg	4.23	-4.13	5.11	-5.20

	PN	13-D ^a //PN	43			PM3N	/M// PM	3MM			PM3M1	M-D ^a // PN	M3MM	
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	4.26	-1.19	0.51	-3.58	Pro	8.48	-3.42	-3.03	-2.03	Pro	4.34	-1.64	0.31	-3.01
Gly	4.85	-0.47	0.26	-4.64	Gly	8.33	-3.07	-1.21	-4.06	Gly	5.84	-2.42	-0.20	-3.21
Ala	5.39	-1.57	0.59	-4.41	Ala	8.11	-3.03	-0.85	-4.22	Ala	5.66	-2.24	0.05	-3.47
Val	5.58	-2.04	0.63	-4.17	Val	7.88	-2.94	-0.51	-4.42	Val	5.66	-2.59	0.29	-3.36
Leu	6.79	-1.93	0.20	-5.06	Leu	9.00	-3.12	-0.89	-4.99	Leu	6.90	-2.59	-0.14	-4.17
Ile	5.79	-1.57	0.96	-5.18	Ile	7.79	-2.77	-0.56	-4.46	Ile	5.91	-2.20	0.60	-4.31
Met	4.45	-1.67	0.36	-3.14	Met	6.71	-3.11	-0.97	-2.63	Met	4.68	-2.37	-0.12	-2.19
Phe	6.33	-1.19	-0.07	-5.07	Phe	8.34	-2.31	-0.20	-5.83	Phe	6.76	-2.45	-0.19	-4.12
Tyr	6.34	-1.71	0.12	-4.76	Tyr	8.17	-2.17	-0.11	-5.88	Tyr	6.57	-2.43	-0.13	-4.01
His	6.78	-2.29	-0.09	-4.40	His	8.29	-2.30	-0.51	-5.48	His	6.85	-2.76	-0.27	-3.81
Trp	6.02	-0.19	-0.76	-5.07	Trp	8.77	-2.56	-0.46	-5.75	Trp	6.18	-0.96	-0.84	-4.39
Cys	4.58	-0.92	0.82	-4.48	Cys	7.67	-2.00	-1.49	-4.19	Cys	5.35	-1.35	-0.61	-3.39
Ser	3.58	0.89	0.03	-4.50	Ser	7.04	-3.28	1.17	-4.93	Ser	4.79	-2.38	2.16	-4.57
Thr	7.07	-2.26	-0.66	-4.15	Thr	9.99	-3.33	-3.78	-2.89	Thr	7.94	-2.68	-2.89	-2.38
Asn	4.37	0.59	-0.26	-4.70	Asn	7.15	-1.60	-0.87	-4.68	Asn	5.34	-0.85	-0.67	-3.82
Gln	3.71	-1.72	0.39	-2.38	Gln	6.53	-3.39	-1.48	-1.66	Gln	4.24	-2.30	-0.35	-1.58
Asp	5.10	3.28	-3.93	-4.45	Asp	6.31	2.70	-2.88	-6.13	Asp	4.49	3.82	-3.16	-5.15
Glu	5.15	1.91	-1.68	-5.38	Glu	7.03	0.95	-2.55	-5.43	Glu	4.52	1.70	-1.64	-4.57
Lys	6.21	-3.01	0.92	-4.12	Lys	8.89	-3.51	-1.03	-4.35	Lys	7.28	-3.98	0.11	-3.40
Arg	2.85	-4.71	5.61	-3.74	Arg	5.67	-5.15	4.19	-4.71	Arg	4.29	-5.73	4.69	-3.25
^a AMB	ER99 d	ispersio	n correc	tion.										

	AMOEB	BA// AM	OEBA			AMBER	EP// AM	BEREP	AMBERPOL// AMBERPOL						
	α_R	β	β_a	PPII		α_R	β	β_a	PPII		α_{R}	β	β_a	PPII	
Pro	-3.58	2.02	5.44	-3.88	Pro	-4.08	2.77	2.73	-1.43	Pro	-4.77	3.66	4.07	-2.95	
Gly	0.22	0.50	0.48	-1.19	Gly	0.17	-0.46	-1.73	2.03	Gly	-0.21	0.66	0.39	-0.84	
Ala	0.32	0.35	0.53	-1.20	Ala	-1.07	0.54	-0.24	0.77	Ala	-1.42	1.46	1.11	-1.14	
Val	-0.21	1.02	1.73	-2.54	Val	-0.48	0.39	-0.35	0.45	Val	-0.77	1.07	0.88	-1.18	
Leu	-0.04	0.06	1.16	-1.18	Leu	-1.08	1.01	-0.76	0.83	Leu	-1.40	1.81	0.42	-0.83	
Ile	-0.70	0.59	1.42	-1.31	Ile	-0.74	0.76	-0.17	0.15	Ile	-1.17	1.61	1.16	-1.60	
Met	-0.45	0.62	0.44	-0.61	Met	-1.87	0.58	-0.38	1.67	Met	-2.21	1.37	0.93	-0.08	
Phe	-0.45	0.30	0.60	-0.44	Phe	-1.11	0.58	-0.17	0.71	Phe	-1.35	1.24	0.97	-0.85	
Tyr	-0.24	0.11	0.40	-0.27	Tyr	-0.84	0.26	-0.57	1.15	Tyr	-1.20	1.06	0.92	-0.78	
His	2.61	-0.46	-0.64	-1.51	His	0.68	-0.69	-0.20	0.20	His	-0.05	0.35	0.80	-1.09	
Trp	0.21	0.95	0.53	-1.69	Trp	-2.23	1.65	-0.05	0.63	Trp	-2.51	2.49	1.06	-1.03	
Cys	1.00	-0.06	0.48	-1.41	Cys	-2.17	3.12	0.00	-0.95	Cys	-1.58	2.92	0.40	-1.74	
Ser	-0.76	0.67	0.05	0.03	Ser	-1.20	0.81	-0.64	1.03	Ser	-1.20	1.42	0.40	-0.62	
Thr	2.26	0.11	0.69	-3.06	Thr	-0.79	1.34	0.73	-1.28	Thr	-1.70	1.60	1.51	-1.40	
Asn	2.08	0.24	-2.37	0.05	Asn	-0.75	1.78	-2.36	1.33	Asn	-0.18	1.89	-1.49	-0.22	
Gln	0.34	-0.26	-0.15	0.06	Gln	-1.00	0.91	0.01	0.08	Gln	-1.17	1.58	1.18	-1.60	
Asp	-1.19	4.24	-0.83	-2.22	Asp	-1.47	1.98	-1.81	1.31	Asp	-1.08	2.46	-0.96	-0.41	
Glu	-1.17	2.84	1.02	-2.69	Glu	-4.13	3.69	-1.14	1.58	Glu	-4.07	4.28	0.14	-0.35	
Lys	1.74	-0.58	0.75	-1.91	Lys	-0.18	0.07	-0.36	0.48	Lys	-0.62	0.31	1.10	-0.78	
Arg	-0.59	0.82	0.95	-1.18	Arg	-1.69	-0.89	2.87	-0.29	Arg	-2.38	-0.14	3.92	-1.40	

	AMBER	R94// AM	BER94			AMBEI	R96// AM	BER96	AMBER99// AMBER99						
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_R	β	β_a	PPII	
 Pro	-5.40	1.87	5.39	-1.86	Pro	0.68	-0.61	1.49	-1.57	Pro	-3.81	2.26	2.10	-0.55	
Gly	-2.01	1.09	1.42	-0.50	Gly	4.08	-1.38	-2.48	-0.21	Gly	-0.78	1.89	-1.75	0.65	
Ala	-3.08	1.87	2.19	-0.98	Ala	3.00	-0.61	-1.71	-0.69	Ala	-1.52	2.27	-1.06	0.31	
Val	-2.50	1.48	1.80	-0.78	Val	3.58	-1.00	-2.09	-0.49	Val	-0.93	1.86	-1.45	0.51	
Leu	-3.24	0.93	2.54	-0.23	Leu	2.84	-1.54	-1.36	0.06	Leu	-1.70	1.30	-0.66	1.06	
Ile	-2.04	1.85	2.31	-2.12	Ile	4.04	-0.62	-1.58	-1.83	Ile	-0.44	2.23	-0.96	-0.83	
Met	-3.59	1.77	1.70	0.13	Met	2.49	-0.71	-2.19	0.42	Met	-2.02	2.15	-1.56	1.42	
Phe	-3.09	1.62	2.07	-0.60	Phe	2.99	-0.85	-1.82	-0.32	Phe	-1.52	2.02	-1.18	0.68	
Tyr	-2.79	1.37	1.99	-0.57	Tyr	3.29	-1.10	-1.91	-0.28	Tyr	-1.22	1.76	-1.26	0.72	
His	-3.15	1.38	2.60	-0.83	His	2.93	-1.10	-1.30	-0.54	His	-1.58	1.77	-0.65	0.46	
Trp	-3.51	2.55	1.86	-0.91	Trp	2.57	0.07	-2.03	-0.62	Trp	-1.93	2.94	-1.39	0.39	
Cys	-3.69	3.77	1.79	-1.88	Cys	2.39	1.30	-2.10	-1.59	Cys	-2.12	4.17	-1.45	-0.59	
Ser	-3.02	2.51	2.22	-1.71	Ser	3.06	0.04	-1.68	-1.42	Ser	-1.47	2.91	-1.03	-0.41	
Thr	-3.18	1.04	1.62	0.52	Thr	2.91	-1.44	-2.27	0.81	Thr	-1.60	1.43	-1.64	1.81	
Asn	-1.82	0.27	1.94	-0.40	Asn	4.27	-2.21	-1.95	-0.11	Asn	-0.43	0.45	-0.74	0.72	
Gln	-3.44	2.26	2.29	-1.11	Gln	2.64	-0.21	-1.61	-0.82	Gln	-2.04	2.50	-1.13	0.67	
Asp	-4.64	3.20	0.86	0.58	Asp	1.44	0.72	-3.04	0.87	Asp	-3.12	3.75	-2.44	1.81	
Glu	-6.00	5.22	0.47	0.31	Glu	0.08	2.75	-3.43	0.60	Glu	-4.43	5.61	-2.79	1.61	
Lys	-2.66	1.71	2.72	-1.77	Lys	3.42	-0.77	-1.17	-1.49	Lys	-1.07	2.10	-0.54	-0.49	
Arg	-4.18	0.80	6.13	-2.76	Arg	1.91	-1.68	2.24	-2.47	Arg	-2.64	1.13	3.03	-1.53	

Α	MBER99	SB// AM	IBER99S	В		AMBER	03// AMI	BER03		C	CHARMM	127// CH	ARMM2	7
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	1.59	1.55	0.79	-3.92	Pro	-0.03	3.22	0.44	-3.62	Pro	0.33	1.28	2.34	-3.94
Gly	3.48	0.52	-1.23	-2.77	Gly	2.11	0.40	-0.54	-1.97	Gly	3.15	-1.73	-0.80	-0.61
Ala	3.55	0.49	-1.25	-2.79	Ala	1.91	0.91	-0.54	-2.28	Ala	1.37	-0.32	1.02	-2.07
Val	4.15	0.11	-1.63	-2.63	Val	3.07	-0.05	-1.58	-1.45	Val	1.46	-0.63	1.32	-2.15
Leu	3.36	-0.48	-0.85	-2.04	Leu	1.79	0.30	0.02	-2.11	Leu	1.81	-0.89	1.44	-2.36
Ile	4.67	0.51	-1.10	-4.07	Ile	4.41	0.08	-1.26	-3.23	Ile	1.66	-0.40	1.62	-2.89
Met	3.03	0.37	-1.74	-1.66	Met	0.82	1.31	-0.48	-1.65	Met	1.10	-0.42	0.59	-1.26
Phe	3.52	0.24	-1.36	-2.40	Phe	1.12	1.00	-0.18	-1.94	Phe	2.64	-0.74	0.82	-2.72
Tyr	3.82	-0.01	-1.42	-2.39	Tyr	-1.21	1.75	0.75	-1.30	Tyr	2.75	-0.88	0.76	-2.63
His	3.51	0.01	-0.80	-2.72	His	-1.83	2.01	1.50	-1.68	His	3.03	-0.81	0.99	-3.21
Trp	3.12	1.14	-1.54	-2.73	Trp	-1.06	1.63	0.47	-1.03	Trp	1.92	-0.52	0.78	-2.18
Cys	2.95	2.25	-1.61	-3.59	Cys	1.03	2.90	-0.67	-3.26	Cys	1.34	1.13	0.65	-3.13
Ser	3.62	1.12	-1.24	-3.50	Ser	1.85	1.41	-0.83	-2.42	Ser	1.02	-0.70	0.01	-0.33
Thr	4.06	-0.35	-1.84	-1.88	Thr	3.84	0.14	-0.13	-3.84	Thr	1.58	-1.24	0.89	-1.23
Asn	4.47	-1.36	-0.70	-2.41	Asn	1.66	-0.54	0.41	-1.53	Asn	1.76	1.23	-0.42	-2.57
Gln	2.86	0.58	-1.48	-1.96	Gln	3.71	0.27	-1.84	-2.13	Gln	1.00	-0.30	0.79	-1.48
Asp	1.87	2.02	-2.59	-1.31	Asp	-0.93	3.10	-2.38	0.21	Asp	-4.36	6.63	0.57	-2.84
Glu	0.64	3.87	-2.96	-1.54	Glu	1.68	3.98	-3.83	-1.83	Glu	-2.72	3.98	0.74	-2.00
Lys	3.99	0.34	-0.72	-3.61	Lys	5.51	-0.27	-0.25	-4.99	Lys	2.60	-1.04	1.15	-2.70
Arg	2.41	-0.64	2.90	-4.67	Arg	0.35	-0.85	6.05	-5.55	Arg	1.21	-2.02	5.09	-4.28

	OPLS-	AA// OPI	LS-AA			OPLS-A	A/L// OPI	LS-AA/L	AMBERUA// AMBERUA						
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII	
 Pro	-0.57	-1.28	6.60	-4.75	Pro	-0.69	-0.29	7.21	-6.23	Pro	0.41	1.55	2.31	-4.27	
Gly	3.40	-1.46	-1.38	-0.57	Gly	6.51	-3.36	-3.29	0.14	Gly	2.32	0.30	-0.83	-1.79	
Ala	3.43	-1.61	-0.78	-1.04	Ala	3.22	-0.24	-0.89	-2.09	Ala	0.26	1.55	0.06	-1.88	
Val	3.62	-1.52	-0.54	-1.57	Val	3.28	-0.23	-0.76	-2.29	Val	1.69	1.42	0.09	-3.20	
Leu	3.93	-2.05	-0.64	-1.24	Leu	3.84	-0.48	-0.79	-2.57	Leu	-0.07	1.29	0.31	-1.53	
Ile	4.14	-1.05	0.04	-3.12	Ile	3.04	-0.51	-0.90	-1.63	Ile	0.52	1.67	0.33	-2.52	
Met	2.63	-2.50	-2.03	1.90	Met	2.45	-1.22	-2.13	0.90	Met	-0.11	1.38	-0.05	-1.21	
Phe	4.61	-2.04	-0.71	-1.85	Phe	4.36	-0.72	-0.63	-3.01	Phe	0.38	1.52	0.12	-2.02	
Tyr	4.68	-2.15	-0.76	-1.78	Tyr	4.42	-0.87	-0.63	-2.93	Tyr	-2.60	2.38	1.15	-0.93	
His	4.10	-1.88	-0.54	-1.68	His	3.92	-0.73	-0.49	-2.70	His	-0.37	1.67	0.73	-2.03	
Trp	2.74	-2.69	0.36	-0.41	Trp	2.81	-1.10	0.06	-1.77	Trp	-1.07	2.35	0.50	-1.78	
Cys	3.80	-0.88	-1.59	-1.33	Cys	4.25	-0.13	-2.41	-1.71	Cys	-0.48	3.33	-0.13	-2.71	
Ser	3.78	-1.84	-1.53	-0.41	Ser	4.54	0.55	-0.97	-4.12	Ser	-1.09	1.52	-0.43	-0.01	
Thr	4.18	-1.39	-0.15	-2.65	Thr	3.71	-0.20	-0.22	-3.30	Thr	1.23	0.09	-1.11	-0.21	
Asn	5.11	-5.04	-0.06	0.00	Asn	4.63	-0.67	-2.33	-1.63	Asn	1.85	-0.39	0.29	-1.75	
Gln	2.98	-0.21	0.21	-2.98	Gln	3.33	-0.11	-0.63	-2.58	Gln	1.19	1.82	-0.06	-2.94	
Asp	0.41	-2.79	2.43	-0.05	Asp	-1.96	2.38	1.47	-1.89	Asp	-1.06	2.47	-0.58	-0.83	
Glu	0.65	3.26	-2.07	-1.84	Glu	-1.47	2.85	-0.30	-1.08	Glu	-0.31	4.37	-2.24	-1.82	
Lys	5.51	-2.57	-1.09	-1.86	Lys	4.66	-1.07	-0.92	-2.66	Lys	0.20	1.36	0.68	-2.24	
Arg	2.59	-3.21	4.05	-3.43	Arg	2.65	-1.88	3.77	-4.54	Arg	-0.24	-0.56	5.27	-4.47	

_																
GROM	MOS(G43	b1)// GR	OMOS(G43b1)	GRO	MOS(G45	a3)// GR	OMOS(C	i45a3)	GROMOS(G53a6)// GROMOS(G53a6)						
_	α_R	β	β_a	PPII		α_{R}	β	β_a	PPII		α_R	β	β_a	PPII		
Pro	2.35	-1.23	2.10	-3.22	Pro	3.08	-1.60	1.64	-3.11	Pro	0.30	-4.18	11.41	-7.53		
Gly	5.41	-3.57	-1.28	-0.56	Gly	5.65	-3.76	-1.46	-0.43	Gly	7.67	-4.58	-2.75	-0.34		
Ala	5.13	-3.58	-0.85	-0.70	Ala	5.42	-3.86	-1.11	-0.46	Ala	7.45	-4.66	-2.37	-0.43		
Val	5.11	-3.26	-0.19	-1.65	Val	5.26	-3.52	-0.28	-1.46	Val	7.18	-4.48	-1.45	-1.25		
Leu	5.45	-3.62	-1.10	-0.74	Leu	5.59	-4.21	-0.95	-0.43	Leu	7.97	-4.86	-1.84	-1.27		
Ile	4.96	-3.28	-0.16	-1.52	Ile	4.91	-3.67	-0.27	-0.97	Ile	6.93	-4.51	-1.31	-1.11		
Met	4.54	-3.58	-0.85	-0.10	Met	4.68	-3.88	-1.04	0.23	Met	5.70	-4.31	-1.98	0.58		
Phe	5.07	-3.45	-1.27	-0.36	Phe	5.46	-3.77	-1.47	-0.21	Phe	7.56	-4.62	-2.40	-0.54		
Tyr	5.13	-3.45	-1.79	0.11	Tyr	5.38	-3.84	-1.77	0.23	Tyr	7.49	-4.69	-2.72	-0.08		
His	4.93	-2.84	-0.73	-1.36	His	5.06	-3.28	-0.38	-1.40	His	6.79	-4.94	-1.12	-0.72		
Trp	3.52	-1.71	-0.94	-0.87	Trp	3.84	-1.88	-1.10	-0.85	Trp	6.03	-2.82	-1.80	-1.41		
Cys	5.17	-2.02	-1.19	-1.97	Cys	5.42	-2.29	-1.35	-1.78	Cys	7.13	-2.98	-2.86	-1.29		
Ser	4.19	-3.11	-0.87	-0.20	Ser	4.42	-3.39	-1.06	0.03	Ser	6.53	-3.54	-1.86	-1.13		
Thr	5.20	-3.29	-0.96	-0.95	Thr	5.32	-3.70	-1.12	-0.49	Thr	7.17	-3.77	-1.18	-2.22		
Asn	5.55	-2.19	-2.32	-1.04	Asn	5.79	-2.39	-2.53	-0.86	Asn	7.14	-3.97	-1.88	-1.29		
Gln	4.41	-2.84	-0.21	-1.37	Gln	4.50	-3.30	-0.49	-0.72	Gln	6.50	-3.58	-1.30	-1.62		
Asp	10.40	3.11	-3.44	-10.07	Asp	4.44	5.80	-3.71	-6.54	Asp	4.78	3.84	-3.87	-4.74		
Glu	3.89	6.99	-4.08	-6.80	Glu	2.11	8.28	-4.42	-5.97	Glu	4.17	5.20	-5.03	-4.34		
Lys	5.49	-4.98	-1.06	0.54	Lys	5.09	-5.10	-0.53	0.54	Lys	6.98	-5.36	-1.53	-0.10		
Arg	-3.01	-6.27	10.28	-0.99	Arg	0.58	-6.81	7.97	-1.74	Arg	3.63	-7.20	5.90	-2.32		

	α_{R}	β	β_a	PPII	Mean(µ)	1 SD(σ)
M05-2X/cc-pVTZ	1.36	-0.44	-0.67	-0.65	0.78	0.34
M05-2X-D ^a /cc-pVTZ	-1.05	0.87	0.81	0.66	0.85	0.14
M05-2X/6-31G**	-0.30	0.64	-0.47	0.41	0.45	0.12
M05-2X-D ^a /6-31G**	-2.27	1.10	0.88	1.24	1.38	0.53
PBE/cc-pVTZ	4.01	-2.23	-1.88	0.55	2.17	1.24
PBE-D ^a /cc-pVTZ	1.97	-1.79	-1.32	1.03	1.53	0.37
PBE/6-31G**	2.41	-1.63	-1.47	0.77	1.57	0.58
PBE-D ^a /6-31G**	0.66	-1.17	-0.96	1.52	1.07	0.31
B3LYP/cc-pVTZ	4.91	-2.28	-2.07	-0.95	2.55	1.45
B3LYP-D ^a /cc-pVTZ	2.85	-1.86	-1.49	0.64	1.71	0.79
B3LYP/6-31G**	3.21	-1.64	-1.62	0.52	1.75	0.96
B3LYP-D ^a /6-31G**	1.23	-1.18	-1.07	0.94	1.11	0.11
AM1	3.11	-2.17	1.61	-1.83	2.18	0.57
AM1-D ^a	1.38	-1.92	2.01	-1.02	1.58	0.40
PM3	7.48	-2.19	-1.73	-5.32	4.18	2.35
PM3-D ^a	5.38	-2.03	1.65	-4.43	3.37	1.57
PM3MM	7.87	-2.96	-1.85	-4.61	4.32	2.27
PM3MM-D ^a	5.78	-2.69	-1.58	-3.71	3.44	1.55
AMOEBA	1.38	1.32	1.54	-1.76	1.50	0.17
AMBEREP	-1.75	1.56	-1.25	1.06	1.40	0.26
AMBERPOL	-1.94	1.97	1.55	-1.22	1.67	0.31
AMBER94	-3.51	2.22	2.63	-1.25	2.40	0.81
AMBER96	2.92	-1.23	-2.05	-1.07	1.82	0.74
AMBER99	-2.08	2.58	-1.59	0.99	1.81	0.59
AMBER99SB	3.37	1.29	-1.62	-2.87	2.29	0.86
AMBER03	2.43	1.75	-1.87	-2.73	2.19	0.40
CHARMM27	2.15	1.98	1.53	-2.53	2.05	0.36
OPLS-AA	3.62	-2.31	2.06	-2.09	2.52	0.64
OPLS-AA/L	3.71	-1.34	-2.25	-2.82	2.53	0.86
AMBERUA	1.14	1.92	1.47	-2.30	1.71	0.44
GROMOS(G43b1)	5.17	-3.67	-2.82	-2.97	3.66	0.93
GROMOS(G45a3)	4.78	-4.21	-2.48	-2.26	3.43	1.08
GROMOS(G53a6)	6.50	-4.50	-3.66	-2.48	4.29	1.47

Table S4c. Signed RMS-C excluding α_L (RMS-C-N α_L , kcal/mol) of each conformation over 20 amino acids for each method.

¹ Standard deviation. ^a AMBER99 dispersion correction.

Table S4d. RMS over the four conformations (RMS-N α_L , kcal/mol) for each tetrapeptide.

	Pro	Gly	Ala	Val	Leu	Ile	Met	Phe	Tyr	His	Trp	Cys	Ser	Thr	Asn	Gln	Asp	Glu	Lys	Arg	$Mean(\mu)$	$^{1}\text{SD}(\sigma)$
M05-2X/cc-pVTZ	0.83	0.98	0.84	0.83	0.77	0.77	0.68	0.99	1.05	0.88	1.15	1.05	0.77	0.67	0.74	0.77	0.30	0.85	0.84	0.92	0.83	0.17
M05-2X-D ^a /cc-pVTZ	2.34	0.58	0.62	0.50	0.48	0.49	0.52	0.59	0.87	0.63	0.82	1.27	0.64	0.55	0.35	0.68	0.91	1.08	0.42	0.54	0.74	0.43
M05-2X/6-31G**	0.34	0.50	0.14	0.38	0.44	0.33	0.25	0.30	0.58	0.22	0.26	1.11	0.34	0.46	0.27	0.48	0.79	0.40	0.41	0.40	0.42	0.21
M05-2X-D ^a /6-31G**	2.72	1.46	1.43	1.31	1.42	1.26	1.37	1.14	1.35	1.21	1.58	1.99	1.43	1.49	1.14	1.50	1.43	1.38	1.11	0.88	1.43	0.37
PBE/cc-pVTZ	2.51	2.80	2.74	2.56	2.63	2.50	2.53	2.40	2.31	2.56	2.84	2.44	2.60	2.68	2.37	2.59	1.35	2.32	2.70	2.08	2.48	0.31
PBE-D ^a /cc-pVTZ	1.12	1.62	1.54	1.59	1.61	1.45	1.52	1.86	1.82	2.12	1.68	1.31	1.36	1.59	1.50	1.34	0.28	1.03	2.15	1.94	1.52	0.40
PBE/6-31G**	1.86	1.94	1.84	1.60	1.66	1.56	1.65	1.51	1.47	1.62	1.84	1.59	1.70	1.57	1.55	1.89	1.18	1.91	1.70	1.64	1.66	0.18
PBE-D ^a /6-31G**	1.33	1.18	0.99	0.90	0.99	0.61	0.98	1.30	1.38	1.50	1.12	0.88	0.72	0.68	0.96	1.15	0.75	0.98	1.43	1.76	1.08	0.29
B3LYP/cc-pVTZ	2.92	3.16	3.20	3.00	3.11	2.94	2.94	2.88	2.81	3.02	3.41	2.92	3.15	3.18	2.84	2.96	1.54	2.61	3.19	2.46	2.91	0.38
B3LYP-D ^a /cc-pVTZ	1.47	1.82	1.87	1.90	1.97	1.86	1.85	2.13	2.08	2.37	2.08	1.64	1.85	2.02	1.86	1.61	0.53	1.32	2.48	2.09	1.84	0.40
B3LYP/6-31G**	2.06	2.15	2.25	2.01	2.05	1.95	2.02	1.89	1.81	1.98	2.28	1.98	2.21	2.02	1.96	2.16	1.20	1.86	2.09	1.72	1.98	0.23
B3LYP-D ^a /6-31G**	1.14	1.00	1.06	1.01	1.06	0.87	1.09	1.32	1.27	1.52	1.18	0.84	0.98	0.90	1.09	1.08	0.56	0.66	1.52	1.53	1.08	0.25
AM1	2.20	2.39	2.14	1.91	2.31	1.95	1.50	2.62	2.56	2.52	2.80	1.62	2.17	1.62	1.37	1.67	1.61	2.59	2.14	3.90	2.18	0.57
AM1-D ^a	1.70	1.22	1.07	1.14	1.24	1.49	1.02	1.70	1.63	1.81	1.16	0.57	1.95	0.94	0.44	1.16	1.39	1.58	1.76	4.18	1.46	0.74
PM3	4.85	4.63	4.84	4.85	5.48	4.79	3.90	5.24	5.22	5.19	5.45	4.42	3.82	5.38	4.17	3.56	4.88	5.13	4.83	4.69	4.77	0.54
PM3-D ^a	2.85	3.37	3.58	3.64	4.35	3.99	2.85	4.10	4.06	4.20	3.96	3.26	2.91	4.27	3.23	2.37	4.24	3.93	4.04	4.35	3.68	0.58
PM3MM	4.92	4.92	4.84	4.76	5.40	4.70	3.96	5.22	5.15	5.11	5.40	4.55	4.64	5.78	4.37	3.85	4.82	4.64	5.28	4.96	4.86	0.46
PM3MM-D ^a	2.77	3.55	3.50	3.54	4.23	3.83	2.84	4.14	4.04	4.16	3.84	3.25	3.68	4.59	3.33	2.54	4.22	3.43	4.48	4.58	3.73	0.58
AMOEBA	3.92	0.70	0.70	1.62	0.83	1.07	0.53	0.46	0.27	1.56	1.01	0.90	0.51	1.94	1.58	0.23	2.50	2.10	1.38	0.91	1.24	0.87
AMBEREP	2.91	1.35	0.72	0.42	0.93	0.54	1.30	0.73	0.78	0.50	1.42	1.96	0.95	1.07	1.66	0.68	1.66	2.94	0.31	1.73	1.23	0.73
AMBERPOL	3.92	0.58	1.29	0.99	1.23	1.40	1.38	1.12	1.00	0.70	1.91	1.89	1.00	1.56	1.21	1.40	1.44	2.96	0.76	2.40	1.51	0.78
AMBER94	4.03	1.37	2.16	1.75	2.11	2.09	2.18	2.05	1.87	2.19	2.40	2.94	2.41	1.87	1.35	2.42	2.87	3.99	2.27	3.98	2.42	0.77
AMBER96	1.18	2.49	1.79	2.15	1.75	2.37	1.71	1.81	1.98	1.72	1.67	1.89	1.88	2.02	2.59	1.60	1.77	2.22	1.99	2.09	1.93	0.32
AMBER99	2.47	1.38	1.47	1.29	1.24	1.30	1.81	1.44	1.30	1.25	1.90	2.47	1.72	1.62	0.60	1.74	2.87	3.92	1.23	2.22	1.76	0.72
AMBER99SB	2.29	2.32	2.35	2.59	2.02	3.16	1.94	2.24	2.36	2.25	2.28	2.70	2.65	2.42	2.65	1.91	2.00	2.57	2.72	3.02	2.42	0.33
AMBER03	2.43	1.48	1.57	1.87	1.39	2.81	1.16	1.23	1.30	1.76	1.12	2.27	1.73	2.72	1.18	2.34	2.01	3.03	3.72	4.13	2.06	0.84
CHARMM27	2.38	1.86	1.35	1.49	1.71	1.86	0.91	1.97	1.99	2.30	1.53	1.82	0.64	1.26	1.69	0.99	4.22	2.64	2.03	3.53	1.91	0.82
OPLS-AA	4.13	2.00	2.00	2.13	2.33	2.65	2.29	2.71	2.75	2.42	1.94	2.21	2.24	2.57	3.59	2.11	1.86	2.16	3.23	3.36	2.53	0.59
OPLS-AA/L	4.78	4.02	1.97	2.04	2.36	1.80	1.79	2.69	2.71	2.42	1.75	2.59	3.11	2.49	2.74	2.13	1.95	1.70	2.77	3.37	2.56	0.77
AMBERUA	2.56	1.53	1.22	1.94	1.01	1.54	0.92	1.28	1.91	1.37	1.59	2.16	0.96	0.83	1.30	1.83	1.44	2.62	1.36	3.47	1.64	0.64
GROMOS(G43b1)	2.33	3.31	3.18	3.14	3.34	3.07	2.92	3.14	3.22	2.95	2.06	3.00	2.65	3.15	3.24	2.71	7.60	5.63	3.75	6.22	3.53	1.33
GROMOS(G45a3)	2.47	3.48	3.38	3.25	3.54	3.11	3.09	3.40	3.43	3.10	2.25	3.15	2.83	3.30	3.40	2.83	5.24	5.66	3.62	5.32	3.49	0.88
GROMOS(G53a6)	7.15	4.68	4.56	4.34	4.80	4.22	3.72	4.60	4.62	4.25	3.52	4.17	3.87	4.24	4.24	3.85	4.33	4.71	4.47	5.13	4.47	0.72

¹ Standard deviation. ^a AMBER99 dispersion correction.

Figure S1. Five conformations of each tetrapeptide. The H-bonds are indicated by dash lines. The N-and C-terminal are indicated by VDW balls in cyan and black, respectively.

PPII

Trp

Cys

β

Figure S2. The performance of M05-2X/cc-PVTZ. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S2a - S2c show the performance of M05-2X/cc-PVTZ. First, this method overestimates the energies of the compact conformations (α_R and α_L) and underestimates those of the extended conformations (i.e. β (except for Cys and Glu), βa and PPII) (Fig. S2a). Thus, this method appears to overestimate the short range interactions (e.g. H-bond) and to underestimate the long range interactions (e.g. Dispersion energy). Second, the RMS-Cs using all five conformation data are 1.22, 0.62, -0.52, -0.79 and -0.78 kcal/mol for α_R , α_L , β , βa and PPII, respectively (Fig. S2b and Table S3c). Therefore, this method gives a good energetic description(<1.0 kcal/mol) over the latter four conformations but a slightly worse description for the former α_R . Third, this method gives a good energy description over twenty amino acids (Figure S2c and Table S3d) down to only 0.42 kcal/mol for ASP.

Figure S3. The performance of M05-2X/cc-PVTZ with the AMBER99 dispersion correction. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S3a – S3c show the performance of M05-2X/cc-PVTZ with the AMBER99 dispersion correction, RMS values become slightly smaller than the original ones (except for Pro).

Figure S4. The performance of M05-2X/6-31G**. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S4a – S4c show the performance of M05-2X/6-31G**. This method significantly underestimates the energy of conformation α_L up to -2.68 kcal/mol of Thr; it slightly overestimates the energies of conformations β_R (except for Gly, Leu, Tyr, Cys, Gln and Arg), β (except for Asp and glu), α_R and PPII. As a result, the RMS-C of α_L (-1.79 kcal/mol) is much higher than those of the other four conformations (0.48, 0.93, 0.31 and 0.70 kcal/mol for α_R , β , β_R and PPII, respectively) (Table S3c and Fig. S4b). When α_L is excluded, this method gives a good energy description over all amino acids except for Cys and Asp (Figure S4c and Table S4d).

Figure S5. The performance of M05-2X/6-31G** with the AMBER99 dispersion correction. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S5a - S5c show the performance of M05-2X/6-31G** with the AMBER99 dispersion correction, the RMS values become even worse than the original values.

Figure S6. The performance of PBE/cc-pVTZ. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S6a – S6c show the performance of PBE/cc-pVTZ. First, this method overestimates the compact conformation energies (α_R and α_L) and underestimates the extended conformation energies (β , β a and PPII, except for the PPII conformations of Gln) in Fig. S6a. Thus, it appears to overestimate the short range interactions (e.g H-bond) and to underestimate the long range interactions (e.g Dispersion energy) (Fig. S6b). Second, the RMSs of the twenty amino acids all are ~ 3.0 kcal/mol and the RMS value of Asp is obviously smaller than others (Fig. S6c and Table S3d).

Figure S7. The performance of PBE/cc-pVTZ with the AMBER99 dispersion correction. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S7a – S7c show the performance of PBE/cc-pVTZ with the AMBER99 dispersion correction. After the correction, the energy of conformation PPII was overestimated and the RMS values are slightly better than the original ones.

Figure S8. The performance of PBE/6-31G**. a) Signed error (*error=E_{ai}-E_{bi}+E_c*) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S8a – S8c show the performance of PBE/6-31G**. First, this method overestimates conformation energies of α_R , α_L and PPII(except for Phe, Tyr, His and Trp) and underestimates the conformation energies of β , β_a (except for Asp) in Fig. S8a. Second, the RMSs of the twenty amino acids all are ~ 2.0 kcal/mol and the RMS value of Asp is obviously smaller than others (Fig. S8c and Table S3d).

Figure S9. The performance of PBE/6-31G** with the AMBER99 dispersion correction. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S9a – S9c show the performance of PBE/6-31G** with the AMBER99 dispersion correction. After the correction, the RMS-C of conformation PPII was even worse than before, but the RMS values for all amino acids are slightly better than the original ones.

Figure S10. The performance of B3LYP/cc-pVTZ. a) Signed error (*error=E_{ai}-E_{bi}+E_c*) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S10a – S10c show the performance of B3LYP/cc-pVTZ. First, this method overestimates the compact conformation energies (α_R and α_L) and underestimates the extended conformation energies (β , β a and PPII, except for the β conformations of Cys and Glu) in Fig. S10a. Thus, it appears to overestimate the short range interactions (e.g H-bond) and to underestimate the long range interactions (e.g Dispersion energy). Second, the energetic description on the compact conformation (α_R and α_L) is worse than the extended conformation by more than 1 .0 kcal/mol (Fig. S10b and Table S3c). Third, the RMSs of the twenty amino acids all are more than 3.0 kcal/mol except for Asp ang Glu(Fig. S10c and Table S3d).

Figure S11. The performance of B3LYP/cc-pVTZ with the AMBER99 dispersion correction. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S11a – S11c show the performance of B3LYP/cc-pVTZ with the AMBER99 dispersion correction. After the correction, the energy of conformation α_R was overestimated and the RMS values are slightly better than the original ones.

Figure S12. The performance of B3LYP/6-31G**. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S12a – S12c show the performance of B3LYP/6-31G**. First, this method overestimates the compact conformation energies (α_R and α_L) and underestimates the extended conformation energies (β , β a and PPII, except for the PPII conformations of Met and Gln) (Fig. S12a). Thus, this method appears to overestimate the short range interactions (e.g. H-bond) but underestimate the long range interactions (e.g. Dispersion energy). Second, the energetic description of α_R is slightly worse than the other four conformations by ~1.0-2.0 kcal/mol (Fig. S12b and Table S3c). Third, the RMS over the twenty amino acids is ~2.0 kcal/mol except for Asp (Fig. S12c and Table S3d).

Figure S13. The performance of B3LYP/6-31G** with the AMBER99 dispersion correction. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S13a – S13c show the performance of B3LYP/6-31G** with the AMBER99 dispersion correction. This method overestimates energies of conformation α_R , α_L and PPII and underestimate energies of conformation β , β_a . The RMS values obviously become smaller than the original ones

Figure S14. The performance of AM1. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S14a – S14c show the performance of AM1. First, this method overestimates the compact conformation energies (α_R and α_L , except for the α_R of Arg), but underestimates the extended conformation energies (except for the β_a conformations of Ser and Arg, the β conformation of Glu) (Fig. S14a). Thus, this method appears to overestimate the short range interactions (e.g. H-bond) and underestimate the long range interactions (e.g. Dispersion energy). Second, the description for α_L (4.68 kcal/mol of RMS-C) is much worse than other conformations (2.11, -3.20, -1.74 and -2.83 kcal/mol for α_R , β , β_a and PPII, respectively) in Table S3c and Fig. S14b. Third, RMS of all the amino acids are more than 2.0 kcal/mol.

Figure S15. The performance of AM1 with the AMBER99 dispersion correction. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S15a – S15c show the performance of AM1 with the AMBER99 dispersion correction. With the dispersion correction, this method underestimates the energy of conformation α_R and overestimates the energy of conformation β_a . The RMS values are improved after the correction except for Arg.

Figure S16. The performance of PM3. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S16a – S16c show the performance of PM3. First, this method overestimates the compact conformation energies (α_R and α_L), but underestimates the extended conformation energies (β , βa and PPII, except for the βa conformation of Arg.) (Fig. S16a). Thus, this method appears to significantly overestimate the short range interactions (e.g. H-bond) and to significantly underestimate the long range interactions (e.g. Dispersion energy). Second, the RMS-Cs using all five conformation data are 5.54, 8.01, -3.93, -3.01 and -7.27 kcal/mol for α_R , α_L , β , βa and PPII, respectively (Table S3c and Figure S16b). These suggest a poor energetic description of all conformations except for βa . Third, the energetic description over twenty amino acids is uniformly bad (i.e. even the RMS-N α_L is ~ 5.0 kcal/mol) in Figure S16c and Table S4d.

Figure S17. The performance of PM3 with the AMBER99 dispersion correction. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S17a – S17c show the performance of PM3 with the AMBER99 dispersion correction. With the dispersion correction, the RMS values are slightly improved.

Figure S18. The performance of PM3MM. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S18a – S18c show the performance of PM3MM. First, this method overestimates the compact conformation energies (α_R and α_L) and underestimates the extended conformation energies (β (except for Asp), β_a (except for Arg) and PPII) in Fig. S18a. Thus, this method appears to overestimate the short range interactions (e.g H-bond) but to underestimate the long range interactions (e.g. Dispersion). Second, the RMS-Cs using all five conformation data are 5.73, 8.74, -4.98, -3.45 and -6.71 kcal/mol for α_R , α_L , β , β_a and PPII, respectively (Table S3c and Figure S18b). These suggest a poor energetic description of all conformations except for β_a . Third, the energetic description over twenty amino acids is uniformly bad (i.e. even the RMS-N α_L is ~ 5.0 kcal/mol) in Figure S18c and Table S4d.

Figure S19. The performance of PM3MM with the AMBER99 dispersion correction. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S19a – S19c show the performance of PM3MM with the AMBER99 dispersion correction. With the dispersion correction, the RMS values are slightly improved.

Figure S20. The performance of force field AMOEBA. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S20a – S20c show the performance of AMOEBA. First, this method slightly underestimates the energies of conformations PPII (except for Ser) and α_L (except for Thr, Asn, Gln), but overestimates the energies of β (except for His, Thr, Gln and Lys) and βa (except for His, Asn and Gln). As to α_R , it overestimates the energies of nine amino acids but underestimates the other eleven amino acids. Second, the RMS-Cs of five conformations is all ~1.5 kcal/mol, indicating a reasonable description on conformation energy (Figure S20b and Table S3c). Third, energetic descriptions for some amino acids are very good (e.g. Met, Phe, Tyr and Gln, their RMS is ranged from 0.5 to 0.6 kcal/mol), but they are very bad for some amino acids (e.g. 3.89, 3.13 and 2.16 kcal/mol of RMS for Pro, Asp and Glu respectively).

Figure S21. The performance of force field AMBEREP. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S21a – S21c show the performance of force field AMBEREP. First, this method overestimates the energies of conformations α_L (especially for Pro, up to 36.00 Kcal/mol), but underestimates the energies of other conformations (except for βa conformations of Pro and Arg, β conformations of Cys and Asp and Glu, PPII conformations of Gly and Asp). Second, the RMS-C calculations show the bad descriptions of α_L conformations (Figure S21b and Table S3c). Third, the energetic description for Pro is obviously worse than other amino acids (Figure S21c, Table S3d and Table S4d).

Figure S22. The performance of force field AMBERPOL. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S22a – S22c show the performance of force field AMBERPOL. First, this method overestimates the energies of conformations α_L . But underestimate the energies of other four conformations (except for β conformations of Pro, Leu, Trp, Cys, Gln, Asp, Glu, and β a conformations of Pro and Arg.

Figure S23. The performance of AMBER94. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S23a – S23c show the performance of force field AMBER94. First, this method underestimates the energies of conformations α_R and PPII, it overestimates the energies of α_L , βa (except for Glu) and β (except for Leu, Thr, Asn and Arg) in Fig. S23a. Second, Energetic description for conformations α_R and α_L are worse than the other three conformations by ~2.0 kcal/mol (Figure S23b and Table S3c). Third, when α_L conformation is excluded, the energetic descriptions for some amino acids (e.g. Pro, Glu and Arg) are worse than the others by over 1 kcal/mol of RMS-N α_L (Figure S23c and Table S4d).

Figure S24. The performance of force field AMBER96. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S24a – S24c show the performance of force field AMBER96. This method overestimates the energies of conformations α_L and α_R (except for Pro, Gln, Asp and Arg), and underestimates the energies of PPII, β_a and β (except for Glu). Energy description for conformation α_L over all amino acids (RMS-C for α_L is 9.55 kcal/mol) is much worse than the other three conformations (Figure S24b and Table S3c). RMS-N α_L for all amino acids is about 1.93 kcal/mol when α_L conformation is excluded (Figure S24c and Table S4d).

Figure S25. The performance of force field AMBER99. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S25a – S25c show the performance of force field AMBER99. First, this method overestimates the energies of conformations β (except for Asn) and α_L , but underestimates the conformation energies of PPII (except for Met, Thr, Asp and Glu), βa (except for Pro and Arg) and α_R . Second, the energetic description for conformation α_L over all amino acids (RMS-C for α_L is 3.78 kcal/mol) is much worse than the other conformations by more than 1 kcal/mol in magnitude (Figure S25b and Table S3c). Third, the energetic descriptions for residues Pro, Cys, Asp and Glu are significantly worse than the others, even when α_L conformation is excluded (Figure S25c and Table S4d).

Figure S26. The performance of force field AMBER99SB. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S26a – S26c show the performance of force field AMBER99SB. This method overestimates the energies of the compact conformations and underestimates those of the extended conformations (β except for Pro, Cys, Ser, Asp and Glu, β a except for Pro and Arg) (Fig. S26a).

Figure S27. The performance of force field AMBER03. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S27a – S27c show the performance of force field AMBER03. First, this method largely overestimates the energies of conformation α_L , but underestimates the energies of conformations α_R (except for Gly, Val, Ile, Thr and Lys), β (except for Pro, Cys, Asp and Glu), βa (except for Arg) and PPII. Second, the overall energetic descriptions for α_L (9.10 kcal/mol of RMS-C) are worse than α_R , β , βa and PPII (-1.89, -1.82, -3.28 and -4.79 kcal/mol of RMS-C) (Figure S27b and Table S3c).

Figure S28. The performance of force field CHARMM27. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S28a – S28c show the performance of force field CHARMM27. First, this method largely overestimates the energies of conformation α_L , but underestimates the energies of conformations α_R (except for Gly), β (except for Asp and Glu), βa (except for Arg) and PPII. Second, the overall descriptions for α_L and PPII (14.55 and -6.02 kcal/mol of RMS-C) are worse than α_R , β and βa (-2.99, -4.10 and -2.87 kcal/mol of RMS-C) (Figure S28b and Table S3c). Third, after excluding α_L , energetic descriptions for some amino acids (e.g. ASP and Arg) are still worse than the others by over 1.0 kcal/mol (Fig. S28c and Table S4d).

Figure S29. The performance of force field OPLS-AA. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S29a – S29c show the performance of force field OPLS-AA. First, this method overestimates the energies of conformations α_L (except for Asp) and α_R (except for Pro and Glu), but it underestimates the energies of conformations βa (except for Pro, Asp and Arg), β (except for Glu) and PPII. Second, the energetic description for conformation α_L over all amino acids (4.58 kcal/mol of RMS-C) is worse than the other conformations by over 1.0 kcal/mol (Figure S29b and Table S3c). Third, after excluding α_L , the energetic descriptions for some amino acids (e.g. Pro, Asn, Cys and Arg) are still worse than the others by over 1.0 kcal/mol.

Figure S30. The performance of force field OPLS-AA/L. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S30a – S30c show the performance of force field OPLS-AA/L. First, this method overestimates the energies of conformations α_R (except for Pro, Asp and Glu) and α_L , but it underestimates the energies of conformations βa (except for Pro, Asp and Arg), β (except for Asp and Glu) and PPII. Second, the energetic descriptions for conformation α_L and PPII over all amino acids (their RMS-Cs are 5.70 and -3.97 kcal/mol) are worse than the other conformations (Figure S30b and Table S3c). Third, after excluding α_L , energy descriptions for some amino acids (e.g. Pro, Asn and Arg) are still worse than the others.

Figure S31. The performance of force field AMBERUA. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S31a – S31c show the performance of force field AMBERUA. First, this method overestimates the energies of conformations α_L , especially for Pro, 42.71 Kcal/mol. But underestimate the energies of other conformations (except for β conformations of Cys, Asp and Glu). Second, the RMS-C calculations show the bad descriptions of α_L conformations (Figure S31b and Table S3c). Third, the energetic description for Pro is obviously worse than other amino acids (Figure S31c, Table S3d and Table S4d).

Figure S32. The performance of force field GROMOS(G43b1). a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S32a – S32c show the performance of force field GROMOS(G43b1). This method overestimates the energies of conformations α_R (except for Pro, Arg) and α_L (except for Asp), but it underestimates the energies of conformations β_a (except for Arg), β (except for Asp and Glu) and PPII.

Figure S33. The performance of force field GROMOS(G45a3). a) Signed error (*error=E_{ai}-E_{bi}+E_c*) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S33a – S33c show the performance of force field GROMOS(G45a3). This method overestimates the energies of conformations α_R (except for Pro) and α_L , but it underestimates the energies of conformations β_a (except for Arg), β (except for Asp and Glu) and PPII.

Figure S34. The performance of force field GROMOS(G53a6). a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figures S34a – S34c show the performance of force field GROMOS(G53a6). This method overlates the energies of conformations βa (except for Pro) and α_L , but it underestimates the energies of conformations βa (except for Pro and Arg), β (except for Asp and Glu) and PPII.

	α_R	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.00	2.28	4.71	5.90	2.36
Gly	0.00	1.49	4.13	1.79	3.22
Ala	0.00	2.24	3.91	1.81	3.27
Val	0.00	3.42	2.56	0.51	3.38
Leu	0.00	3.10	3.72	1.16	3.39
Ile	0.00	3.93	2.40	0.56	2.63
Met	0.00	-0.40	3.44	1.52	1.71
Phe	0.00	-0.71	0.26	-1.68	3.22
Tyr	0.00	-0.53	-0.58	-2.34	3.06
His	0.00	0.07	1.02	-0.18	2.89
Trp	0.00	0.06	2.95	-0.80	3.15
Cys	0.00	0.87	4.22	1.48	4.47
Ser	0.00	1.19	4.63	1.56	3.95
Thr	0.00	1.97	5.91	4.64	4.43
Asn	0.00	-0.90	1.74	1.81	3.92
Gln	0.00	1.81	3.01	0.77	-1.56
Asp	0.00	16.45	0.15	7.40	13.26
Glu	0.00	4.91	-0.23	3.09	7.38
Lys	0.00	2.82	4.02	0.83	1.15
Arg	0.00	-4.10	-1.00	-18.16	-4.61

Table S1. Relative energies (with reference to the α_R conformation) calculated by MP2/cc-pVTZ//M05-2X/6-31G** methods for five conformations of each tetrapeptide (kcal/mol).

Table S2a. Energy offset (E_c) (kcal/mol) of each tetrapetpide obtained from Eq. 2 in minimizing RMS of each method over 5 conformations.

	Pro	Gly	Ala	Val	Leu	Ile	Met	Phe	Tyr	His	Trp	Cys	Ser	Thr	Asn	Gln	Asp	Glu	Lys	Arg
M05-2X/cc-pVTZ	1.46	1.51	1.58	1.34	1.33	1.34	1.25	1.47	1.31	1.45	2.07	1.36	1.48	1.27	1.35	1.14	0.56	0.92	1.45	1.32
M05-2X-D ^a /cc-pVTZ	-2.04	-0.73	-0.69	-1.01	-0.75	-0.83	-0.70	-0.23	-0.40	-0.12	-0.57	-0.87	-0.75	-0.65	-0.47	-0.96	-1.46	-1.61	-0.37	-0.07
M05-2X/6-31G**	0.55	0.47	0.69	0.60	0.35	0.56	0.37	0.71	0.68	0.60	0.97	0.56	0.59	0.48	0.60	0.24	0.52	0.65	0.38	0.84
M05-2X-D ^a /6-31G**	-2.95	-1.76	-1.59	-1.75	-1.73	-1.60	-1.59	-0.99	-1.03	-0.97	-1.67	-1.67	-1.64	-1.45	-1.22	-1.86	-1.49	-1.87	-1.43	-0.56
PBE/cc-pVTZ	3.68	3.69	3.77	3.52	3.66	3.36	3.10	3.19	2.78	3.57	4.10	3.71	3.52	3.75	3.17	2.83	2.05	3.33	3.89	2.59
PBE-D ^a /cc-pVTZ	0.18	1.46	1.49	1.17	1.58	1.19	1.14	1.48	1.07	2.00	1.46	1.48	1.29	1.83	1.35	0.74	0.04	0.80	2.07	1.20
PBE/6-31G**	2.52	2.45	2.69	2.50	2.38	2.37	2.02	2.16	1.83	2.41	2.85	2.68	2.39	2.61	2.22	1.73	1.50	2.77	2.56	2.06
PBE-D ^a /6-31G**	-0.98	0.21	0.41	0.15	0.30	0.20	0.07	0.46	0.12	0.83	0.21	0.45	0.16	0.69	0.40	-0.37	-0.52	0.25	0.74	0.67
B3LYP/cc-pVTZ	4.32	4.37	4.50	4.17	4.41	4.04	3.68	3.84	3.48	4.25	4.98	4.50	4.38	4.48	3.91	3.44	2.11	3.60	4.65	3.08
B3LYP-D ^a /cc-pVTZ	0.83	2.13	2.23	1.81	2.33	1.88	1.72	2.14	1.77	2.68	2.34	2.27	2.15	2.56	2.09	1.34	0.10	1.08	2.83	1.69
B3LYP/6-31G**	3.12	3.03	3.36	3.07	3.05	2.96	2.57	2.68	2.31	2.96	3.57	3.41	3.22	3.27	2.92	2.30	1.61	2.82	3.22	2.45
B3LYP-D ^a /6-31G**	-0.38	0.79	1.09	0.72	0.97	0.79	0.61	0.98	0.60	1.39	0.93	1.18	0.99	1.35	1.10	0.20	-0.41	0.29	1.41	1.06
AM1	2.76	2.92	2.40	1.81	3.03	1.82	0.63	2.80	2.45	3.03	3.63	2.20	1.01	1.46	0.74	0.48	0.60	3.03	2.54	-0.86
AM1-D ^a	-0.73	0.68	0.12	-0.55	0.95	-0.35	-1.33	1.10	0.74	1.46	0.99	-0.03	-1.22	-0.46	-1.08	-1.61	-1.42	0.51	0.72	-2.25
PM3	6.69	5.72	6.10	5.98	7.39	5.82	4.33	5.81	5.58	6.12	6.80	5.65	4.17	7.37	3.96	4.10	5.01	6.43	5.99	2.40
PM3-D ^a	3.20	3.49	3.82	3.62	5.31	3.66	2.37	4.10	3.87	4.54	4.16	3.42	1.94	5.45	2.14	2.00	3.00	3.91	4.17	1.01
PM3MM	6.65	6.42	6.18	5.89	7.30	5.79	4.44	5.99	5.61	6.06	6.78	6.16	4.94	7.87	4.69	4.38	5.07	5.41	6.86	3.66
PM3MM-D ^a	3.15	4.19	3.90	3.54	5.22	3.62	2.49	4.29	3.90	4.49	4.14	3.93	2.71	5.95	2.87	2.28	3.06	2.89	5.05	2.27
AMOEBA	-2.40	0.45	0.78	0.18	0.31	-0.14	-0.22	-0.40	-0.41	2.68	0.61	1.80	0.02	2.14	2.08	0.19	0.11	-0.57	2.32	-0.48
AMBEREP	-12.74	-0.87	-2.37	-1.76	-2.47	-2.45	-3.24	-3.00	-2.92	-0.54	-3.97	-3.22	-2.42	-2.31	-2.73	-2.40	-1.74	-5.89	-1.70	-3.04
AMBERPOL	-4.65	-1.12	-2.58	-1.84	-2.63	-2.70	-3.62	-3.07	-3.22	-1.37	-4.01	-2.43	-2.23	-3.51	-1.87	-2.43	-1.14	-5.62	-2.01	-3.74
AMBER94	-5.22	-2.69	-4.16	-3.55	-4.38	-3.17	-4.56	-4.74	-4.58	-4.40	-4.67	-4.03	-3.42	-4.31	-2.74	-4.94	-4.84	-7.24	-3.66	-5.22
AMBER96	-0.35	2.17	0.71	1.32	0.49	1.69	0.30	0.13	0.28	0.47	0.19	0.84	1.45	0.55	2.13	-0.07	0.03	-2.37	1.21	-0.35
AMBER99	-3.54	-1.31	-2.31	-1.68	-2.55	-1.25	-2.70	-2.88	-2.73	-2.55	-2.82	-2.18	-1.58	-2.43	-1.03	-3.36	-2.99	-5.46	-1.80	-3.41
AMBER99SB	1.50	2.94	3.00	3.64	2.75	4.10	2.59	2.40	2.56	2.79	2.48	3.14	3.74	3.53	4.11	1.64	2.26	-0.11	3.50	1.88
AMBER03	-1.22	0.49	-0.41	1.23	-0.61	1.61	-1.07	-1.29	-3.81	-3.75	-2.86	-0.42	-0.25	1.19	0.12	0.15	-2.39	-0.95	4.20	-0.87
CHARMM27	-1.62	0.35	-2.18	-2.31	-1.68	-2.16	-2.64	-1.24	-1.36	0.05	-1.57	-1.64	-1.89	-2.28	-1.91	-3.04	-7.56	-6.42	-0.82	-2.26
OPLS-AA	-0.28	2.47	2.36	2.45	2.90	2.83	1.22	3.42	3.27	3.14	1.44	3.41	3.11	3.37	4.58	1.94	0.92	-0.31	4.43	1.41
OPLS-AA/L	-0.57	4.79	1.92	1.92	2.65	1.65	0.81	2.96	2.81	2.91	1.42	3.48	3.44	2.62	3.38	1.90	-2.12	-3.06	3.35	1.33
AMBERUA	-9.93	0.21	-2.34	-0.17	-2.73	-1.71	-2.35	-2.59	-5.73	-3.01	-3.54	-2.38	-2.98	-1.91	-0.40	-1.89	-3.02	-2.75	-1.86	-1.92
GROMOS(G43b1)	-6.29	3.97	3.59	3.71	4.04	3.47	2.62	2.84	2.66	2.93	1.57	3.79	2.67	3.99	3.59	2.61	12.00	3.04	4.23	-4.46
GROMOS(G45a3)	-5.27	4.50	4.33	4.02	4.64	3.70	3.07	3.57	3.26	3.45	2.24	4.39	3.25	4.26	4.17	2.99	3.64	1.21	4.43	0.06
GROMOS(G53a6)	-7.93	6.14	5.95	5.49	6.59	5.25	4.32	5.44	5.11	4.89	4.15	6.16	5.16	5.54	5.26	4.23	3.25	2.96	5.82	2.62

	M05-2X/	cc-pVTZ//l	M05-2X/6-3	81G**			M05-2X-D	a/cc-pVTZ	//M05-2X/6	-31G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	1.46	1.41	-0.66	-0.89	-1.32	Pro	-2.04	-1.14	1.76	3.09	-1.66
Gly	1.51	1.17	-0.65	-1.22	-0.81	Gly	-0.73	0.14	0.25	0.05	0.29
Ala	1.58	1.03	-0.57	-1.12	-0.92	Ala	-0.69	0.33	0.40	-0.04	0.00
Val	1.34	1.07	-0.51	-1.00	-0.90	Val	-1.01	1.61	-0.29	-0.34	0.03
Leu	1.33	0.97	-0.44	-1.01	-0.85	Leu	-0.75	0.87	0.12	-0.24	0.00
Ile	1.34	1.03	-0.50	-1.01	-0.85	Ile	-0.83	2.18	-0.22	-0.15	-0.98
Met	1.25	0.90	-0.56	-1.09	-0.49	Met	-0.70	0.59	0.26	-0.17	0.02
Phe	1.47	0.25	-0.08	-0.12	-1.52	Phe	-0.23	0.75	-0.35	-0.23	0.07
Tyr	1.31	0.21	-0.06	0.11	-1.58	Tyr	-0.40	0.65	-0.43	-0.01	0.18
His	1.45	0.22	-0.09	-0.25	-1.32	His	-0.12	0.74	-0.69	-0.14	0.21
Trp	2.07	0.30	-1.00	-0.01	-1.36	Trp	-0.57	0.51	0.55	-0.45	-0.05
Cys	1.36	0.70	-0.50	-0.71	-0.85	Cys	-0.87	0.32	0.25	0.27	0.03
Ser	1.48	0.67	-0.63	-0.97	-0.54	Ser	-0.75	0.59	0.29	0.04	-0.17
Thr	1.27	0.76	-0.50	-0.84	-0.69	Thr	-0.65	0.24	0.28	0.17	-0.04
Asn	1.35	0.55	-0.86	-0.23	-0.81	Asn	-0.47	0.58	-0.12	-0.04	0.05
Gln	1.14	1.45	-0.81	-1.26	-0.52	Gln	-0.96	0.65	0.48	0.07	-0.25
Asp	0.56	1.09	-0.72	-0.44	-0.50	Asp	-1.46	1.86	0.21	-0.91	0.29
Glu	0.92	0.87	0.28	-1.32	-0.74	Glu	-1.61	0.94	1.00	-0.43	0.09
Lys	1.45	1.03	-0.51	-0.92	-1.06	Lys	-0.37	1.85	-1.19	0.02	-0.32
Arg	1.32	0.95	-0.59	-0.16	-1.52	Arg	-0.07	1.00	-1.18	0.33	-0.08

Table S2b. Signed error (*error* = $E_{ai} - E_{bi} + E_c$, kcal/mol) using the MP2 energy as the true value

	M05-2X	/6-31G**//I	M05-2X/6-3	81G**			M05-2X-E	0 ^a /6-31G**	//M05-2X/6	-31G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	0.55	-0.74	-0.13	-0.26	0.58	Pro	-2.95	-3.29	2.29	3.72	0.23
Gly	0.47	-0.79	0.42	-0.47	0.36	Gly	-1.76	-1.82	1.32	0.79	1.47
Ala	0.69	-1.20	0.47	-0.17	0.20	Ala	-1.59	-1.90	1.44	0.91	1.13
Val	0.60	-1.53	0.84	-0.06	0.15	Val	-1.75	-0.99	1.05	0.61	1.09
Leu	0.35	-1.39	0.85	-0.29	0.48	Leu	-1.73	-1.49	1.42	0.48	1.32
Ile	0.56	-1.64	0.85	0.08	0.14	Ile	-1.60	-0.49	1.13	0.95	0.01
Met	0.37	-1.53	0.60	-0.12	0.68	Met	-1.59	-1.83	1.42	0.80	1.19
Phe	0.71	-1.98	0.65	0.64	-0.03	Phe	-0.99	-1.49	0.39	0.53	1.56
Tyr	0.68	-1.93	0.71	0.60	-0.05	Tyr	-1.03	-1.49	0.34	0.47	1.71
His	0.60	-1.87	0.55	0.54	0.18	His	-0.97	-1.35	-0.04	0.65	1.72
Trp	0.97	-1.99	0.02	0.89	0.10	Trp	-1.67	-1.77	1.57	0.46	1.41
Cys	0.56	-1.83	0.72	0.09	0.46	Cys	-1.67	-2.21	1.47	1.06	1.35
Ser	0.59	-1.48	0.49	-0.13	0.53	Ser	-1.64	-1.56	1.41	0.88	0.91
Thr	0.48	-2.40	1.23	0.27	0.42	Thr	-1.45	-2.91	2.01	1.28	1.06
Asn	0.60	-1.75	-0.07	0.73	0.50	Asn	-1.22	-1.72	0.67	0.92	1.36
Gln	0.24	-1.01	0.36	-0.51	0.92	Gln	-1.86	-1.81	1.65	0.83	1.19
Asp	0.52	-0.64	-1.13	-0.15	1.39	Asp	-1.49	0.12	-0.20	-0.61	2.19
Glu	0.65	-0.97	-0.43	-0.04	0.79	Glu	-1.87	-0.89	0.29	0.85	1.63
Lys	0.38	-1.25	0.80	-0.16	0.23	Lys	-1.43	-0.44	0.11	0.78	0.98
Arg	0.84	-1.21	0.61	-0.40	0.17	Arg	-0.56	-1.16	0.02	0.09	1.61

	PBE/	cc-pVTZ//I	PBE/6-31G	**			PBE-D	a/cc-pVTZ/	//PBE/6-31	G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	3.68	3.54	-3.24	-2.63	-1.35	Pro	0.18	0.98	-0.82	1.34	-1.69
Gly	3.69	3.75	-3.51	-3.29	-0.64	Gly	1.46	2.71	-2.61	-2.03	0.47
Ala	3.77	3.79	-3.58	-3.50	-0.48	Ala	1.49	3.09	-2.61	-2.41	0.44
Val	3.52	3.48	-3.42	-2.77	-0.81	Val	1.17	4.01	-3.20	-2.10	0.12
Leu	3.66	3.44	-3.29	-2.97	-0.85	Leu	1.58	3.34	-2.73	-2.19	-0.01
Ile	3.36	3.64	-3.45	-2.86	-0.68	Ile	1.19	4.79	-3.17	-2.00	-0.81
Met	3.10	3.92	-3.59	-3.38	-0.04	Met	1.14	3.61	-2.77	-2.46	0.48
Phe	3.19	3.11	-2.40	-1.80	-2.10	Phe	1.48	3.61	-2.66	-1.92	-0.51
Tyr	2.78	2.82	-1.79	-1.46	-2.35	Tyr	1.07	3.26	-2.16	-1.59	-0.59
His	3.57	3.01	-2.32	-2.44	-1.82	His	2.00	3.53	-2.91	-2.33	-0.29
Trp	4.10	3.15	-3.58	-1.92	-1.74	Trp	1.46	3.36	-2.03	-2.35	-0.44
Cys	3.71	4.13	-4.86	-2.46	-0.52	Cys	1.48	3.75	-4.11	-1.48	0.37
Ser	3.52	3.86	-3.73	-3.10	-0.55	Ser	1.29	3.78	-2.81	-2.09	-0.17
Thr	3.75	3.50	-3.44	-3.02	-0.79	Thr	1.83	2.99	-2.67	-2.00	-0.15
Asn	3.17	3.90	-3.15	-2.75	-1.17	Asn	1.35	3.93	-2.41	-2.55	-0.32
Gln	2.83	4.01	-3.81	-3.36	0.32	Gln	0.74	3.21	-2.52	-2.03	0.60
Asp	2.05	1.84	-1.67	-0.54	-1.68	Asp	0.04	2.61	-0.75	-1.01	-0.89
Glu	3.33	2.79	-2.17	-2.96	-0.98	Glu	0.80	2.87	-1.44	-2.08	-0.15
Lys	3.89	3.16	-3.52	-2.83	-0.70	Lys	2.07	3.98	-4.20	-1.89	0.04
Arg	2.59	3.50	-3.49	-1.68	-0.94	Arg	1.20	3.56	-4.08	-1.19	0.51

	PBE/	6-31G**//I	PBE/6-31G	**			PBE-D	0 ^a /6-31G**	//PBE/6-310]** J	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	2.52	1.37	-2.59	-1.86	0.57	Pro	-0.98	-1.19	-0.17	2.11	0.23
Gly	2.45	1.77	-2.25	-2.39	0.43	Gly	0.21	0.73	-1.35	-1.13	1.53
Ala	2.69	1.50	-2.25	-2.38	0.45	Ala	0.41	0.80	-1.29	-1.30	1.37
Val	2.50	1.01	-1.85	-1.68	0.02	Val	0.15	1.55	-1.64	-1.01	0.95
Leu	2.38	1.19	-1.76	-2.09	0.28	Leu	0.30	1.10	-1.20	-1.32	1.12
Ile	2.37	1.08	-1.87	-1.75	0.18	Ile	0.20	2.23	-1.59	-0.88	0.04
Met	2.02	1.50	-2.13	-2.27	0.87	Met	0.07	1.20	-1.31	-1.35	1.39
Phe	2.16	0.82	-1.36	-0.66	-0.95	Phe	0.46	1.31	-1.63	-0.77	0.63
Tyr	1.83	0.58	-0.92	-0.30	-1.18	Tyr	0.12	1.02	-1.30	-0.42	0.58
His	2.41	0.78	-1.22	-1.32	-0.65	His	0.83	1.31	-1.81	-1.21	0.88
Trp	2.85	0.83	-2.37	-0.70	-0.61	Trp	0.21	1.04	-0.82	-1.14	0.70
Cys	2.68	1.65	-3.45	-1.50	0.63	Cys	0.45	1.27	-2.71	-0.53	1.52
Ser	2.39	1.69	-2.39	-2.05	0.36	Ser	0.16	1.61	-1.48	-1.04	0.74
Thr	2.61	0.39	-1.55	-1.70	0.24	Thr	0.69	-0.13	-0.77	-0.68	0.89
Asn	2.22	1.51	-2.07	-1.60	-0.06	Asn	0.40	1.54	-1.33	-1.41	0.80
Gln	1.73	1.54	-2.43	-2.40	1.55	Gln	-0.37	0.74	-1.14	-1.06	1.82
Asp	1.50	0.51	-2.31	0.23	0.07	Asp	-0.52	1.28	-1.38	-0.24	0.86
Glu	2.77	1.24	-2.57	-1.62	0.18	Glu	0.25	1.32	-1.85	-0.73	1.02
Lys	2.56	0.90	-2.07	-1.83	0.45	Lys	0.74	1.71	-2.76	-0.89	1.19
Arg	2.06	1.30	-1.88	-2.14	0.66	Arg	0.67	1.36	-2.47	-1.66	2.10

	B3LYP/	cc-pVTZ//l	B3LYP/6-3	lG**			B3LYP-D	a/cc-pVTZ	//B3LYP/6-	31G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	4.32	4.47	-3.32	-2.96	-2.52	Pro	0.83	1.91	-0.90	1.02	-2.86
Gly	4.37	4.57	-3.85	-3.37	-1.72	Gly	2.13	3.53	-2.94	-2.10	-0.61
Ala	4.50	4.83	-3.88	-4.05	-1.41	Ala	2.23	4.13	-2.91	-2.96	-0.48
Val	4.17	4.46	-3.79	-3.22	-1.62	Val	1.81	5.00	-3.58	-2.55	-0.69
Leu	4.41	4.42	-3.61	-3.39	-1.83	Leu	2.33	4.32	-3.05	-2.62	-0.98
Ile	4.04	4.73	-3.83	-3.28	-1.65	Ile	1.88	5.88	-3.55	-2.42	-1.79
Met	3.68	5.10	-4.04	-3.99	-0.74	Met	1.72	4.80	-3.22	-3.07	-0.23
Phe	3.84	4.02	-2.50	-2.19	-3.17	Phe	2.14	4.52	-2.77	-2.30	-1.59
Tyr	3.48	3.75	-2.02	-1.76	-3.45	Tyr	1.77	4.19	-2.39	-1.89	-1.68
His	4.25	3.81	-2.38	-2.79	-2.89	His	2.68	4.33	-2.97	-2.69	-1.36
Trp	4.98	4.02	-3.91	-2.30	-2.79	Trp	2.34	4.23	-2.36	-2.74	-1.48
Cys	4.50	4.98	-5.08	-2.87	-1.53	Cys	2.27	4.60	-4.33	-1.90	-0.64
Ser	4.38	4.67	-4.15	-3.67	-1.23	Ser	2.15	4.59	-3.23	-2.66	-0.85
Thr	4.48	4.62	-3.91	-3.49	-1.70	Thr	2.56	4.10	-3.14	-2.47	-1.05
Asn	3.91	4.75	-3.53	-2.99	-2.14	Asn	2.09	4.78	-2.79	-2.80	-1.28
Gln	3.44	5.17	-4.21	-3.94	-0.46	Gln	1.34	4.37	-2.92	-2.61	-0.19
Asp	2.11	2.84	-1.77	-0.90	-2.29	Asp	0.10	3.61	-0.84	-1.37	-1.50
Glu	3.60	3.30	-1.28	-3.62	-2.00	Glu	1.08	3.37	-0.55	-2.73	-1.17
Lys	4.65	4.23	-3.82	-3.29	-1.76	Lys	2.83	5.04	-4.50	-2.35	-1.02
Arg	3.08	4.52	-3.89	-1.40	-2.30	Arg	1.69	4.57	-4.49	-0.91	-0.86

	B3LYP/	/6-31G**//I	B3LYP/6-31	lG**			B3LYP-D	0 ^a /6-31G**/	//B3LYP/6	31G**	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	3.12	2.34	-2.65	-2.19	-0.62	Pro	-0.38	-0.22	-0.23	1.79	-0.96
Gly	3.03	2.55	-2.63	-2.35	-0.59	Gly	0.79	1.51	-1.73	-1.09	0.52
Ala	3.36	2.51	-2.59	-2.94	-0.34	Ala	1.09	1.81	-1.62	-1.86	0.58
Val	3.07	2.03	-2.28	-2.15	-0.69	Val	0.72	2.57	-2.06	-1.48	0.25
Leu	3.05	2.18	-2.13	-2.52	-0.58	Leu	0.97	2.08	-1.57	-1.75	0.27
Ile	2.96	2.18	-2.31	-2.20	-0.63	Ile	0.79	3.33	-2.03	-1.33	-0.77
Met	2.57	2.68	-2.62	-2.90	0.27	Met	0.61	2.38	-1.80	-1.98	0.79
Phe	2.68	1.81	-1.48	-1.07	-1.94	Phe	0.98	2.30	-1.75	-1.18	-0.36
Tyr	2.31	1.49	-0.86	-0.69	-2.25	Tyr	0.60	1.93	-1.23	-0.82	-0.48
His	2.96	1.63	-1.27	-1.71	-1.61	His	1.39	2.15	-1.86	-1.60	-0.08
Trp	3.57	1.75	-2.62	-1.15	-1.55	Trp	0.93	1.96	-1.06	-1.59	-0.24
Cys	3.41	2.52	-3.69	-1.94	-0.29	Cys	1.18	2.14	-2.95	-0.96	0.59
Ser	3.22	2.50	-2.86	-2.63	-0.23	Ser	0.99	2.42	-1.94	-1.62	0.15
Thr	3.27	1.54	-2.05	-2.17	-0.58	Thr	1.35	1.02	-1.27	-1.16	0.06
Asn	2.92	2.31	-2.51	-1.85	-0.87	Asn	1.10	2.34	-1.77	-1.65	-0.01
Gln	2.30	2.68	-2.86	-2.98	0.86	Gln	0.20	1.89	-1.57	-1.65	1.13
Asp	1.61	1.54	-2.39	-0.35	-0.41	Asp	-0.41	2.31	-1.46	-0.82	0.38
Glu	2.82	1.70	-1.63	-2.28	-0.60	Glu	0.29	1.78	-0.90	-1.40	0.23
Lys	3.22	1.99	-2.41	-2.29	-0.52	Lys	1.41	2.81	-3.09	-1.34	0.22
Arg	2.45	2.36	-2.32	-1.83	-0.66	Arg	1.06	2.41	-2.91	-1.35	0.78

		AM1///	AM1					AM1-D ^a	//AM1		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	2.76	3.80	-3.88	-1.54	-1.14	Pro	-0.73	1.24	-1.46	2.44	-1.48
Gly	2.92	4.80	-4.02	-1.54	-2.16	Gly	0.68	3.76	-3.12	-0.27	-1.05
Ala	2.40	5.49	-3.84	-1.65	-2.40	Ala	0.12	4.79	-2.87	-0.57	-1.47
Val	1.81	5.16	-3.44	-0.78	-2.74	Val	-0.55	5.69	-3.22	-0.11	-1.81
Leu	3.03	4.29	-3.21	-1.37	-2.74	Leu	0.95	4.20	-2.65	-0.60	-1.90
Ile	1.82	5.36	-3.20	-0.72	-3.26	Ile	-0.35	6.51	-2.92	0.14	-3.39
Met	0.63	6.16	-3.95	-1.67	-1.17	Met	-1.33	5.86	-3.13	-0.75	-0.66
Phe	2.80	4.61	-2.88	-0.06	-4.47	Phe	1.10	5.10	-3.15	-0.17	-2.88
Tyr	2.45	4.20	-2.32	0.40	-4.73	Tyr	0.74	4.64	-2.69	0.28	-2.96
His	3.03	4.06	-2.69	-0.51	-3.89	His	1.46	4.58	-3.28	-0.40	-2.36
Trp	3.63	4.23	-3.47	-0.26	-4.12	Trp	0.99	4.44	-1.92	-0.69	-2.82
Cys	2.20	5.13	-4.13	-0.95	-2.26	Cys	-0.03	4.75	-3.38	0.03	-1.37
Ser	1.01	5.79	-4.15	0.75	-3.40	Ser	-1.22	5.72	-3.23	1.76	-3.02
Thr	1.46	4.94	-3.53	-1.16	-1.72	Thr	-0.46	4.43	-2.75	-0.14	-1.08
Asn	0.74	6.90	-2.24	-2.00	-3.41	Asn	-1.08	6.93	-1.49	-1.80	-2.56
Gln	0.48	5.38	-4.13	-1.70	-0.04	Gln	-1.61	4.58	-2.84	-0.36	0.23
Asp	0.60	5.37	-0.48	-1.66	-3.83	Asp	-1.42	6.14	0.44	-2.13	-3.04
Glu	3.03	3.37	0.07	-2.81	-3.67	Glu	0.51	3.45	0.80	-1.92	-2.83
Lys	2.54	4.72	-3.62	-1.14	-2.51	Lys	0.72	5.54	-4.30	-0.20	-1.76
Arg	-0.86	3.94	-4.96	5.28	-3.40	Arg	-2.25	4.00	-5.56	5.76	-1.96

		PM3//I	PM3					PM3-D ^a /	//PM3		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	6.69	8.45	-5.12	-5.14	-4.89	Pro	3.20	5.90	-2.70	-1.16	-5.23
Gly	5.72	7.37	-3.20	-2.42	-7.48	Gly	3.49	6.33	-2.29	-1.15	-6.37
Ala	6.10	8.61	-4.58	-2.86	-7.27	Ala	3.82	7.91	-3.61	-1.78	-6.34
Val	5.98	8.26	-4.63	-2.33	-7.27	Val	3.62	8.79	-4.41	-1.66	-6.34
Leu	7.39	7.14	-4.33	-2.43	-7.77	Leu	5.31	7.04	-3.77	-1.66	-6.93
Ile	5.82	8.60	-4.42	-2.47	-7.54	Ile	3.66	9.75	-4.14	-1.60	-7.67
Met	4.33	9.82	-4.95	-3.29	-5.91	Met	2.37	9.52	-4.13	-2.37	-5.40
Phe	5.81	7.91	-2.86	-1.43	-9.42	Phe	4.10	8.40	-3.13	-1.54	-7.84
Tyr	5.58	7.66	-2.85	-0.85	-9.54	Tyr	3.87	8.11	-3.23	-0.98	-7.77
His	6.12	8.41	-3.67	-2.12	-8.73	His	4.54	8.93	-4.27	-2.01	-7.20
Trp	6.80	7.86	-4.01	-1.66	-8.99	Trp	4.16	8.07	-2.46	-2.09	-7.68
Cys	5.65	8.24	-5.27	-1.66	-6.95	Cys	3.42	7.86	-4.53	-0.68	-6.06
Ser	4.17	8.12	-2.39	-3.05	-6.85	Ser	1.94	8.04	-1.47	-2.04	-6.47
Thr	7.37	8.33	-5.13	-3.72	-6.85	Thr	5.45	7.82	-4.35	-2.70	-6.21
Asn	3.96	9.97	-2.77	-2.97	-8.19	Asn	2.14	10.00	-2.02	-2.77	-7.33
Gln	4.10	8.54	-5.10	-3.00	-4.54	Gln	2.00	7.74	-3.81	-1.66	-4.27
Asp	5.01	8.90	-0.34	-5.95	-7.62	Asp	3.00	9.66	0.59	-6.42	-6.83
Glu	6.43	5.65	-0.46	-3.98	-7.64	Glu	3.91	5.73	0.26	-3.09	-6.81
Lys	5.99	8.62	-4.88	-2.47	-7.26	Lys	4.17	9.44	-5.57	-1.53	-6.52
Arg	2.40	8.27	-6.30	2.95	-7.32	Arg	1.01	8.32	-6.89	3.44	-5.87

		PM3MM//	PM3MM				P	M3MM-D ^a	//PM3MM		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_R	$\alpha_{\rm L}$	β	β_a	PPII
Pro	6.65	8.95	-5.69	-5.46	-4.45	Pro	3.15	6.39	-3.27	-1.48	-4.79
Gly	6.42	8.50	-5.43	-3.17	-6.33	Gly	4.19	7.46	-4.53	-1.90	-5.22
Ala	6.18	9.38	-5.44	-3.59	-6.52	Ala	3.90	8.68	-4.47	-2.50	-5.60
Val	5.89	8.92	-5.35	-2.83	-6.63	Val	3.54	9.45	-5.13	-2.16	-5.70
Leu	7.30	7.91	-5.17	-2.96	-7.07	Leu	5.22	7.81	-4.61	-2.19	-6.23
Ile	5.79	9.20	-5.19	-2.98	-6.81	Ile	3.62	10.35	-4.91	-2.11	-6.94
Met	4.44	10.29	-5.77	-3.89	-5.07	Met	2.49	9.99	-4.95	-2.97	-4.56
Phe	5.99	8.85	-4.36	-1.78	-8.70	Phe	4.29	9.35	-4.63	-1.89	-7.12
Tyr	5.61	8.44	-3.77	-1.30	-8.98	Tyr	3.90	8.88	-4.15	-1.42	-7.22
His	6.06	8.90	-4.27	-2.42	-8.27	His	4.49	9.42	-4.86	-2.31	-6.74
Trp	6.78	8.59	-4.96	-1.91	-8.49	Trp	4.14	8.80	-3.41	-2.35	-7.18
Cys	6.16	9.24	-5.96	-3.33	-6.11	Cys	3.93	8.86	-5.21	-2.36	-5.23
Ser	4.94	9.90	-6.11	-1.36	-7.37	Ser	2.71	9.82	-5.19	-0.35	-6.99
Thr	7.87	9.79	-5.91	-6.31	-5.44	Thr	5.95	9.27	-5.13	-5.30	-4.80
Asn	4.69	10.91	-4.45	-3.61	-7.54	Asn	2.87	10.94	-3.71	-3.42	-6.68
Gln	4.38	9.52	-5.93	-3.98	-3.99	Gln	2.28	8.72	-4.64	-2.65	-3.72
Asp	5.07	6.23	0.87	-4.52	-7.66	Asp	3.06	7.00	1.79	-4.98	-6.87
Glu	5.41	7.22	-1.06	-4.34	-7.23	Glu	2.89	7.30	-0.34	-3.45	-6.40
Lys	6.86	9.39	-6.05	-3.47	-6.74	Lys	5.05	10.20	-6.73	-2.52	-6.00
Arg	3.66	8.98	-7.50	1.85	-7.00	Arg	2.27	9.03	-8.09	2.34	-5.56

	А	MOEBA//	AMOEBA				Al	MBEREP//	AMBEREP		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	-2.40	-3.07	2.75	6.01	-3.29	Pro	-12.74	36.30	-6.34	-6.53	-10.68
Gly	0.45	-0.05	0.27	0.66	-1.33	Gly	-0.87	5.01	-1.95	-2.82	0.62
Ala	0.78	-0.22	0.34	0.20	-1.10	Ala	-2.37	6.81	-1.22	-2.34	-0.89
Val	0.18	-0.61	1.01	1.79	-2.37	Val	-1.76	6.07	-1.30	-1.96	-1.05
Leu	0.31	-0.32	0.07	1.14	-1.20	Leu	-2.47	6.66	-0.73	-2.52	-0.94
Ile	-0.14	-1.01	0.71	1.55	-1.10	Ile	-2.45	8.04	-1.38	-2.30	-1.91
Met	-0.22	0.32	0.46	0.01	-0.56	Met	-3.24	6.71	-1.18	-2.41	0.11
Phe	-0.40	-0.75	0.65	1.42	-0.92	Phe	-3.00	7.02	-1.02	-1.29	-1.71
Tyr	-0.41	-1.09	0.89	1.60	-0.99	Tyr	-2.92	6.54	-0.87	-1.28	-1.47
His	2.68	-0.28	-0.14	-0.26	-2.01	His	-0.54	4.89	-1.65	-1.11	-1.59
Trp	0.61	-0.96	0.94	1.46	-2.05	Trp	-3.97	7.58	-0.49	-1.25	-1.87
Cys	1.80	0.00	-1.71	0.94	-1.03	Cys	-3.22	7.39	-0.37	-1.38	-2.42
Ser	0.02	-1.61	0.71	0.40	0.48	Ser	-2.42	6.36	-1.13	-2.29	-0.52
Thr	2.14	1.79	-0.47	0.15	-3.61	Thr	-2.31	7.36	-0.63	-1.20	-3.23
Asn	2.08	1.04	-0.14	-2.64	-0.34	Asn	-2.73	8.98	-0.58	-4.61	-1.05
Gln	0.19	1.52	-0.79	-0.64	-0.27	Gln	-2.40	6.50	-0.87	-1.73	-1.50
Asp	0.11	-3.93	4.95	0.08	-1.21	Asp	-1.74	2.35	1.11	-2.48	0.75
Glu	-0.57	-1.62	3.03	1.44	-2.28	Glu	-5.89	7.82	1.53	-3.08	-0.37
Lys	2.32	-1.01	-0.52	0.91	-1.70	Lys	-1.70	7.38	-1.97	-2.29	-1.41
Arg	-0.48	0.51	0.59	0.73	-1.35	Arg	-3.04	6.34	-2.57	1.19	-1.93

	AMI	BERPOL//A	AMBERPO	L			AN	MBER94///	AMBER94		
	α_{R}	α_{L}	β	β_a	PPII		α_R	$\alpha_{\rm L}$	β	β_a	PPII
Pro	-4.65	1.18	3.33	3.58	-3.43	Pro	-5.22	0.92	1.60	4.96	-2.27
Gly	-1.12	4.52	-0.71	-0.57	-2.12	Gly	-2.69	3.63	-0.05	0.68	-1.56
Ala	-2.58	6.27	-0.17	-0.85	-2.67	Ala	-4.16	5.95	0.32	0.31	-2.42
Val	-1.84	5.25	-0.41	-0.52	-2.47	Val	-3.55	5.13	0.02	0.43	-2.04
Leu	-2.63	6.05	0.22	-1.19	-2.45	Leu	-4.38	5.66	-0.56	1.02	-1.75
Ile	-2.70	7.34	-0.35	-0.80	-3.49	Ile	-3.17	5.72	0.30	0.75	-3.60
Met	-3.62	6.85	-0.42	-1.14	-1.67	Met	-4.56	5.09	0.41	0.08	-1.02
Phe	-3.07	6.34	-0.18	0.01	-3.10	Phe	-4.74	6.06	0.27	1.19	-2.78
Tyr	-3.22	6.31	-0.01	0.27	-3.34	Tyr	-4.58	5.38	0.54	1.57	-2.90
His	-1.37	5.25	-0.71	-0.20	-2.98	His	-4.40	4.99	0.39	1.66	-2.64
Trp	-4.01	6.63	0.58	0.09	-3.29	Trp	-4.67	5.28	0.98	1.23	-2.82
Cys	-2.43	6.59	-0.37	-0.78	-3.00	Cys	-4.03	4.54	0.99	1.12	-2.63
Ser	-2.23	5.63	-0.35	-1.06	-1.99	Ser	-3.42	3.09	1.38	1.39	-2.44
Thr	-3.51	8.52	-0.67	-0.71	-3.64	Thr	-4.31	5.86	-0.56	0.07	-1.05
Asn	-1.87	7.83	-0.19	-3.46	-2.31	Asn	-2.74	4.73	-1.03	0.75	-1.71
Gln	-2.43	5.94	-0.06	-0.42	-3.04	Gln	-4.94	6.89	0.39	0.45	-2.79
Asp	-1.14	1.50	1.81	-1.42	-0.76	Asp	-4.84	2.05	2.41	0.27	0.10
Glu	-5.62	6.97	2.33	-1.58	-2.09	Glu	-7.24	5.71	3.59	-0.94	-1.11
Lys	-2.01	6.83	-1.59	-0.69	-2.54	Lys	-3.66	5.28	0.20	1.32	-3.14
Arg	-3.74	6.39	-1.83	2.23	-3.05	Arg	-5.22	5.10	-0.58	4.77	-4.08

	A	MBER96//	AMBER96				AN	//BER99///	AMBER99		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	-0.35	5.79	-2.09	-0.15	-3.20	Pro	-3.54	0.57	2.08	1.76	-0.88
Gly	2.17	8.50	-3.75	-4.43	-2.49	Gly	-1.31	3.01	0.90	-2.34	-0.25
Ala	0.71	10.82	-3.38	-4.80	-3.35	Ala	-2.31	4.82	1.00	-2.66	-0.85
Val	1.32	10.00	-3.67	-4.68	-2.97	Val	-1.68	3.98	0.70	-2.53	-0.46
Leu	0.49	10.53	-4.25	-4.09	-2.68	Leu	-2.55	4.52	0.09	-1.89	-0.18
Ile	1.69	10.58	-3.40	-4.36	-4.53	Ile	-1.25	4.45	0.99	-2.20	-1.99
Met	0.30	9.96	-3.28	-5.03	-1.95	Met	-2.70	3.95	1.09	-2.90	0.56
Phe	0.13	10.93	-3.43	-3.92	-3.71	Phe	-2.88	4.94	0.94	-1.79	-1.21
Tyr	0.28	10.24	-3.15	-3.54	-3.83	Tyr	-2.73	4.25	1.21	-1.40	-1.33
His	0.47	9.85	-3.30	-3.45	-3.57	His	-2.55	3.86	1.06	-1.30	-1.07
Trp	0.19	10.14	-2.71	-3.88	-3.75	Trp	-2.82	4.17	1.64	-1.75	-1.25
Cys	0.84	9.41	-2.70	-3.99	-3.56	Cys	-2.18	3.40	1.67	-1.84	-1.06
Ser	1.45	7.96	-2.31	-3.72	-3.37	Ser	-1.58	1.93	2.07	-1.57	-0.85
Thr	0.55	10.72	-4.26	-5.04	-1.98	Thr	-2.43	4.63	0.14	-2.89	0.55
Asn	2.13	9.60	-4.73	-4.36	-2.64	Asn	-1.03	3.43	-0.52	-1.61	-0.27
Gln	-0.07	11.76	-3.31	-4.66	-3.71	Gln	-3.36	6.18	0.80	-2.79	-0.83
Asp	0.03	6.92	-1.28	-4.84	-0.83	Asp	-2.99	0.76	3.28	-2.71	1.65
Glu	-2.37	10.57	-0.11	-6.05	-2.04	Glu	-5.46	4.87	4.18	-3.99	0.40
Lys	1.21	10.14	-3.49	-3.79	-4.06	Lys	-1.80	4.19	0.86	-1.67	-1.58
Arg	-0.35	9.97	-4.27	-0.34	-5.01	Arg	-3.41	4.02	0.03	1.94	-2.58

	AME	BER99SB///	AMBER998	SB		AMBER03//AMBER03								
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{ m L}$	β	β_a	PPII			
Pro	1.50	2.00	1.01	0.10	-4.60	Pro	-1.22	6.40	1.58	-1.36	-5.40			
Gly	2.94	3.03	-0.48	-1.82	-3.67	Gly	0.49	7.38	-1.68	-2.22	-3.97			
Ala	3.00	3.83	-0.53	-2.59	-3.71	Ala	-0.41	10.89	-1.88	-3.65	-4.96			
Val	3.64	3.00	-0.81	-2.47	-3.35	Val	1.23	8.32	-2.30	-3.75	-3.50			
Leu	2.75	3.56	-1.44	-1.84	-3.03	Leu	-0.61	10.67	-2.44	-2.74	-4.88			
Ile	4.10	3.50	-0.50	-2.10	-5.00	Ile	1.61	12.44	-3.15	-4.50	-6.39			
Met	2.59	2.96	-0.45	-2.83	-2.27	Met	-1.07	8.75	-0.95	-3.02	-3.71			
Phe	2.40	3.95	-0.59	-1.72	-4.05	Phe	-1.29	9.15	-1.13	-1.84	-4.89			
Tyr	2.56	3.25	-0.31	-1.30	-4.19	Tyr	-3.81	8.59	0.12	-0.47	-4.43			
His	2.79	2.88	-0.45	-1.21	-4.00	His	-3.75	7.64	0.36	-0.10	-4.15			
Trp	2.48	3.19	0.10	-1.64	-4.12	Trp	-2.86	7.84	-0.59	-0.80	-3.59			
Cys	3.14	2.45	-0.01	-1.75	-3.82	Cys	-0.42	8.96	-0.98	-2.45	-5.11			
Ser	3.74	0.98	0.52	-1.54	-3.71	Ser	-0.25	9.85	-1.42	-3.35	-4.85			
Thr	3.53	3.41	-1.34	-2.78	-2.83	Thr	1.19	11.90	-2.97	-3.20	-6.92			
Asn	4.11	2.49	-2.11	-1.33	-3.17	Asn	0.12	7.21	-2.46	-1.40	-3.46			
Gln	1.64	5.76	-1.01	-3.03	-3.36	Gln	0.15	15.16	-3.68	-5.75	-5.88			
Asp	2.26	-0.26	1.81	-2.60	-1.21	Asp	-2.39	7.13	1.05	-4.24	-1.54			
Glu	-0.11	3.74	2.72	-3.88	-2.47	Glu	-0.95	11.31	0.94	-6.64	-4.66			
Lys	3.50	3.25	-0.66	-1.62	-4.46	Lys	4.20	6.53	-2.10	-1.96	-6.67			
Arg	1.88	3.05	-1.50	2.05	-5.49	Arg	-0.87	5.85	-2.41	4.50	-7.06			

	CHA	ARMM27//0	CHARMM2	27			C	PLS-AA//0	OPLS-AA		
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	-1.62	9.44	-1.12	-0.22	-6.49	Pro	-0.28	0.53	-1.45	6.28	-5.07
Gly	0.35	12.07	-4.99	-3.66	-3.78	Gly	2.47	4.60	-2.85	-2.36	-1.87
Ala	-2.18	15.85	-4.35	-3.33	-5.99	Ala	2.36	5.94	-3.16	-2.65	-2.48
Val	-2.31	16.01	-4.80	-2.77	-6.13	Val	2.45	5.64	-3.10	-2.04	-2.96
Leu	-1.68	15.07	-4.73	-2.43	-6.23	Leu	2.90	5.24	-3.43	-2.05	-2.66
Ile	-2.16	16.48	-4.64	-2.62	-7.06	Ile	2.83	6.44	-2.79	-1.69	-4.78
Met	-2.64	16.17	-4.55	-3.80	-5.18	Met	1.22	6.83	-4.29	-4.09	0.32
Phe	-1.24	15.00	-4.33	-2.29	-7.13	Phe	3.42	4.23	-2.94	-1.14	-3.57
Tyr	-1.36	14.65	-4.03	-1.97	-7.29	Tyr	3.27	3.87	-2.60	-0.80	-3.74
His	0.05	11.89	-3.53	-1.66	-6.75	His	3.14	3.83	-2.59	-1.19	-3.20
Trp	-1.57	14.58	-4.41	-2.18	-6.43	Trp	1.44	5.84	-4.40	-0.41	-2.47
Cys	-1.64	15.12	-4.29	-2.66	-6.53	Cys	3.41	4.75	-3.71	-2.32	-2.13
Ser	-1.89	13.15	-4.35	-3.33	-3.58	Ser	3.11	4.14	-3.23	-2.63	-1.40
Thr	-2.28	16.74	-5.56	-3.39	-5.51	Thr	3.37	4.57	-2.66	-1.38	-3.89
Asn	-1.91	15.70	-2.81	-4.36	-6.63	Asn	4.58	3.16	-5.95	-0.87	-0.92
Gln	-3.04	17.05	-4.72	-3.59	-5.70	Gln	1.94	5.06	-1.63	-1.17	-4.20
Asp	-7.56	14.07	2.83	-3.02	-6.32	Asp	0.92	-0.76	-2.87	2.55	0.17
Glu	-6.42	15.56	-0.12	-3.13	-5.89	Glu	-0.31	4.63	1.89	-3.21	-3.00
Lys	-0.82	14.95	-4.97	-2.67	-6.48	Lys	4.43	5.62	-4.16	-2.57	-3.31
Arg	-2.26	14.82	-5.82	1.29	-8.03	Arg	1.41	5.66	-4.72	2.55	-4.89

	OPI	LS-AA/L//	OPLS-AA/I				AN	IBERUA//	AMBERUA	L	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$lpha_{ m L}$	β	β_a	PPII
Pro	-0.57	1.17	-0.62	6.72	-6.70	Pro	-9.93	43.01	-9.24	-8.63	-15.21
Gly	4.79	7.77	-5.54	-5.07	-1.95	Gly	0.21	9.34	-2.27	-3.00	-4.28
Ala	1.92	6.81	-2.01	-2.98	-3.75	Ala	-2.34	12.04	-1.52	-3.33	-4.84
Val	1.92	6.39	-2.00	-2.45	-3.86	Val	-0.17	8.37	-0.84	-2.09	-5.26
Leu	2.65	5.88	-2.03	-2.35	-4.15	Leu	-2.73	11.77	-1.73	-2.73	-4.58
Ile	1.65	6.75	-2.32	-2.71	-3.36	Ile	-1.71	10.14	-0.99	-2.33	-5.11
Met	0.81	7.77	-3.24	-4.42	-0.92	Met	-2.35	10.15	-1.24	-2.94	-3.62
Phe	2.96	5.06	-1.83	-1.26	-4.94	Phe	-2.59	11.38	-1.17	-2.09	-5.53
Tyr	2.81	4.68	-1.53	-0.88	-5.09	Tyr	-5.73	10.77	0.19	-0.61	-4.62
His	2.91	4.03	-1.48	-1.18	-4.28	His	-3.01	10.54	-0.71	-1.59	-5.23
Trp	1.42	6.19	-2.90	-0.80	-3.91	Trp	-3.54	10.50	-0.52	-1.43	-5.00
Cys	3.48	6.25	-3.34	-3.51	-2.88	Cys	-2.38	10.79	-1.01	-2.37	-5.03
Ser	3.44	5.88	-1.28	-2.49	-5.55	Ser	-2.98	9.06	-1.11	-2.75	-2.23
Thr	2.62	5.68	-1.75	-1.73	-4.82	Thr	-1.91	13.84	-3.50	-4.65	-3.78
Asn	3.38	6.02	-2.29	-3.85	-3.26	Asn	-0.40	10.08	-3.03	-2.24	-4.40
Gln	1.90	6.60	-1.92	-2.40	-4.19	Gln	-1.89	13.20	-1.63	-3.48	-6.19
Asp	-2.12	1.94	1.61	0.91	-2.35	Asp	-3.02	9.11	-0.08	-2.93	-3.08
Glu	-3.06	7.12	0.86	-2.06	-2.86	Glu	-2.75	10.54	1.52	-4.86	-4.45
Lys	3.35	6.52	-2.90	-2.63	-4.33	Lys	-1.86	9.53	-1.22	-1.78	-4.67
Arg	1.33	6.22	-3.54	2.12	-6.14	Arg	-1.92	7.65	-2.57	3.27	-6.43

	GROMO	S(G43b1)//	GROMOS(G43b1)			GROMOS	S(G45a3)//	GROMOS(G45a3)	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII		α_{R}	$\alpha_{\rm L}$	β	β_a	PPII
Pro	-6.29	36.22	-10.33	-7.15	-12.45	Pro	-5.27	35.03	-10.40	-7.31	-12.05
Gly	3.97	6.62	-5.46	-2.77	-2.36	Gly	4.50	5.46	-5.36	-2.66	-1.95
Ala	3.59	7.81	-5.59	-3.19	-2.61	Ala	4.33	6.01	-5.42	-3.00	-1.92
Val	3.71	6.53	-5.07	-1.91	-3.26	Val	4.02	5.95	-5.18	-1.86	-2.93
Leu	4.04	6.74	-5.37	-2.88	-2.53	Leu	4.64	4.93	-5.52	-2.28	-1.77
Ile	3.47	7.17	-5.20	-2.08	-3.36	Ile	3.70	6.04	-5.31	-1.91	-2.53
Met	2.62	8.87	-5.88	-3.42	-2.19	Met	3.07	7.67	-5.88	-3.31	-1.56
Phe	2.84	8.42	-5.39	-2.74	-3.12	Phe	3.57	7.03	-5.37	-2.60	-2.63
Tyr	2.66	8.11	-4.97	-2.89	-2.91	Tyr	3.26	6.70	-5.01	-2.52	-2.43
His	2.93	7.97	-4.57	-2.41	-3.92	His	3.45	6.42	-4.63	-1.67	-3.57
Trp	1.57	8.41	-4.06	-2.36	-3.57	Trp	2.24	7.00	-3.88	-2.16	-3.20
Cys	3.79	8.70	-5.83	-2.90	-3.76	Cys	4.39	7.31	-5.76	-2.72	-3.22
Ser	2.67	7.56	-5.36	-2.82	-2.05	Ser	3.25	6.14	-5.28	-2.65	-1.46
Thr	3.99	6.16	-4.96	-2.59	-2.59	Thr	4.26	5.56	-5.23	-2.60	-1.98
Asn	3.59	8.88	-4.53	-4.56	-3.39	Asn	4.17	7.51	-4.39	-4.42	-2.88
Gln	2.61	8.13	-5.02	-2.36	-3.36	Gln	2.99	6.97	-5.20	-2.34	-2.41
Asp	12.00	-5.13	4.12	-2.23	-8.76	Asp	3.64	4.46	4.41	-4.90	-7.62
Glu	3.04	4.17	5.74	-5.11	-7.84	Glu	1.21	4.37	6.98	-5.50	-7.06
Lys	4.23	6.34	-6.76	-2.73	-1.08	Lys	4.43	3.93	-6.28	-1.60	-0.49
Arg	-4.46	6.74	-8.06	8.50	-2.73	Arg	0.06	3.02	-7.67	7.13	-2.54

	GROMOS	S(G53a6)//	GROMOS(G53a6)	
	α_R	$\alpha_{\rm L}$	β	β_a	PPII
Pro	-7.93	34.56	-12.85	2.57	-16.35
Gly	6.14	7.00	-6.57	-4.34	-2.24
Ala	5.95	7.63	-6.63	-4.67	-2.29
Val	5.49	7.71	-6.58	-3.47	-3.15
Leu	6.59	6.62	-6.59	-3.59	-3.03
Ile	5.25	7.93	-6.62	-3.42	-3.15
Met	4.32	6.75	-6.07	-4.01	-0.98
Phe	5.44	7.99	-6.46	-3.76	-3.21
Tyr	5.11	7.71	-6.11	-3.72	-3.00
His	4.89	7.58	-6.58	-2.70	-3.19
Trp	4.15	8.13	-5.11	-3.14	-4.04
Cys	6.16	7.07	-6.39	-4.16	-2.67
Ser	5.16	6.97	-5.65	-3.66	-2.83
Thr	5.54	7.83	-5.86	-3.23	-4.28
Asn	5.26	8.58	-6.23	-4.04	-3.57
Gln	4.23	9.96	-6.23	-3.90	-4.06
Asp	3.25	7.41	1.71	-5.80	-6.56
Glu	2.96	5.61	3.59	-6.41	-5.74
Lys	5.82	5.93	-7.03	-3.09	-1.63
Arg	2.62	4.98	-8.54	4.57	-3.62

Table 520. Signed Rivis				20 unino uci		liethou.	
	α_{R}	$\alpha_{\rm L}$	β	β_a	PPII	Mean(µ)	$^{1}\text{SD}(\sigma)$
M05-2X/cc-pVTZ	1.38	0.91	-0.58	-0.85	-1.02	0.95	0.26
M05-2X-D ^a /cc-pVTZ	-0.90	1.04	0.67	0.75	-0.46	0.76	0.20
M05-2X/6-31G**	0.59	-1.53	0.67	0.41	0.53	0.75	0.40
M05-2X-D ^a /6-31G**	-1.61	-1.71	1.22	1.13	1.34	1.40	0.22
PBE/cc-pVTZ	3.40	3.46	-3.29	-2.69	-1.19	2.80	0.85
PBE-D ^a /cc-pVTZ	1.35	3.43	-2.78	-2.00	-0.58	2.03	1.01
PBE/6-31G**	2.36	1.23	-2.14	-1.75	0.65	1.62	0.62
PBE-D ^a /6-31G**	0.48	1.29	-1.62	-1.13	1.13	1.13	0.37
B3LYP/cc-pVTZ	4.06	4.40	-3.56	-3.09	-2.09	3.44	0.81
B3LYP-D ^a /cc-pVTZ	2.00	4.36	-3.06	-2.38	-1.27	2.62	1.05
B3LYP/6-31G**	2.93	2.15	-2.39	-2.13	-0.98	2.12	0.64
B3LYP-D ^a /6-31G**	0.93	2.16	-1.86	-1.46	0.54	1.39	0.59
AM1	2.23	4.96	-3.42	-1.78	-3.09	3.09	1.10
AM1-D ^a	-1.05	4.97	-2.98	1.67	-2.21	2.58	1.35
PM3	5.70	8.28	-4.15	-3.07	-7.51	5.74	1.96
PM3-D ^a	3.63	8.26	-3.72	-2.44	-6.62	4.93	2.16
PM3MM	5.90	9.01	-5.20	-3.49	-6.95	6.11	1.83
PM3MM-D ^a	3.83	8.96	-4.75	-2.76	-6.06	5.27	2.14
AMOEBA	1.28	-1.46	1.58	1.76	-1.71	1.56	0.18
AMBEREP	-3.95	10.46	-1.91	-2.63	-2.81	4.35	3.12
AMBERPOL	-3.01	6.17	1.19	-1.45	-2.76	2.92	1.77
AMBER94	-4.44	5.05	1.19	1.80	-2.43	2.98	1.50
AMBER96	1.13	9.82	-3.31	-4.19	-3.30	4.35	2.91
AMBER99	-2.71	4.02	1.61	-2.27	-1.16	2.36	0.99
AMBER99SB	2.89	3.22	-1.15	-2.16	-3.75	2.63	0.90
AMBER03	-1.91	9.39	-1.95	-3.35	-4.98	4.31	2.77
CHARMM27	-2.84	14.83	-4.27	-2.88	-6.24	6.21	4.48
OPLS-AA	2.74	4.83	-3.39	-2.55	-3.17	3.34	0.81
OPLS-AA/L	2.65	5.97	-2.49	-3.01	-4.19	3.66	1.30
AMBERUA	-3.37	14.09	-2.63	-3.38	-5.74	5.84	4.26
GROMOS(G43b1)	4.43	10.84	-5.78	-3.77	-4.70	5.90	2.55
GROMOS(G45a3)	3.72	9.81	-5.82	-3.65	-4.21	5.44	2.32
GROMOS(G53a6)	5.26	10.58	-6.67	-4.02	-5.04	6.31	2.30

Table S2d. RMS (kcal/mol) over the five conformations of each tetrapeptide for each method.

	Pro	Gly	Ala	Val	Leu	Ile	Met	Phe	Tyr	His	Trp	Cys	Ser	Thr	Asn	Gln	Asp	Glu	Lys	Arg	$Mean(\mu)$	$^{1}\text{SD}(\sigma)$
M05-2X/cc-pVTZ	1.19	1.11	1.10	1.00	0.96	0.98	0.91	0.95	0.93	0.89	1.20	0.87	0.92	0.85	0.85	1.09	0.70	0.89	1.04	1.03	0.97	0.12
M05-2X-D ^a /cc-pVTZ	2.04	0.37	0.39	0.87	0.53	1.14	0.43	0.40	0.40	0.47	0.47	0.45	0.45	0.35	0.34	0.57	1.14	0.97	1.01	0.71	0.67	0.41
M05-2X/6-31G**	0.50	0.52	0.66	0.83	0.79	0.87	0.81	1.03	1.01	0.95	1.07	0.94	0.78	1.24	0.92	0.68	0.89	0.66	0.70	0.74	0.83	0.18
M05-2X-D ^a /6-31G**	2.78	1.48	1.44	1.16	1.35	1.00	1.41	1.10	1.15	1.11	1.46	1.60	1.32	1.87	1.23	1.52	1.22	1.25	0.87	0.92	1.36	0.40
PBE/cc-pVTZ	3.01	3.20	3.28	2.98	3.02	3.00	3.14	2.58	2.31	2.70	3.04	3.49	3.20	3.10	2.97	3.16	1.64	2.58	3.03	2.64	2.90	0.40
PBE-D ^a /cc-pVTZ	1.12	2.03	2.22	2.53	2.28	2.80	2.38	2.29	1.97	2.47	2.16	2.66	2.38	2.16	2.44	2.08	1.35	1.75	2.87	2.55	2.22	0.43
PBE/6-31G**	1.94	2.00	2.02	1.65	1.71	1.64	1.83	1.31	1.10	1.42	1.75	2.21	1.93	1.57	1.68	1.97	1.26	1.92	1.74	1.70	1.72	0.28
PBE-D ^a /6-31G**	1.18	1.10	1.10	1.19	1.07	1.29	1.18	1.06	0.81	1.26	0.85	1.53	1.13	0.68	1.18	1.14	0.96	1.16	1.63	1.76	1.16	0.25
B3LYP/cc-pVTZ	3.60	3.71	3.93	3.60	3.66	3.66	3.80	3.23	3.01	3.30	3.73	4.03	3.83	3.79	3.57	3.80	2.08	2.92	3.69	3.23	3.51	0.44
B3LYP-D ^a /cc-pVTZ	1.70	2.47	2.81	3.10	2.87	3.46	3.03	2.84	2.56	2.96	2.78	3.13	2.96	2.84	2.98	2.69	1.89	2.08	3.47	3.01	2.78	0.45
B3LYP/6-31G**	2.34	2.39	2.57	2.18	2.25	2.20	2.41	1.87	1.66	1.93	2.30	2.66	2.52	2.11	2.21	2.46	1.48	1.95	2.27	2.04	2.19	0.29
B3LYP-D ^a /6-31G**	0.93	1.21	1.47	1.65	1.47	1.91	1.66	1.47	1.14	1.59	1.30	1.79	1.63	1.08	1.58	1.42	1.30	1.10	2.06	1.89	1.48	0.30
AM1	2.86	3.31	3.44	3.16	3.08	3.27	3.41	3.39	3.21	3.11	3.47	3.29	3.58	2.94	3.71	3.13	3.06	2.89	3.14	4.01	3.27	0.27
AM1-D ^a	1.57	2.26	2.60	3.05	2.43	3.54	3.06	3.02	2.76	2.82	2.56	2.68	3.37	2.39	3.50	2.52	3.27	2.21	3.25	4.22	2.85	0.57
PM3	6.21	5.64	6.22	6.06	6.17	6.17	6.09	6.25	6.16	6.36	6.45	5.98	5.39	6.49	6.30	5.39	6.29	5.44	6.21	5.93	6.06	0.33
PM3-D ^a	4.03	4.46	5.17	5.53	5.34	6.11	5.44	5.67	5.52	5.91	5.51	5.12	4.83	5.58	5.83	4.46	6.17	4.56	6.04	5.73	5.35	0.59
PM3MM	6.42	6.21	6.50	6.24	6.35	6.33	6.32	6.52	6.31	6.46	6.63	6.44	6.57	7.24	6.79	5.94	5.37	5.54	6.77	6.37	6.37	0.40
PM3MM-D ^a	4.16	4.99	5.44	5.75	5.53	6.28	5.66	6.03	5.75	6.06	5.71	5.55	6.00	6.31	6.29	4.97	5.17	4.79	6.59	6.14	5.66	0.59
AMOEBA	3.73	0.71	0.64	1.43	0.77	1.01	0.37	0.89	1.07	1.51	1.30	1.27	0.83	2.05	1.58	0.83	2.88	1.97	1.44	0.80	1.35	0.79
AMBEREP	18.32	2.76	3.46	3.05	3.41	4.04	3.54	3.58	3.34	2.48	3.96	3.82	3.26	3.79	4.71	3.29	1.81	4.64	3.70	3.50	4.22	3.30
AMBERPOL	3.43	2.32	3.28	2.74	3.20	3.85	3.59	3.44	3.51	2.79	3.77	3.44	2.89	4.45	4.06	3.18	1.37	4.30	3.47	3.81	3.34	0.68
AMBER94	3.48	2.16	3.43	2.94	3.34	3.36	3.10	3.70	3.49	3.29	3.47	3.03	2.49	3.30	2.62	4.00	2.59	4.47	3.25	4.31	3.29	0.56
AMBER96	3.11	4.83	5.71	5.40	5.53	5.76	5.27	5.66	5.33	5.15	5.28	5.00	4.38	5.71	5.38	6.08	3.84	5.63	5.43	5.35	5.19	0.68
AMBER99	2.05	1.85	2.73	2.27	2.47	2.49	2.56	2.77	2.48	2.25	2.55	2.17	1.65	2.68	1.77	3.42	2.46	4.17	2.32	2.76	2.50	0.55
AMBER99SB	2.39	2.64	2.98	2.84	2.64	3.43	2.40	2.86	2.70	2.60	2.68	2.59	2.50	2.89	2.81	3.39	1.83	2.92	3.02	3.14	2.76	0.35
AMBER03	3.90	3.96	5.66	4.53	5.51	6.76	4.51	4.77	4.65	4.24	4.09	4.77	5.17	6.48	3.79	7.89	3.95	6.25	4.75	4.71	5.02	1.07
CHARMM27	5.20	6.30	8.02	8.12	7.71	8.42	8.13	7.76	7.61	6.36	7.49	7.74	6.63	8.47	8.01	8.57	7.90	8.10	7.72	8.06	7.62	0.83
OPLS-AA	3.68	2.98	3.58	3.47	3.43	4.07	4.08	3.23	3.07	2.93	3.52	3.40	3.04	3.36	3.69	3.20	1.80	2.98	4.15	4.16	3.39	0.53
OPLS-AA/L	4.29	5.36	3.93	3.73	3.70	3.80	4.29	3.57	3.43	3.05	3.60	4.07	4.12	3.70	3.96	3.85	1.86	3.83	4.19	4.36	3.83	0.64
AMBERUA	21.63	4.89	6.12	4.54	5.95	5.26	5.13	5.87	5.84	5.49	5.48	5.55	4.58	6.97	5.20	6.79	4.69	5.73	4.92	4.92	6.28	3.58
GROMOS(G43b1)	18.24	4.53	4.94	4.39	4.59	4.61	5.23	5.01	4.78	4.78	4.65	5.41	4.59	4.29	5.38	4.80	7.33	5.43	4.74	6.48	5.71	2.96
GROMOS(G45a3)	17.67	4.24	4.40	4.25	4.11	4.21	4.82	4.58	4.31	4.25	4.10	4.97	4.13	4.17	4.92	4.38	5.19	5.46	3.93	5.01	5.16	2.90
GROMOS(G53a6)	18.42	5.54	5.74	5.56	5.53	5.58	4.86	5.65	5.40	5.33	5.21	5.53	5.07	5.57	5.82	6.13	5.39	5.04	5.11	5.26	6.09	2.84

Table S3a. Energy offset (E_c , kcal/mol) for each tetrapeptide obtained from Eq. 2 in minimizing RMS of each method over 4 conformations (excluding α_L).

	Pro	Gly	Ala	Val	Leu	Ile	Met	Phe	Tyr	His	Trp	Cys	Ser	Thr	Asn	Gln	Asp	Glu	Lys	Arg
M05-2X/cc-pVTZ	1.81	1.80	1.84	1.61	1.57	1.59	1.47	1.53	1.36	1.51	2.15	1.53	1.65	1.46	1.49	1.50	0.83	1.13	1.71	1.56
M05-2X-D ^a /cc-pVTZ	-2.33	-0.69	-0.61	-0.61	-0.53	-0.29	-0.56	-0.05	-0.24	0.07	-0.44	-0.79	-0.60	-0.59	-0.32	-0.80	-0.99	-1.37	0.10	0.18
M05-2X/6-31G**	0.36	0.28	0.39	0.22	0.00	0.16	-0.01	0.21	0.19	0.13	0.48	0.11	0.22	-0.12	0.16	-0.01	0.36	0.41	0.07	0.53
M05-2X-D ^a /6-31G**	-3.77	-2.22	-2.06	-2.00	-2.10	-1.72	-2.04	-1.37	-1.41	-1.31	-2.11	-2.22	-2.03	-2.17	-1.65	-2.31	-1.46	-2.10	-1.54	-0.84
PBE/cc-pVTZ	4.57	4.63	4.72	4.39	4.53	4.27	4.07	3.96	3.49	4.32	4.88	4.74	4.48	4.63	4.14	3.84	2.51	4.02	4.68	3.47
PBE-D ^a /cc-pVTZ	0.43	2.14	2.26	2.17	2.42	2.39	2.05	2.39	1.89	2.88	2.30	2.41	2.23	2.58	2.33	1.54	0.69	1.52	3.07	2.09
PBE/6-31G**	2.86	2.89	3.06	2.76	2.68	2.64	2.40	2.36	1.97	2.60	3.06	3.09	2.81	2.71	2.60	2.12	1.62	3.08	2.78	2.39
PBE-D ^a /6-31G**	-1.28	0.39	0.61	0.54	0.58	0.76	0.37	0.78	0.37	1.16	0.47	0.77	0.56	0.66	0.79	-0.18	-0.20	0.58	1.17	1.01
B3LYP/cc-pVTZ	5.44	5.51	5.71	5.28	5.52	5.23	4.95	4.85	4.42	5.21	5.99	5.74	5.55	5.64	5.10	4.73	2.82	4.43	5.71	4.20
B3LYP-D ^a /cc-pVTZ	1.30	3.01	3.26	3.06	3.41	3.35	2.92	3.27	2.82	3.76	3.40	3.42	3.30	3.59	3.28	2.44	1.00	1.92	4.09	2.83
B3LYP/6-31G**	3.70	3.67	3.99	3.58	3.59	3.50	3.24	3.14	2.68	3.37	4.01	4.04	3.85	3.65	3.49	2.97	1.99	3.24	3.72	3.04
B3LYP-D ^a /6-31G**	-0.44	1.17	1.54	1.36	1.49	1.63	1.21	1.56	1.08	1.93	1.42	1.72	1.60	1.60	1.68	0.68	0.17	0.74	2.11	1.67
AM1	3.71	4.12	3.77	3.10	4.10	3.16	2.17	3.95	3.50	4.04	4.68	3.49	2.46	2.70	2.47	1.83	1.94	3.87	3.72	0.13
AM1-D ^a	-0.42	1.62	1.32	0.88	2.00	1.28	0.14	2.37	1.90	2.60	2.10	1.16	0.21	0.65	0.66	-0.47	0.12	1.37	2.11	-1.25
PM3	8.81	7.57	8.25	8.04	9.17	7.97	6.78	7.78	7.50	8.22	8.77	7.70	6.20	9.45	6.45	6.23	7.24	7.84	8.15	4.46
PM3-D ^a	4.67	5.07	5.80	5.82	7.07	6.09	4.75	6.20	5.90	6.78	6.18	5.38	3.95	7.40	4.63	3.94	5.42	5.34	6.53	3.09
PM3MM	8.89	8.55	8.52	8.12	9.28	8.09	7.02	8.21	7.72	8.29	8.93	8.47	7.41	10.32	7.42	6.76	6.63	7.21	9.21	5.90
PM3MM-D ^a	4.75	6.06	6.07	5.90	7.17	6.21	4.99	6.63	6.12	6.85	6.34	6.15	5.16	8.27	5.60	4.46	4.81	4.71	7.60	4.53
AMOEBA	-3.17	0.44	0.73	0.03	0.23	-0.40	-0.14	-0.58	-0.68	2.61	0.37	1.80	-0.38	2.59	2.35	0.57	-0.87	-0.98	2.06	-0.35
AMBEREP	-3.66	0.39	-0.66	-0.24	-0.80	-0.44	-1.56	-1.24	-1.29	0.68	-2.07	-1.37	-0.83	-0.46	-0.49	-0.77	-1.15	-3.94	0.14	-1.45
AMBERPOL	-4.36	0.01	-1.01	-0.53	-1.12	-0.87	-1.91	-1.48	-1.64	-0.06	-2.35	-0.78	-0.83	-1.37	0.08	-0.94	-0.76	-3.88	-0.30	-2.14
AMBER94	-4.98	-1.79	-2.67	-2.26	-2.96	-1.74	-3.29	-3.22	-3.24	-3.15	-3.35	-2.89	-2.65	-2.85	-1.55	-3.22	-4.32	-5.81	-2.34	-3.94
AMBER96	1.10	4.30	3.41	3.82	3.12	4.34	2.79	2.86	2.84	2.93	2.73	3.19	3.43	3.23	4.53	2.87	1.76	0.27	3.74	2.14
AMBER99	-3.39	-0.56	-1.11	-0.69	-1.42	-0.14	-1.72	-1.65	-1.67	-1.58	-1.77	-1.32	-1.09	-1.27	-0.17	-1.81	-2.80	-4.25	-0.75	-2.40
AMBER99SB	2.00	3.70	3.96	4.39	3.64	4.97	3.33	3.39	3.37	3.51	3.27	3.75	3.99	4.39	4.74	3.08	2.19	0.82	4.31	2.65
AMBER03	0.38	2.33	2.32	3.31	2.06	4.72	1.12	0.99	-1.66	-1.84	-0.90	1.82	2.22	4.16	1.92	3.94	-0.61	1.87	5.83	0.59
CHARMM27	0.74	3.37	1.78	1.70	2.08	1.96	1.40	2.51	2.30	3.03	2.08	2.14	1.39	1.91	2.02	1.22	-4.04	-2.53	2.92	1.45
OPLS-AA	-0.15	3.63	3.84	3.86	4.21	4.44	2.93	4.48	4.24	4.10	2.90	4.60	4.15	4.51	5.37	3.20	0.73	0.84	5.83	2.82
OPLS-AA/L	-0.28	6.73	3.63	3.52	4.12	3.34	2.75	4.23	3.98	3.92	2.97	5.04	4.91	4.04	4.89	3.55	-1.64	-1.28	4.98	2.89
AMBERUA	0.82	2.54	0.67	1.93	0.21	0.83	0.19	0.25	-3.04	-0.37	-0.91	0.31	-0.71	1.55	2.12	1.41	-0.74	-0.12	0.52	-0.01
GROMOS(G43b1)	2.77	5.63	5.54	5.35	5.73	5.27	4.84	4.94	4.69	4.92	3.68	5.97	4.56	5.53	5.81	4.64	10.72	4.08	5.81	-2.77
GROMOS(G45a3)	3.49	5.87	5.83	5.50	5.87	5.21	4.99	5.33	4.94	5.06	3.99	6.22	4.79	5.65	6.05	4.73	4.76	2.30	5.41	0.82
GROMOS(G53a6)	0.71	7.89	7.86	7.42	8.24	7.24	6.01	7.43	7.04	6.79	6.18	7.92	6.90	7.50	7.40	6.72	5.10	4.36	7.30	3.86

M05	-2X/cc-pV	/TZ//M05	5-2X/6-3	lG**	** M05-2X-D ^a /cc-pVTZ//M05-2X/6-31G** M05-2X/6-31G**// M05-2X/6- PPII α_{R} β β_{a} PPII α_{R} β β_{a}								5-2X/6-3	1G**
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	1.81	-0.31	-0.54	-0.96	Pro	-2.33	1.47	2.80	-1.94	Pro	0.36	-0.31	-0.44	0.39
Gly	1.80	-0.36	-0.92	-0.52	Gly	-0.69	0.28	0.08	0.33	Gly	0.28	0.22	-0.67	0.17
Ala	1.84	-0.31	-0.86	-0.67	Ala	-0.61	0.48	0.04	0.08	Ala	0.39	0.17	-0.47	-0.10
Val	1.61	-0.24	-0.74	-0.63	Val	-0.61	0.11	0.07	0.43	Val	0.22	0.45	-0.45	-0.23
Leu	1.57	-0.20	-0.77	-0.60	Leu	-0.53	0.34	-0.02	0.21	Leu	0.00	0.51	-0.64	0.13
Ile	1.59	-0.24	-0.76	-0.59	Ile	-0.29	0.33	0.40	-0.44	Ile	0.16	0.44	-0.32	-0.27
Met	1.47	-0.34	-0.87	-0.27	Met	-0.56	0.41	-0.02	0.17	Met	-0.01	0.22	-0.51	0.30
Phe	1.53	-0.02	-0.06	-1.45	Phe	-0.05	-0.16	-0.05	0.25	Phe	0.21	0.16	0.15	-0.52
Tyr	1.36	0.00	0.17	-1.53	Tyr	-0.24	-0.27	0.15	0.35	Tyr	0.19	0.23	0.12	-0.54
His	1.51	-0.04	-0.20	-1.27	His	0.07	-0.50	0.04	0.40	His	0.13	0.08	0.07	-0.29
Trp	2.15	-0.92	0.06	-1.29	Trp	-0.44	0.68	-0.32	0.08	Trp	0.48	-0.47	0.40	-0.40
Cys	1.53	-0.32	-0.53	-0.68	Cys	-0.79	0.33	0.35	0.12	Cys	0.11	0.27	-0.37	0.00
Ser	1.65	-0.47	-0.80	-0.38	Ser	-0.60	0.43	0.19	-0.02	Ser	0.22	0.12	-0.50	0.16
Thr	1.46	-0.31	-0.65	-0.50	Thr	-0.59	0.34	0.23	0.02	Thr	-0.12	0.63	-0.33	-0.18
Asn	1.49	-0.72	-0.10	-0.67	Asn	-0.32	0.03	0.10	0.19	Asn	0.16	-0.51	0.29	0.06
Gln	1.50	-0.44	-0.90	-0.16	Gln	-0.80	0.65	0.24	-0.08	Gln	-0.01	0.11	-0.76	0.67
Asp	0.83	-0.44	-0.16	-0.22	Asp	-0.99	0.67	-0.44	0.76	Asp	0.36	-1.29	-0.31	1.23
Glu	1.13	0.49	-1.11	-0.52	Glu	-1.37	1.24	-0.20	0.33	Glu	0.41	-0.68	-0.28	0.55
Lys	1.71	-0.25	-0.66	-0.80	Lys	0.10	-0.73	0.48	0.15	Lys	0.07	0.48	-0.48	-0.08
Arg	1.56	-0.35	0.08	-1.28	Arg	0.18	-0.93	0.58	0.17	Arg	0.53	0.31	-0.70	-0.14

Table S3b. Signed error (*error* = $E_{ai} - E_{bi} + E_c$, kcal/mol) using the MP2 energy as the true value.

M05-2	X-D ^a /6-3	lG**// M	05-2X/6-	31G**]	PBE/cc-pV	/TZ//PBB	E/6-31G*	*	PE	BE-D ^a /cc-p	oVTZ//PI	3E/6-31G	**
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	-3.77	1.47	2.89	-0.59	Pro	4.57	-2.36	-1.75	-0.46	Pro	0.43	-0.57	1.59	-1.44
Gly	-2.22	0.87	0.34	1.01	Gly	4.63	-2.57	-2.36	0.30	Gly	2.14	-1.93	-1.35	1.15
Ala	-2.06	0.97	0.44	0.65	Ala	4.72	-2.63	-2.55	0.46	Ala	2.26	-1.84	-1.64	1.21
Val	-2.00	0.81	0.36	0.84	Val	4.39	-2.55	-1.90	0.06	Val	2.17	-2.20	-1.10	1.13
Leu	-2.10	1.05	0.11	0.95	Leu	4.53	-2.43	-2.11	0.01	Leu	2.42	-1.89	-1.36	0.83
Ile	-1.72	1.01	0.83	-0.12	Ile	4.27	-2.54	-1.95	0.23	Ile	2.39	-1.98	-0.80	0.38
Met	-2.04	0.97	0.34	0.74	Met	4.07	-2.62	-2.40	0.94	Met	2.05	-1.87	-1.56	1.38
Phe	-1.37	0.02	0.16	1.19	Phe	3.96	-1.62	-1.03	-1.32	Phe	2.39	-1.76	-1.01	0.39
Tyr	-1.41	-0.03	0.10	1.34	Tyr	3.49	-1.08	-0.76	-1.65	Tyr	1.89	-1.35	-0.77	0.23
His	-1.31	-0.38	0.31	1.38	His	4.32	-1.57	-1.69	-1.07	His	2.88	-2.03	-1.45	0.59
Trp	-2.11	1.13	0.02	0.97	Trp	4.88	-2.80	-1.13	-0.96	Trp	2.30	-1.19	-1.51	0.40
Cys	-2.22	0.92	0.51	0.79	Cys	4.74	-3.83	-1.43	0.52	Cys	2.41	-3.18	-0.55	1.31
Ser	-2.03	1.02	0.49	0.52	Ser	4.48	-2.76	-2.13	0.41	Ser	2.23	-1.86	-1.14	0.77
Thr	-2.17	1.28	0.56	0.34	Thr	4.63	-2.57	-2.14	0.08	Thr	2.58	-1.92	-1.25	0.60
Asn	-1.65	0.24	0.49	0.93	Asn	4.14	-2.17	-1.77	-0.20	Asn	2.33	-1.42	-1.57	0.67
Gln	-2.31	1.20	0.37	0.74	Gln	3.84	-2.80	-2.36	1.33	Gln	1.54	-1.71	-1.22	1.40
Asp	-1.46	-0.17	-0.58	2.22	Asp	2.51	-1.21	-0.08	-1.22	Asp	0.69	-0.10	-0.36	-0.24
Glu	-2.10	0.07	0.62	1.40	Glu	4.02	-1.47	-2.27	-0.29	Glu	1.52	-0.73	-1.36	0.57
Lys	-1.54	0.00	0.67	0.87	Lys	4.68	-2.73	-2.04	0.09	Lys	3.07	-3.20	-0.90	1.03
Arg	-0.84	-0.27	-0.20	1.32	Arg	3.47	-2.61	-0.80	-0.06	Arg	2.09	-3.19	-0.30	1.40

Р	BE/6-310	G**// PBI	E/6-31G*	*	PE	BE-D ^a /6-3	1G**// PI	BE/6-310	j**	B3I	YP/cc-pV	/TZ//B3I	XP/6-31	G**
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	2.86	-2.25	-1.52	0.91	Pro	-1.28	-0.47	1.82	-0.07	Pro	5.44	-2.20	-1.84	-1.40
Gly	2.89	-1.81	-1.95	0.87	Gly	0.39	-1.17	-0.95	1.72	Gly	5.51	-2.71	-2.23	-0.58
Ala	3.06	-1.88	-2.01	0.82	Ala	0.61	-1.09	-1.10	1.57	Ala	5.71	-2.67	-2.84	-0.20
Val	2.76	-1.60	-1.43	0.27	Val	0.54	-1.25	-0.63	1.34	Val	5.28	-2.68	-2.10	-0.50
Leu	2.68	-1.46	-1.79	0.58	Leu	0.58	-0.92	-1.05	1.39	Leu	5.52	-2.51	-2.29	-0.72
Ile	2.64	-1.60	-1.48	0.44	Ile	0.76	-1.04	-0.33	0.60	Ile	5.23	-2.65	-2.10	-0.47
Met	2.40	-1.76	-1.89	1.25	Met	0.37	-1.01	-1.05	1.69	Met	4.95	-2.77	-2.71	0.53
Phe	2.36	-1.16	-0.46	-0.75	Phe	0.78	-1.30	-0.44	0.96	Phe	4.85	-1.50	-1.19	-2.16
Tyr	1.97	-0.78	-0.16	-1.04	Tyr	0.37	-1.04	-0.17	0.84	Tyr	4.42	-1.08	-0.83	-2.51
His	2.60	-1.03	-1.12	-0.46	His	1.16	-1.49	-0.88	1.21	His	5.21	-1.43	-1.84	-1.94
Trp	3.06	-2.16	-0.50	-0.40	Trp	0.47	-0.55	-0.87	0.96	Trp	5.99	-2.91	-1.30	-1.79
Cys	3.09	-3.04	-1.09	1.04	Cys	0.77	-2.39	-0.21	1.83	Cys	5.74	-3.83	-1.63	-0.28
Ser	2.81	-1.97	-1.63	0.78	Ser	0.56	-1.07	-0.64	1.14	Ser	5.55	-2.98	-2.50	-0.06
Thr	2.71	-1.45	-1.60	0.34	Thr	0.66	-0.80	-0.71	0.86	Thr	5.64	-2.76	-2.33	-0.54
Asn	2.60	-1.69	-1.22	0.32	Asn	0.79	-0.94	-1.02	1.18	Asn	5.10	-2.34	-1.81	-0.95
Gln	2.12	-2.04	-2.01	1.94	Gln	-0.18	-0.95	-0.88	2.01	Gln	4.73	-2.92	-2.65	0.83
Asp	1.62	-2.18	0.36	0.20	Asp	-0.20	-1.06	0.08	1.18	Asp	2.82	-1.06	-0.19	-1.58
Glu	3.08	-2.26	-1.31	0.49	Glu	0.58	-1.52	-0.40	1.35	Glu	4.43	-0.46	-2.79	-1.18
Lys	2.78	-1.85	-1.60	0.67	Lys	1.17	-2.33	-0.46	1.62	Lys	5.71	-2.76	-2.23	-0.71
Arg	2.39	-1.55	-1.82	0.98	Arg	1.01	-2.13	-1.32	2.44	Arg	4.20	-2.76	-0.27	-1.17

B3LY	P-D ^a /cc-p	VTZ//B3	BLYP/6-3	1G**	B3L	XP/6-310	G**// B3I	XP/6-31	G**	B3LY	P-D ^a /6-3	lG**// B.	3LYP/6-3	1G**
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	1.30	-0.42	1.50	-2.38	Pro	3.70	-2.06	-1.61	-0.03	Pro	-0.44	-0.28	1.73	-1.01
Gly	3.01	-2.06	-1.22	0.27	Gly	3.67	-2.00	-1.72	0.05	Gly	1.17	-1.35	-0.71	0.90
Ala	3.26	-1.88	-1.93	0.55	Ala	3.99	-1.96	-2.31	0.28	Ala	1.54	-1.17	-1.41	1.03
Val	3.06	-2.33	-1.30	0.56	Val	3.58	-1.77	-1.64	-0.18	Val	1.36	-1.41	-0.83	0.89
Leu	3.41	-1.97	-1.54	0.10	Leu	3.59	-1.59	-1.97	-0.03	Leu	1.49	-1.05	-1.23	0.79
Ile	3.35	-2.08	-0.95	-0.32	Ile	3.50	-1.76	-1.65	-0.09	Ile	1.63	-1.20	-0.50	0.07
Met	2.92	-2.02	-1.87	0.97	Met	3.24	-1.95	-2.23	0.94	Met	1.21	-1.21	-1.38	1.38
Phe	3.27	-1.64	-1.17	-0.46	Phe	3.14	-1.03	-0.62	-1.49	Phe	1.56	-1.17	-0.60	0.22
Tyr	2.82	-1.34	-0.84	-0.63	Tyr	2.68	-0.48	-0.32	-1.88	Tyr	1.08	-0.75	-0.33	0.00
His	3.76	-1.89	-1.60	-0.27	His	3.37	-0.86	-1.30	-1.20	His	1.93	-1.32	-1.06	0.46
Trp	3.40	-1.30	-1.68	-0.42	Trp	4.01	-2.18	-0.72	-1.11	Trp	1.42	-0.58	-1.10	0.25
Cys	3.42	-3.18	-0.75	0.51	Cys	4.04	-3.07	-1.31	0.33	Cys	1.72	-2.41	-0.43	1.13
Ser	3.30	-2.08	-1.51	0.30	Ser	3.85	-2.23	-2.01	0.39	Ser	1.60	-1.33	-1.02	0.75
Thr	3.59	-2.11	-1.45	-0.03	Thr	3.65	-1.66	-1.79	-0.20	Thr	1.60	-1.02	-0.90	0.31
Asn	3.28	-1.59	-1.61	-0.09	Asn	3.49	-1.94	-1.27	-0.29	Asn	1.68	-1.19	-1.07	0.57
Gln	2.44	-1.83	-1.52	0.91	Gln	2.97	-2.19	-2.31	1.53	Gln	0.68	-1.10	-1.18	1.60
Asp	1.00	0.06	-0.46	-0.60	Asp	1.99	-2.00	0.04	-0.03	Asp	0.17	-0.89	-0.24	0.96
Glu	1.92	0.29	-1.89	-0.33	Glu	3.24	-1.20	-1.86	-0.18	Glu	0.74	-0.46	-0.95	0.67
Lys	4.09	-3.24	-1.09	0.24	Lys	3.72	-1.91	-1.79	-0.02	Lys	2.11	-2.39	-0.64	0.93
Arg	2.83	-3.34	0.23	0.28	Arg	3.04	-1.73	-1.24	-0.07	Arg	1.67	-2.31	-0.74	1.38
^a AMB	ER99 d	ispersio	n correc	tion.										

	А	.M1//AM	1			AM	[1-D ^a // A]	M1			Р	M3// PM	3	
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	3.71	-2.93	-0.59	-0.19	Pro	-0.42	-1.15	2.75	-1.17	Pro	8.81	-3.01	-3.02	-2.78
Gly	4.12	-2.82	-0.34	-0.96	Gly	1.62	-2.18	0.67	-0.11	Gly	7.57	-1.35	-0.57	-5.64
Ala	3.77	-2.47	-0.28	-1.02	Ala	1.32	-1.68	0.63	-0.27	Ala	8.25	-2.43	-0.71	-5.11
Val	3.10	-2.15	0.51	-1.45	Val	0.88	-1.80	1.31	-0.39	Val	8.04	-2.57	-0.27	-5.21
Leu	4.10	-2.14	-0.30	-1.67	Leu	2.00	-1.60	0.45	-0.85	Leu	9.17	-2.54	-0.64	-5.99
Ile	3.16	-1.86	0.62	-1.92	Ile	1.28	-1.29	1.77	-1.77	Ile	7.97	-2.27	-0.32	-5.39
Met	2.17	-2.41	-0.13	0.37	Met	0.14	-1.66	0.71	0.81	Met	6.78	-2.49	-0.83	-3.46
Phe	3.95	-1.73	1.09	-3.32	Phe	2.37	-1.87	1.11	-1.61	Phe	7.78	-0.89	0.55	-7.44
Tyr	3.50	-1.27	1.45	-3.68	Tyr	1.90	-1.53	1.44	-1.80	Tyr	7.50	-0.94	1.06	-7.62
His	4.04	-1.68	0.51	-2.88	His	2.60	-2.14	0.75	-1.21	His	8.22	-1.57	-0.02	-6.63
Trp	4.68	-2.42	0.80	-3.07	Trp	2.10	-0.81	0.42	-1.70	Trp	8.77	-2.04	0.31	-7.03
Cys	3.49	-2.84	0.33	-0.98	Cys	1.16	-2.19	1.22	-0.18	Cys	7.70	-3.21	0.40	-4.89
Ser	2.46	-2.70	2.19	-1.95	Ser	0.21	-1.80	3.19	-1.59	Ser	6.20	-0.36	-1.02	-4.82
Thr	2.70	-2.29	0.08	-0.48	Thr	0.65	-1.64	0.96	0.03	Thr	9.45	-3.05	-1.64	-4.77
Asn	2.47	-0.51	-0.27	-1.69	Asn	0.66	0.24	-0.07	-0.82	Asn	6.45	-0.27	-0.48	-5.70
Gln	1.83	-2.78	-0.35	1.30	Gln	-0.47	-1.69	0.78	1.38	Gln	6.23	-2.96	-0.86	-2.41
Asp	1.94	0.86	-0.32	-2.49	Asp	0.12	1.98	-0.59	-1.50	Asp	7.24	1.89	-3.73	-5.40
Glu	3.87	0.92	-1.96	-2.82	Glu	1.37	1.66	-1.06	-1.97	Glu	7.84	0.95	-2.56	-6.23
Lys	3.72	-2.44	0.04	-1.33	Lys	2.11	-2.92	1.19	-0.38	Lys	8.15	-2.73	-0.31	-5.11
Arg	0.13	-3.98	6.26	-2.41	Arg	-1.25	-4.56	6.76	-0.96	Arg	4.46	-4.23	5.02	-5.25

	PM	[3-D ^a // PN	M3			PM3N	//M// PM	3MM			PM3M1	M-D ^a // PN	M3MM	
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	4.67	-1.23	0.31	-3.76	Pro	8.89	-3.46	-3.22	-2.21	Pro	4.75	-1.68	0.12	-3.19
Gly	5.07	-0.71	0.43	-4.79	Gly	8.55	-3.31	-1.04	-4.20	Gly	6.06	-2.66	-0.04	-3.36
Ala	5.80	-1.63	0.20	-4.36	Ala	8.52	-3.10	-1.24	-4.18	Ala	6.07	-2.30	-0.34	-3.43
Val	5.82	-2.22	0.54	-4.14	Val	8.12	-3.12	-0.60	-4.40	Val	5.90	-2.76	0.20	-3.33
Leu	7.07	-2.01	0.10	-5.17	Leu	9.28	-3.20	-0.99	-5.10	Leu	7.17	-2.66	-0.24	-4.28
Ile	6.09	-1.70	0.84	-5.23	Ile	8.09	-2.89	-0.68	-4.51	Ile	6.21	-2.33	0.47	-4.36
Met	4.75	-1.75	0.01	-3.02	Met	7.02	-3.19	-1.32	-2.50	Met	4.99	-2.45	-0.47	-2.06
Phe	6.20	-1.03	0.56	-5.74	Phe	8.21	-2.15	0.43	-6.49	Phe	6.63	-2.29	0.45	-4.78
Tyr	5.90	-1.20	1.05	-5.75	Tyr	7.72	-1.66	0.81	-6.87	Tyr	6.12	-1.93	0.80	-5.00
His	6.78	-2.03	0.22	-4.96	His	8.29	-2.04	-0.20	-6.05	His	6.85	-2.51	0.04	-4.38
Trp	6.18	-0.44	-0.07	-5.66	Trp	8.93	-2.82	0.23	-6.34	Trp	6.34	-1.21	-0.15	-4.98
Cys	5.38	-2.56	1.28	-4.10	Cys	8.47	-3.65	-1.02	-3.80	Cys	6.15	-2.99	-0.14	-3.01
Ser	3.95	0.54	-0.03	-4.46	Ser	7.41	-3.64	1.11	-4.89	Ser	5.16	-2.74	2.10	-4.53
Thr	7.40	-2.40	-0.75	-4.25	Thr	10.32	-3.46	-3.86	-2.99	Thr	8.27	-2.81	-2.98	-2.48
Asn	4.63	0.47	-0.28	-4.83	Asn	7.42	-1.72	-0.88	-4.81	Asn	5.60	-0.97	-0.68	-3.95
Gln	3.94	-1.87	0.27	-2.33	Gln	6.76	-3.55	-1.60	-1.61	Gln	4.46	-2.46	-0.47	-1.54
Asp	5.42	3.00	-4.00	-4.42	Asp	6.63	2.43	-2.96	-6.10	Asp	4.81	3.54	-3.23	-5.12
Glu	5.34	1.70	-1.66	-5.38	Glu	7.21	0.74	-2.53	-5.42	Glu	4.71	1.49	-1.63	-4.57
Lys	6.53	-3.21	0.83	-4.16	Lys	9.21	-3.70	-1.12	-4.39	Lys	7.60	-4.18	0.03	-3.45
Arg	3.09	-4.81	5.52	-3.79	Arg	5.90	-5.25	4.10	-4.75	Arg	4.53	-5.83	4.60	-3.30
^a AMB	ER99 d	ispersio	n correc	tion.										

_															
_		AMOE	BA// AM	OEBA			AMBER	EP// AM	BEREP			AMBERP	OL// AM	BERPOL	_
		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
	Pro	-3.17	1.98	5.24	-4.06	Pro	-3.66	2.73	2.54	-1.61	Pro	-4.36	3.62	3.87	-3.14
	Gly	0.44	0.26	0.64	-1.34	Gly	0.39	-0.70	-1.56	1.88	Gly	0.01	0.42	0.56	-0.99
	Ala	0.73	0.29	0.14	-1.16	Ala	-0.66	0.48	-0.63	0.82	Ala	-1.01	1.40	0.72	-1.10
	Val	0.03	0.85	1.64	-2.52	Val	-0.24	0.22	-0.44	0.47	Val	-0.53	0.90	0.79	-1.16
	Leu	0.23	-0.01	1.06	-1.28	Leu	-0.80	0.94	-0.86	0.73	Leu	-1.12	1.73	0.33	-0.94
	Ile	-0.40	0.46	1.29	-1.36	Ile	-0.44	0.63	-0.29	0.10	Ile	-0.87	1.49	1.03	-1.65
	Met	-0.14	0.54	0.09	-0.48	Met	-1.56	0.50	-0.73	1.79	Met	-1.91	1.29	0.58	0.04
	Phe	-0.58	0.46	1.23	-1.11	Phe	-1.24	0.74	0.46	0.05	Phe	-1.48	1.40	1.60	-1.52
	Tyr	-0.68	0.61	1.33	-1.26	Tyr	-1.29	0.77	0.35	0.16	Tyr	-1.64	1.57	1.84	-1.77
	His	2.61	-0.21	-0.33	-2.08	His	0.68	-0.43	0.11	-0.37	His	-0.06	0.60	1.12	-1.66
	Trp	0.37	0.70	1.22	-2.29	Trp	-2.07	1.40	0.64	0.03	Trp	-2.35	2.24	1.75	-1.63
	Cys	1.80	-1.71	0.94	-1.03	Cys	-1.37	1.47	0.46	-0.57	Cys	-0.78	1.28	0.86	-1.36
	Ser	-0.38	0.31	0.00	0.08	Ser	-0.83	0.46	-0.70	1.07	Ser	-0.83	1.06	0.35	-0.58
	Thr	2.59	-0.03	0.60	-3.16	Thr	-0.46	1.21	0.64	-1.38	Thr	-1.37	1.46	1.42	-1.51
	Asn	2.35	0.12	-2.38	-0.08	Asn	-0.49	1.66	-2.37	1.19	Asn	0.08	1.77	-1.50	-0.35
	Gln	0.57	-0.41	-0.26	0.11	Gln	-0.77	0.75	-0.11	0.13	Gln	-0.94	1.43	1.07	-1.55
	Asp	-0.87	3.96	-0.90	-2.19	Asp	-1.15	1.70	-1.89	1.34	Asp	-0.76	2.19	-1.04	-0.38
	Glu	-0.98	2.63	1.04	-2.69	Glu	-3.94	3.48	-1.13	1.58	Glu	-3.88	4.07	0.16	-0.35
	Lys	2.06	-0.77	0.66	-1.96	Lys	0.14	-0.13	-0.45	0.43	Lys	-0.30	0.12	1.01	-0.83
	Arg	-0.35	0.72	0.86	-1.23	Arg	-1.45	-0.99	2.78	-0.34	Arg	-2.14	-0.24	3.83	-1.45

	AMBEF	R94// AM	BER94			AMBEI	R96// AM	IBER96			AMBER	99// AM	BER99	
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	-4.98	1.83	5.19	-2.04	Pro	1.10	-0.65	1.30	-1.75	Pro	-3.39	2.23	1.90	-0.74
Gly	-1.79	0.85	1.58	-0.65	Gly	4.30	-1.62	-2.31	-0.36	Gly	-0.56	1.65	-1.58	0.50
Ala	-2.67	1.81	1.80	-0.94	Ala	3.41	-0.67	-2.09	-0.65	Ala	-1.11	2.20	-1.45	0.36
Val	-2.26	1.31	1.71	-0.76	Val	3.82	-1.17	-2.18	-0.47	Val	-0.69	1.69	-1.54	0.53
Leu	-2.96	0.86	2.44	-0.34	Leu	3.12	-1.62	-1.46	-0.05	Leu	-1.42	1.22	-0.76	0.95
Ile	-1.74	1.73	2.18	-2.17	Ile	4.34	-0.75	-1.71	-1.88	Ile	-0.14	2.10	-1.09	-0.88
Met	-3.29	1.69	1.35	0.25	Met	2.79	-0.79	-2.54	0.54	Met	-1.72	2.07	-1.91	1.55
Phe	-3.22	1.78	2.71	-1.27	Phe	2.86	-0.69	-1.19	-0.98	Phe	-1.65	2.18	-0.55	0.02
Tyr	-3.24	1.88	2.91	-1.56	Tyr	2.84	-0.59	-0.98	-1.27	Tyr	-1.67	2.27	-0.34	-0.27
His	-3.15	1.64	2.91	-1.40	His	2.93	-0.84	-0.98	-1.11	His	-1.58	2.02	-0.34	-0.10
Trp	-3.35	2.30	2.55	-1.50	Trp	2.73	-0.18	-1.34	-1.21	Trp	-1.77	2.68	-0.70	-0.21
Cys	-2.89	2.13	2.26	-1.49	Cys	3.19	-0.35	-1.64	-1.20	Cys	-1.32	2.52	-0.99	-0.21
Ser	-2.65	2.16	2.16	-1.67	Ser	3.43	-0.32	-1.73	-1.38	Ser	-1.09	2.55	-1.09	-0.37
Thr	-2.85	0.90	1.53	0.42	Thr	3.23	-1.58	-2.36	0.71	Thr	-1.27	1.29	-1.73	1.71
Asn	-1.55	0.15	1.93	-0.53	Asn	4.53	-2.33	-1.96	-0.24	Asn	-0.17	0.34	-0.75	0.59
Gln	-3.22	2.11	2.17	-1.06	Gln	2.87	-0.37	-1.72	-0.78	Gln	-1.81	2.35	-1.25	0.71
Asp	-4.32	2.93	0.78	0.62	Asp	1.76	0.45	-3.11	0.90	Asp	-2.80	3.47	-2.52	1.85
Glu	-5.81	5.01	0.48	0.31	Glu	0.27	2.54	-3.41	0.60	Glu	-4.25	5.40	-2.77	1.61
Lys	-2.34	1.52	2.64	-1.82	Lys	3.74	-0.96	-1.25	-1.53	Lys	-0.75	1.90	-0.62	-0.53
Arg	-3.94	0.70	6.04	-2.80	Arg	2.14	-1.78	2.15	-2.51	Arg	-2.40	1.04	2.94	-1.57

A	MBER99	SB// AM	IBER99S	В		AMBER	03// AMI	BER03		С	HARMM	27// CH	ARMM2	7
	α_{R}	β	β_a	PPII		α_R	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	2.00	1.51	0.60	-4.10	Pro	0.38	3.18	0.24	-3.80	Pro	0.74	1.24	2.15	-4.12
Gly	3.70	0.28	-1.07	-2.92	Gly	2.33	0.16	-0.37	-2.12	Gly	3.37	-1.97	-0.64	-0.76
Ala	3.96	0.43	-1.64	-2.75	Ala	2.32	0.84	-0.93	-2.23	Ala	1.78	-0.38	0.63	-2.03
Val	4.39	-0.06	-1.72	-2.60	Val	3.31	-0.22	-1.67	-1.42	Val	1.70	-0.80	1.23	-2.13
Leu	3.64	-0.55	-0.95	-2.14	Leu	2.06	0.23	-0.08	-2.22	Leu	2.08	-0.96	1.34	-2.46
Ile	4.97	0.38	-1.23	-4.12	Ile	4.72	-0.04	-1.39	-3.28	Ile	1.96	-0.52	1.50	-2.94
Met	3.33	0.29	-2.09	-1.53	Met	1.12	1.23	-0.83	-1.53	Met	1.40	-0.50	0.24	-1.14
Phe	3.39	0.40	-0.73	-3.06	Phe	0.99	1.16	0.45	-2.60	Phe	2.51	-0.58	1.46	-3.38
Tyr	3.37	0.50	-0.49	-3.38	Tyr	-1.66	2.26	1.68	-2.29	Tyr	2.30	-0.37	1.69	-3.62
His	3.51	0.27	-0.49	-3.28	His	-1.84	2.27	1.81	-2.24	His	3.03	-0.56	1.31	-3.78
Trp	3.27	0.89	-0.85	-3.32	Trp	-0.90	1.37	1.16	-1.63	Trp	2.08	-0.77	1.47	-2.78
Cys	3.75	0.60	-1.14	-3.21	Cys	1.82	1.26	-0.21	-2.87	Cys	2.14	-0.51	1.12	-2.75
Ser	3.99	0.76	-1.29	-3.46	Ser	2.22	1.05	-0.88	-2.38	Ser	1.39	-1.06	-0.04	-0.29
Thr	4.39	-0.48	-1.93	-1.98	Thr	4.16	0.00	-0.22	-3.95	Thr	1.91	-1.37	0.80	-1.33
Asn	4.74	-1.48	-0.71	-2.54	Asn	1.92	-0.66	0.40	-1.66	Asn	2.02	1.12	-0.43	-2.70
Gln	3.08	0.43	-1.59	-1.92	Gln	3.94	0.11	-1.96	-2.09	Gln	1.22	-0.46	0.67	-1.44
Asp	2.19	1.74	-2.67	-1.27	Asp	-0.61	2.83	-2.46	0.24	Asp	-4.04	6.35	0.50	-2.80
Glu	0.82	3.66	-2.95	-1.53	Glu	1.87	3.77	-3.81	-1.83	Glu	-2.53	3.77	0.76	-2.00
Lys	4.31	0.15	-0.80	-3.65	Lys	5.83	-0.47	-0.33	-5.04	Lys	2.92	-1.24	1.06	-2.74
Arg	2.65	-0.74	2.81	-4.72	Arg	0.59	-0.95	5.96	-5.60	Arg	1.45	-2.12	5.00	-4.33

	OPLS-	AA// OP	LS-AA			OPLS-AA	/L// OPL	S-AA/L			AMBER	UA// AM	BERUA	
	α_{R}	β	β_a	PPII		α_R	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	-0.15	-1.32	6.41	-4.94	Pro	-0.28	-0.32	7.01	-6.41	Pro	0.82	1.51	2.12	-4.45
Gly	3.63	-1.70	-1.21	-0.72	Gly	6.73	-3.60	-3.12	-0.01	Gly	2.54	0.07	-0.66	-1.94
Ala	3.84	-1.67	-1.17	-1.00	Ala	3.63	-0.31	-1.27	-2.04	Ala	0.67	1.49	-0.32	-1.83
Val	3.86	-1.69	-0.63	-1.55	Val	3.52	-0.40	-0.85	-2.26	Val	1.93	1.25	0.00	-3.17
Leu	4.21	-2.12	-0.74	-1.35	Leu	4.12	-0.56	-0.88	-2.68	Leu	0.21	1.21	0.22	-1.64
Ile	4.44	-1.18	-0.09	-3.17	Ile	3.34	-0.64	-1.03	-1.68	Ile	0.83	1.54	0.20	-2.57
Met	2.93	-2.58	-2.38	2.03	Met	2.75	-1.30	-2.48	1.02	Met	0.19	1.30	-0.40	-1.09
Phe	4.48	-1.88	-0.08	-2.52	Phe	4.23	-0.56	0.00	-3.67	Phe	0.25	1.68	0.75	-2.68
Tyr	4.24	-1.64	0.17	-2.77	Tyr	3.98	-0.36	0.29	-3.92	Tyr	-3.04	2.88	2.08	-1.92
His	4.10	-1.63	-0.23	-2.25	His	3.92	-0.47	-0.17	-3.27	His	-0.37	1.92	1.05	-2.59
Trp	2.90	-2.94	1.05	-1.01	Trp	2.97	-1.35	0.75	-2.36	Trp	-0.91	2.10	1.19	-2.38
Cys	4.60	-2.52	-1.13	-0.95	Cys	5.04	-1.77	-1.94	-1.32	Cys	0.31	1.69	0.33	-2.33
Ser	4.15	-2.19	-1.59	-0.36	Ser	4.91	0.19	-1.02	-4.08	Ser	-0.71	1.16	-0.48	0.03
Thr	4.51	-1.52	-0.24	-2.75	Thr	4.04	-0.33	-0.31	-3.40	Thr	1.55	-0.04	-1.19	-0.32
Asn	5.37	-5.16	-0.08	-0.13	Asn	4.89	-0.78	-2.35	-1.76	Asn	2.12	-0.51	0.27	-1.88
Gln	3.20	-0.36	0.10	-2.94	Gln	3.55	-0.27	-0.75	-2.54	Gln	1.41	1.67	-0.18	-2.90
Asp	0.73	-3.06	2.36	-0.02	Asp	-1.64	2.10	1.40	-1.86	Asp	-0.74	2.20	-0.66	-0.80
Glu	0.84	3.05	-2.05	-1.84	Glu	-1.28	2.64	-0.28	-1.08	Glu	-0.12	4.16	-2.23	-1.82
Lys	5.83	-2.76	-1.17	-1.90	Lys	4.98	-1.27	-1.00	-2.70	Lys	0.52	1.17	0.60	-2.29
Arg	2.82	-3.31	3.96	-3.48	Arg	2.89	-1.98	3.68	-4.59	Arg	-0.01	-0.66	5.18	-4.51

GRO	MOS(G4	3b1)// GF	ROMOS(G43b1)	GRO	MOS(G45a	a3)// GR(OMOS(G	45a3)	GRO	MOS(G53	a6)// GR	OMOS(G53a6)
	α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII		α_{R}	β	β_a	PPII
Pro	2.77	-1.27	1.90	-3.40	Pro	3.49	-1.64	1.44	-3.29	Pro	0.71	-4.21	11.21	-7.71
Gly	5.63	-3.81	-1.11	-0.71	Gly	5.87	-4.00	-1.29	-0.58	Gly	7.89	-4.81	-2.59	-0.49
Ala	5.54	-3.64	-1.24	-0.66	Ala	5.83	-3.92	-1.49	-0.42	Ala	7.86	-4.72	-2.76	-0.38
Val	5.35	-3.44	-0.28	-1.63	Val	5.50	-3.69	-0.37	-1.44	Val	7.42	-4.65	-1.54	-1.23
Leu	5.73	-3.69	-1.20	-0.84	Leu	5.87	-4.29	-1.05	-0.54	Leu	8.24	-4.93	-1.94	-1.37
Ile	5.27	-3.41	-0.29	-1.57	Ile	5.21	-3.80	-0.40	-1.02	Ile	7.24	-4.64	-1.44	-1.16
Met	4.84	-3.66	-1.20	0.02	Met	4.99	-3.96	-1.39	0.36	Met	6.01	-4.39	-2.33	0.70
Phe	4.94	-3.29	-0.63	-1.02	Phe	5.33	-3.61	-0.84	-0.88	Phe	7.43	-4.46	-1.77	-1.21
Tyr	4.69	-2.94	-0.86	-0.88	Tyr	4.94	-3.34	-0.85	-0.76	Tyr	7.04	-4.18	-1.79	-1.07
His	4.92	-2.58	-0.42	-1.93	His	5.06	-3.03	-0.06	-1.97	His	6.79	-4.69	-0.81	-1.29
Trp	3.68	-1.96	-0.25	-1.47	Trp	3.99	-2.13	-0.41	-1.45	Trp	6.18	-3.07	-1.11	-2.00
Cys	5.97	-3.66	-0.72	-1.59	Cys	6.22	-3.93	-0.89	-1.40	Cys	7.92	-4.63	-2.39	-0.90
Ser	4.56	-3.47	-0.93	-0.16	Ser	4.79	-3.74	-1.12	0.07	Ser	6.90	-3.90	-1.91	-1.09
Thr	5.53	-3.43	-1.05	-1.05	Thr	5.65	-3.84	-1.21	-0.59	Thr	7.50	-3.90	-1.27	-2.33
Asn	5.81	-2.30	-2.33	-1.17	Asn	6.05	-2.51	-2.54	-1.00	Asn	7.40	-4.09	-1.89	-1.42
Gln	4.64	-2.99	-0.32	-1.32	Gln	4.73	-3.46	-0.60	-0.67	Gln	6.72	-3.74	-1.41	-1.57
Asp	10.72	2.84	-3.51	-10.04	Asp	4.76	5.53	-3.78	-6.50	Asp	5.10	3.56	-3.95	-4.71
Glu	4.08	6.78	-4.06	-6.80	Glu	2.30	8.07	-4.40	-5.97	Glu	4.36	4.99	-5.01	-4.34
Lys	5.81	-5.17	-1.14	0.50	Lys	5.41	-5.30	-0.61	0.50	Lys	7.30	-5.55	-1.61	-0.14
Arg	-2.77	-6.37	10.19	-1.04	Arg	0.82	-6.91	7.89	-1.79	Arg	3.86	-7.30	5.81	-2.37

	α_{R}	β	β_a	PPII	Mean(µ)	$^{1}\text{SD}(\sigma)$
M05-2X/cc-pVTZ	1.58	-0.40	-0.64	-0.85	0.87	0.44
M05-2X-D ^a /cc-pVTZ	-0.79	0.63	0.68	0.52	0.66	0.10
M05-2X/6-31G**	0.27	0.47	-0.45	0.42	0.40	0.08
M05-2X-D ^a /6-31G**	-2.01	0.84	0.78	1.04	1.17	0.49
PBE/cc-pVTZ	4.25	-2.43	-1.85	-0.77	2.33	1.26
PBE-D ^a /cc-pVTZ	2.18	-1.96	-1.21	0.95	1.57	0.51
PBE/6-31G**	2.65	-1.84	-1.46	0.83	1.70	0.66
PBE-D ^a /6-31G**	0.73	-1.33	-0.86	1.40	1.08	0.29
B3LYP/cc-pVTZ	5.15	-2.48	-2.03	-1.21	2.72	1.48
B3LYP-D ^a /cc-pVTZ	3.07	-2.02	-1.38	-0.71	1.80	0.87
B3LYP/6-31G**	3.46	-1.86	-1.61	-0.78	1.93	0.97
B3LYP-D ^a /6-31G**	1.42	-1.35	-0.98	0.88	1.16	0.23
AM1	3.32	-2.31	1.64	-2.05	2.33	0.62
AM1-D ^a	1.45	-2.00	2.00	-1.20	1.66	0.35
PM3	7.71	-2.32	-1.78	-5.51	4.33	2.42
PM3-D ^a	5.61	-2.10	1.66	-4.60	3.49	1.66
PM3MM	8.11	-3.10	-1.89	-4.79	4.47	2.34
PM3MM-D ^a	6.01	-2.79	-1.58	-3.88	3.56	1.63
AMOEBA	1.43	1.29	1.56	-1.88	1.54	0.22
AMBEREP	-1.55	1.35	-1.25	1.01	1.29	0.19
AMBERPOL	-1.74	1.79	1.60	-1.38	1.63	0.16
AMBER94	-3.28	2.02	2.68	-1.37	2.34	0.71
AMBER96	3.14	-1.21	-1.98	-1.17	1.87	0.80
AMBER99	-1.87	2.38	-1.54	0.95	1.68	0.52
AMBER99SB	3.60	1.12	-1.58	-3.02	2.33	1.02
AMBER03	2.65	1.62	-1.94	-2.83	2.26	0.50
CHARMM27	2.26	-1.93	1.57	-2.70	2.11	0.42
OPLS-AA	3.83	-2.43	2.03	-2.24	2.63	0.70
OPLS-AA/L	3.90	-1.40	-2.21	-2.99	2.62	0.93
AMBERUA	1.28	1.76	1.54	-2.43	1.75	0.43
GROMOS(G43b1)	5.39	-3.76	-2.76	-3.01	3.73	1.03
GROMOS(G45a3)	5.01	-4.29	-2.42	-2.32	3.51	1.17
GROMOS(G53a6)	6.73	-4.60	-3.57	-2.57	4.37	1.54

Table S3c. Signed RMS-C excluding α_L (RMS-C-N α_L , kcal/mol) of each conformation over 20 amino acids for each method.

_

Table S3d. RMS over the four conformations (RMS-N α_L , kcal/mol) of each amino acid for each method.

	Pro	Gly	Ala	Val	Leu	Ile	Met	Phe	Tyr	His	Trp	Cys	Ser	Thr	Asn	Gln	Asp	Glu	Lys	Arg	$Mean(\mu)$	$^{1}\text{SD}(\sigma)$
M05-2X/cc-pVTZ	1.07	1.06	1.08	0.95	0.93	0.94	0.88	1.06	1.03	0.99	1.33	0.89	0.96	0.85	0.90	0.91	0.49	0.87	1.01	1.03	0.96	0.15
M05-2X-D ^a /cc-pVTZ	2.19	0.41	0.39	0.38	0.33	0.37	0.35	0.15	0.26	0.32	0.44	0.47	0.38	0.36	0.19	0.53	0.74	0.94	0.45	0.56	0.51	0.42
M05-2X/6-31G**	0.38	0.39	0.32	0.36	0.41	0.32	0.31	0.30	0.31	0.17	0.44	0.23	0.29	0.37	0.31	0.51	0.92	0.50	0.34	0.47	0.38	0.15
M05-2X-D ^a /6-31G**	2.51	1.30	1.20	1.17	1.27	1.08	1.20	0.91	0.97	0.98	1.29	1.29	1.19	1.30	0.99	1.36	1.36	1.30	0.95	0.80	1.22	0.34
PBE/cc-pVTZ	2.72	2.90	3.00	2.71	2.78	2.67	2.74	2.30	2.04	2.51	2.91	3.14	2.85	2.86	2.50	2.73	1.52	2.43	2.89	2.21	2.62	0.37
PBE-D ^a /cc-pVTZ	1.13	1.69	1.78	1.73	1.73	1.61	1.73	1.58	1.23	1.93	1.51	2.12	1.61	1.75	1.61	1.48	0.41	1.12	2.32	2.04	1.61	0.40
PBE/6-31G**	2.02	2.01	2.10	1.75	1.79	1.73	1.87	1.39	1.18	1.52	1.90	2.30	1.94	1.74	1.67	2.03	1.37	2.03	1.88	1.76	1.80	0.27
PBE-D ^a /6-31G**	1.14	1.16	1.14	1.00	1.03	0.73	1.13	0.92	0.70	1.20	0.74	1.56	0.89	0.76	0.99	1.20	0.80	1.07	1.55	1.82	1.08	0.29
B3LYP/cc-pVTZ	3.15	3.28	3.46	3.15	3.26	3.12	3.16	2.82	2.63	3.01	3.51	3.55	3.39	3.36	2.98	3.11	1.70	2.69	3.38	2.59	3.07	0.42
B3LYP-D ^a /cc-pVTZ	1.56	1.93	2.13	2.05	2.12	2.03	2.07	1.93	1.65	2.26	2.02	2.38	2.10	2.20	1.99	1.76	0.63	1.36	2.67	2.20	1.95	0.41
B3LYP/6-31G**	2.27	2.26	2.51	2.16	2.20	2.13	2.24	1.84	1.66	1.95	2.38	2.63	2.45	2.20	2.10	2.31	1.41	1.97	2.28	1.86	2.14	0.28
B3LYP-D ^a /6-31G**	1.04	1.06	1.30	1.16	1.17	1.04	1.30	1.03	0.68	1.31	0.95	1.60	1.22	1.06	1.19	1.18	0.67	0.73	1.69	1.63	1.15	0.28
AM1	2.39	2.55	2.32	2.04	2.46	2.09	1.63	2.78	2.72	2.63	3.07	2.31	2.34	1.79	1.52	1.80	1.64	2.63	2.32	3.90	2.35	0.55
AM1-D ^a	1.61	1.40	1.12	1.21	1.37	1.55	0.99	1.80	1.68	1.83	1.43	1.38	2.00	1.01	0.54	1.18	1.28	1.55	1.90	4.15	1.55	0.69
PM3	5.09	4.77	5.02	4.96	5.63	4.95	4.03	5.41	5.39	5.34	5.71	4.84	3.96	5.57	4.31	3.68	4.97	5.19	5.00	4.76	4.93	0.55
PM3-D ^a	3.06	3.51	3.72	3.75	4.49	4.13	2.95	4.27	4.19	4.32	4.20	3.67	2.99	4.45	3.36	2.48	4.30	3.97	4.21	4.40	3.82	0.57
PM3MM	5.15	5.07	5.03	4.88	5.55	4.86	4.11	5.34	5.25	5.23	5.65	5.01	4.83	5.97	4.52	3.98	4.89	4.70	5.46	5.05	5.03	0.47
PM3MM-D ^a	2.98	3.71	3.67	3.66	4.38	3.97	2.97	4.25	4.09	4.25	4.08	3.74	3.84	4.78	3.48	2.67	4.25	3.46	4.67	4.65	3.88	0.56
AMOEBA	3.81	0.79	0.70	1.56	0.84	0.98	0.37	0.91	1.02	1.68	1.36	1.42	0.25	2.07	1.67	0.38	2.35	2.01	1.51	0.85	1.33	0.81
AMBEREP	2.74	1.29	0.66	0.36	0.83	0.42	1.27	0.76	0.77	0.45	1.29	1.07	0.80	1.00	1.58	0.55	1.55	2.80	0.33	1.65	1.11	0.68
AMBERPOL	3.77	0.61	1.08	0.87	1.15	1.30	1.19	1.50	1.71	1.05	2.01	1.10	0.75	1.44	1.17	1.27	1.28	2.82	0.67	2.31	1.45	0.75
AMBER94	3.85	1.31	1.91	1.61	1.97	1.97	1.97	2.37	2.50	2.40	2.51	2.25	2.19	1.69	1.27	2.27	2.66	3.85	2.12	3.89	2.33	0.74
AMBER96	1.26	2.58	2.05	2.29	1.90	2.54	1.95	1.66	1.66	1.69	1.64	1.90	2.05	2.18	2.73	1.73	1.86	2.15	2.17	2.16	2.01	0.35
AMBER99	2.27	1.20	1.44	1.22	1.12	1.27	1.82	1.39	1.43	1.30	1.65	1.51	1.50	1.52	0.51	1.65	2.72	3.79	1.10	2.12	1.63	0.67
AMBER99SB	2.42	2.42	2.55	2.69	2.18	3.29	2.12	2.32	2.41	2.42	2.41	2.55	2.75	2.60	2.81	1.99	2.04	2.50	2.85	3.07	2.52	0.32
AMBER03	2.49	1.59	1.73	1.99	1.52	2.96	1.20	1.53	1.99	2.05	1.29	1.82	1.77	2.87	1.33	2.44	1.90	2.98	3.86	4.13	2.17	0.80
CHARMM27	2.43	2.01	1.40	1.55	1.81	1.93	0.94	2.25	2.31	2.52	1.92	1.85	0.89	1.41	1.79	1.03	4.02	2.51	2.16	3.55	2.01	0.77
OPLS-AA	4.10	2.12	2.23	2.27	2.48	2.79	2.50	2.74	2.66	2.48	2.19	2.72	2.48	2.75	3.72	2.18	1.97	2.10	3.41	3.42	2.67	0.57
OPLS-AA/L	4.75	4.12	2.18	2.14	2.51	1.96	2.03	2.81	2.80	2.56	2.05	2.92	3.23	2.65	2.88	2.22	1.77	1.57	2.95	3.42	2.68	0.76
AMBERUA	2.61	1.63	1.24	1.96	1.03	1.56	0.87	1.63	2.53	1.71	1.76	1.46	0.72	0.99	1.44	1.82	1.27	2.53	1.34	3.45	1.68	0.66
GROMOS(G43b1)	2.47	3.46	3.39	3.28	3.48	3.24	3.09	3.03	2.84	2.95	2.21	3.61	2.90	3.34	3.39	2.84	7.68	5.60	3.94	6.19	3.65	1.30
GROMOS(G45a3)	2.64	3.62	3.60	3.40	3.68	3.27	3.26	3.28	3.03	3.11	2.39	3.77	3.09	3.48	3.55	2.96	5.24	5.60	3.81	5.33	3.61	0.83
GROMOS(G53a6)	7.13	4.81	4.79	4.49	4.95	4.40	3.91	4.46	4.23	4.19	3.64	4.76	4.11	4.43	4.39	3.99	4.37	4.69	4.66	5.19	4.58	0.69

Figure S1. Relative energies of five conformations of 20 amino acids using MP2/cc-pVTZ//M052x/6-31G**.

Figure S2. The performance of M05-2X/cc-pVTZ . a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S3. The performance of M05-2X/cc-pVTZ with the AMBER99 dispersion correction. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S4. The performance of M05-2X/6-31G**. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S5. The performance of M05-2X/6-31G** with AMBER99 dispersion energy. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S6. The performance of PBE/cc-pVTZ. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S7. The performance of PBE/cc-pVTZ with AMBER99 dispersion energy. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S8. The performance of PBE/6-31G**. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S9. The performance of PBE/6-31G** with AMBER99 dispersion energy. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S10. The performance of B3LYP/cc-pVTZ. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S11. The performance of B3LYP/cc-pVTZ with AMBER99 dispersion energy. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S12. The performance of B3LYP/6-31G**. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S13. The performance of B3LYP/6-31G** with AMBER99 dispersion energy. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S14. The performance of AM1. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S15. The performance of AM1 with AMBER99 dispersion energy. a) Signed error (*error=E_{ai}-E_{bi}+E_c*) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S16. The performance of PM3. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S17. The performance of PM3 with AMBER99 dispersion energy. a) Signed error (*error=E_{ai}-E_{bi}+E_c*) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S18. The performance of PM3MM. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S19. The performance of PM3MM with AMBER99 dispersion energy. a) Signed error (*error=E_{ai}-E_{bi}+E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.*

Figure S20. The performance of force field AMOEBA. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S21. The performance of force field AMBEREP. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S22. The performance of force field AMBERPOL. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S23. The performance of force field AMBER94. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S24. The performance of force field AMBER96. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S25. The performance of force field AMBER99. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S26. The performance of force field AMBER99SB. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S27. The performance of force field AMBER03. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S28. The performance of force field CHARMM27. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S29. The performance of force field OPLS-AA. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S30. The performance of force field OPLS-AA/L. a) Signed error (*error*= E_{ai} - E_{bi} + E_c) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S31. The performance of force field AMBERUA. a) Signed error $(error=E_{ai}-E_{bi}+E_c)$ using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S32. The performance of force field GROMOS(G43b1). a) Signed error (*error=E_{ai}-E_{bi}+E_c*) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S33. The performance of force field GROMOS(G45a3). a) Signed error (*error=E_{ai}-E_{bi}+E_c*) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S34. The performance of force field GROMOS(G53a6). a) Signed error (*error=E_{ai}-E_{bi}+E_c*) using the MP2 energy as the true value. b) Signed RMS-C of each conformation over 20 amino acids. c) RMS over the five conformations of each amino acid.

Figure S35. Mean and stand deviation of RMS-C of each conformation calculated over 20 amino acids for each method.

Figure S36. Comparison of the RMS-N α_L using two set of geometries obtained from two DFT methods (B3LYP/6-31G** and M05-2X/6-31G**).