Cationic Polymerization and Insertion Chemistry in the Reactions of Vinyl Ethers with
(α-diimine) PdMe^{+}Species
Changle Chen, Shuji Luo and Richard F. Jordan*
Department of Chemistry, The University of Chicago
5735 South Ellis Avenue, Chicago, Illinois, 60637E-mail: rfjordan@uchicago.edu
Contents

1. Materials and Methods S4
1.1 NMR characterization of some known compounds. S4
1.2 Derivation of eq 7 of the manuscript and estimation of limits for $k_{\beta-\text { or }}$ for $\mathbf{5 c - f}$. S6
1.3 Estimation of limits for $\mathrm{k}_{\beta-\mathrm{or}}$ for $\mathbf{5 c} \mathbf{-} \mathbf{f}$ based on the steady state approximation for $\mathbf{4 c} \mathbf{- f}$. S7
1.4 Methods for kinetic studies S7
2. Cationic Polymerization of 2a,c and Characterization of Poly(vinyl ether) S8
2.1 Cationic polymerization of $\mathrm{CH}_{2}=\mathrm{CHO}^{\mathrm{t}} \mathrm{Bu}(\mathbf{2 a})$ by $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. S8
2.2 Cationic polymerization of $\mathrm{CH}_{2}=\mathrm{CHO}^{t} \mathrm{Bu}(\mathbf{2 a})$ by $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. S9
2.3 Polymerization of $\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}(\mathbf{2 c})$ by $1\left[\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. S9
2.4 Attempted polymerization of $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}(\mathbf{2 f})$ by $\mathbf{1}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ S9
2.5 Attempted polymerization of $\mathrm{CH}_{2}=\mathrm{CHOPh}(\mathbf{2 g})$ by $\mathbf{1}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ S10
2.6 Cationic polymerization of $\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}(\mathbf{2 c})$ by $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ S10
2.7 Cationic polymerization of $\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}(2 \mathrm{c})$ by $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ S10
2.8 Key NMR data for $-\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}}-$ S11
3. Generation of $\left[(\alpha\right.$-diimine $\left.) \operatorname{PdMe}\left(\mathrm{CH}_{2}=\mathbf{C H O R}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(3 \mathrm{~b}-\mathrm{g}\left[\mathrm{SbF}_{6}\right]\right)$ Complexes from ${ }_{1}\left[\mathrm{SbF}_{6}\right]$. S11
3.1 Generation of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOEt}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(\mathbf{3 b}\left[\mathrm{SbF}_{6}\right]\right)$ S 11
$3.2\left[(\alpha\right.$-diimine $\left.) \operatorname{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(\mathbf{3 c}\left[\mathrm{SbF}_{6}\right]\right)$. S12
$3.3\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiMe} 2 \mathrm{Ph}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(3 \mathrm{~d}\left[\mathrm{SbF}_{6}\right]\right)$ S13
$3.4\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiMePh}_{2}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(3 \mathrm{e}\left[\mathrm{SbF}_{6}\right]\right)$. S13
$3.5\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(3 f\left[\mathrm{SbF}_{6}\right]\right)$. S14
$3.6\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOPh}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(\mathbf{3 g}\left[\mathrm{SbF}_{6}\right]\right)$ S14
$3.7\left[\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}=\mathrm{CAnCAn}=\mathrm{N}\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(\mathbf{3 h}\left[\mathrm{SbF}_{6}\right]\right)$ S15
$3.8 \quad\left[\left\{\left(4-\mathrm{Me}_{6}-\mathrm{CH}_{5}\right) \mathrm{N}=\mathrm{CMeCMe}=\mathrm{N}\left(4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{5}\right)\right\} \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]$ (3i)
(3i[$\left.\mathrm{SbF}_{6}\right]$). S16
4. Competitive Binding Studies S19
4.1 Competitive binding of $\mathbf{2 d - g}$ and 2 c to $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ at $-20{ }^{\circ} \mathrm{C}$ (eq 5) S19
4.2 Competitive binding of ethylene and $\mathrm{CH}_{2}=\operatorname{CHOR}(\mathbf{2 a - c}, \mathbf{2 g})$ to $\mathbf{1}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $-60{ }^{\circ} \mathrm{C}(\mathrm{eq} 4)$. S20
5. Reaction of $\mathrm{CH}_{2}=\mathrm{CHO}^{t} \mathrm{Bu}(2 a)$ with $1\left[\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ S20
5.1 Kinetics of insertion of $\mathbf{3 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. S20
5.2 Kinetics of the $\beta-\mathrm{O}^{\mathrm{t}} \mathrm{Bu}$ elimination of $\mathbf{5 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and $\mathbf{4 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. S23
6. Reaction of $1\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with $2 \mathrm{~b}-\mathrm{g}$. S24
6.1 Reaction of $\mathbf{1}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOEt}(\mathbf{2 b})$ S24
6.2 Reaction of $\mathbf{1}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}(\mathbf{2 c})$. S29
6.3 Reaction of $\mathbf{5 c}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with MeCN S31
6.4 Reaction of $1\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOSiMe} 2 \mathrm{Ph}(\mathbf{2 d})$. S32
6.5 Reaction of $1\left[\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOSiMePh}_{2}(\mathbf{2 e})$. S33
6.6 Reaction of $1\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}(\mathbf{2 f})$. S35
6.7 Reaction of $\mathbf{5 f}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with MeCN S37
6.8 Reaction of $1\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOPh}(\mathbf{2 g})$ S38
7. Reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with $\mathbf{2 a - g}$ S38
7.1 Reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHO}^{\mathrm{t}} \mathrm{Bu}$ (2a). S38
7.2 Reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOEt}(\mathbf{2 b})$ S42
7.3 Simulation of the concentration data for the reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with $\mathbf{2 b}$ S46
7.4 Reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}(\mathbf{2 c})$ S48
7.5 Reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{2} \mathrm{Ph}(\mathbf{2 d})$ S50
7.6 Reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOSiMePh}_{2}(\mathbf{2 e})$. S53
7.7 Reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}(\mathbf{2 f})$ S56
7.8 Insertion of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOPh}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(\mathbf{3 g}\left[\mathrm{SbF}_{6}\right]\right)$ S58
7.9 Construction of the energy diagram for competitive binding of vinyl ethers and insertion of 3a-g (Figure 1 in manuscript). S60
7.10 Insertion of
$\left[\left\{\left(2,6-{ }^{\mathrm{I}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}=\mathrm{C}(\mathrm{An})-\mathrm{C}(\mathrm{An})=\mathrm{N}\left(2,6-{ }^{\mathrm{I}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right\} \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]$ (3h) and $\beta-\mathrm{OSiPh}_{3}$ elimination of $\mathbf{5 h}$ S61
7.11 Insertion of
$\left[\left\{\left(4-\mathrm{Me}^{-} \mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{N}=\mathrm{CMeCMe}=\mathrm{N}\left(4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{5}\right)\right\} \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3 i})$. S64
8. X-Ray Crystallography S65
$8.1\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\left(6\left[\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$ S65
9. DFT Calculations S66
9.1 DFT studies of the structure of $\mathbf{4 a}$ and $\mathbf{5 a}$ S66
9.2 DFT studies of the structure of $\mathbf{4 c}$ and $\mathbf{5 c}$. S67
10. NMR Spectra for Cationic Polymers and Kinetics Studies. S68
10.1 Spectra of $-\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{O}^{t} \mathrm{Bu}\right)\right]_{\mathrm{n}}$ - homopolymer S68
10.2 Spectra of $-\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}^{-}}$homopolymer and attempted polymerization of $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}$ and $\mathrm{CH}_{2}=\mathrm{CHOPh}$ S71
10.3 Selected ${ }^{1} \mathrm{H}$ NMR spectra for $\mathrm{CH}_{2}=\mathrm{CHO}^{t} \mathrm{Bu}$ case: S75
10.4 Selected ${ }^{1} \mathrm{H}$ NMR spectra for $\mathrm{CH}_{2}=\mathrm{CHOEt}$ case: S83
10.5 Selected ${ }^{1} \mathrm{H}$ NMR spectra for $\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}$ case: S91
10.6 Selected ${ }^{1} \mathrm{H}$ NMR spectra for $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{2} \mathrm{Ph}$ case. S97
10.7 Selected ${ }^{1} \mathrm{H}$ NMR spectra for $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{2} \mathrm{Ph}$ case. S103
10.8 Selected ${ }^{1} \mathrm{H}$ NMR spectra for $\mathrm{CH}_{2}=\mathrm{CHSiPh}_{3}$ case: S109
11. References S115

1. Materials and Methods

1.1 NMR characterization of some known compounds.

Data for (α-diimine) PdMeCl: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right.$) $\delta 7.34-7.11(\mathrm{~m}, 6 \mathrm{H}), 3.07$ (sept, $J=7,2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), 3.01 (sept, $J=7,2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), $2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe})$, $1.40\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.36\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.19\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.17(\mathrm{~d}, J$ $\left.=7,6 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}\right), 0.37(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Pd} \mathrm{Me})$.

Data for $\left[(\alpha\right.$-diimine $\left.) \operatorname{PdMe}\left(\mathrm{OEt}_{2}\right)\right]\left[\mathrm{SbF}_{6}\right]:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 20{ }^{\circ} \mathrm{C}\right) \delta 7.37-7.34(\mathrm{~m}$, 6 H), 3.04 (sept, $J=7,2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), 2.99 (sept, $J=7,2 \mathrm{H}, \mathrm{CHMe}_{2}$), 2.22 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}$), 2.21 (s, 3H, N=CMe), $1.36\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.29\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.25(\mathrm{~d}, J=7,6 \mathrm{H}$, $\left.\mathrm{CH} M e_{2}\right), 1.21\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Pd} M e) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 20^{\circ} \mathrm{C}\right): \delta$ $183.0(\mathrm{~N}=C \mathrm{Me}), 175.0(\mathrm{~N}=C \mathrm{Me}), 141.5,141.3,139.7,138.9,129.4,128.6,125.2,124.9,29.4$, 29.1, 24.1, 23.8, 23.7, 23.2, 21.9, 20.3, $4.7(\mathrm{Pd} M e) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}\right) \delta 7.31-7.21(\mathrm{~m}$, 6H), 3.00 (sept, $J=7,2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), 2.93 (sept, $J=7,2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), 2.03 (b, $6 \mathrm{H}, \mathrm{N}=\mathrm{CMe}$), 1.34 (d, $\left.J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.30\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.13\left(\mathrm{~d}, J=7,12 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.26(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Pd} M e$).

Data for (tmeda) $\operatorname{Pd}(\mathrm{OPh})_{2}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right) \delta 7.12\left(\mathrm{~d}, J=8,4 \mathrm{H}, \mathrm{H}_{\text {ortho }}\right), 6.96(\mathrm{t}$, $\left.J=7,4 \mathrm{H}, \mathrm{H}_{\text {meta }}\right), 6.43\left(\mathrm{t}, J=7,2 \mathrm{H}, \mathrm{H}_{\text {para }}\right), 2.58\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{N} M e_{2}\right), 2.55\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left.\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right) \delta 168.3\left(\mathrm{C}_{\text {ipso }}\right), 127.9,118.8,113.7,62.3\left(-\mathrm{CH}_{2}-\right), 50.6(\mathrm{NMe})_{2}\right)$.

Data for KOPh: ${ }^{1} \mathrm{H}$ NMR (THF- $\left.d_{8}, 20^{\circ} \mathrm{C}\right) \delta 6.81\left(\mathrm{t}, J=8,2 \mathrm{H}, \mathrm{H}_{\text {meta }}\right), 6.28(\mathrm{~d}, J=8,2 \mathrm{H}$, $\left.\mathrm{H}_{\text {ortho }}\right), 6.03\left(\mathrm{t}, J=7,1 \mathrm{H}, \mathrm{H}_{\text {para }}\right)$.

Data for $\mathrm{CH}_{2}=\mathrm{CHO}^{\mathrm{t}} \mathrm{Bu}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right) \delta 6.48\left(\mathrm{dd}, J=14,6 ; 1 \mathrm{H}, \mathrm{H}_{\text {int }}\right), 4.30(\mathrm{~d}$, $\left.J=14,1 \mathrm{H}, \mathrm{H}_{\text {trans }}\right), 3.97\left(\mathrm{~d}, J=6,1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}\right), 1.26(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OCMe} 3) \cdot{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20\right.$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 147.1\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 90.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 76.4\left(\mathrm{OCMe}_{3}\right), 28.3\left(\mathrm{OCMe}_{3}\right)$.

Data for $\mathrm{CH}_{2}=$ CHOEt: ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right): \delta 6.46\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{int}}\right), 4.15(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\text {trans }}\right), 3.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}\right), 3.73\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.16\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right): \delta 152.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 86.5 .4\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 64.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 14.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

Data for $\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right): \delta 6.41\left(\mathrm{dd}, \mathrm{J}=13,6 ; 1 \mathrm{H}, \mathrm{H}_{\text {int }}\right), 4.38$ $\left(\mathrm{d}, \mathrm{J}=13,1 \mathrm{H}, \mathrm{H}_{\text {trans }}\right), 4.11\left(\mathrm{~d}, \mathrm{~J}=6,1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}\right), 0.19\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi} M e_{3}\right) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\left.20^{\circ} \mathrm{C}\right): \delta 146.4\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $94.6\left(\mathrm{CH}_{2}=\mathrm{CH}\right),-0.45\left(\mathrm{OSiMe} e_{3}\right)$.

Data for $\mathrm{CH}_{2}=\mathrm{CHOSiMe} 2 \mathrm{Ph}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right): \delta 7.68\left(\mathrm{~d}, J=8,6 \mathrm{H}, \mathrm{H}_{\text {ortho }}\right), 7.48$ $\left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{H}_{\text {para }}\right), 7.45\left(\mathrm{t}, J=7,6 \mathrm{H}, \mathrm{H}_{\text {meta }}\right), 6.49\left(\mathrm{dd}, J=14,6 ; 1 \mathrm{H}, \mathrm{H}_{\text {int }}\right), 4.72(\mathrm{~d}, J=14,1 \mathrm{H}$, $\left.\mathrm{H}_{\text {trans }}\right), 4.21\left(\mathrm{~d}, J=6,1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}\right) 0.53\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right): \delta 146.6(=C \mathrm{H})$, $137.3\left(\mathrm{C}_{\text {ipso }}\right), 134.1,130.6,128.6,95.5\left(=\mathrm{CH}_{2}\right),-1.4\left(\mathrm{SiCH}_{3}\right)$.

Data for $\mathrm{CH}_{2}=\mathrm{CHOSiMePh}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right): \delta 7.55\left(\mathrm{~d}, J=8,6 \mathrm{H}, \mathrm{H}_{\text {ortho }}\right), 7.37$ $\left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{H}_{\text {para }}\right), 7.33\left(\mathrm{t}, J=7,6 \mathrm{H}, \mathrm{H}_{\text {meta }}\right), 6.63(\mathrm{dd}, \mathrm{J}=14,6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.69(\mathrm{dd}, \mathrm{J}=14$, $\left.\left.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4,32\left(\mathrm{dd}, \mathrm{J}=6,1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 0.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH})_{3}\right) \cdot{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\left.20^{\circ} \mathrm{C}\right): \delta 146.7(=\mathrm{CH}), 135.6\left(\mathrm{C}_{\mathrm{ipso}}\right), 135.0,130.9,128.7,96.0\left(=\mathrm{CH}_{2}\right),-2.6\left(\mathrm{SiCH}_{3}\right)$.

Data for $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.67\left(\mathrm{~d}, J=8,6 \mathrm{H}, \mathrm{H}_{\text {ortho }}\right), 7.49(\mathrm{t}, J=7$, $\left.3 \mathrm{H}, \mathrm{H}_{\text {para }}\right), 7.43\left(\mathrm{t}, J=7,6 \mathrm{H}, \mathrm{H}_{\text {meta }}\right), 6.65\left(\mathrm{dd}, J=14,6 ; 1 \mathrm{H}, \mathrm{H}_{\mathrm{int}}\right), 4.65\left(\mathrm{~d}, J=14,1 \mathrm{H}, \mathrm{H}_{\text {trans }}\right)$, $4.22\left(\mathrm{~d}, J=6,1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 146.6(=C \mathrm{H}), 135.9,133.5\left(\mathrm{C}_{\mathrm{ipso}}\right), 131.0,128.6$, 96.1 $\left(\mathrm{CH}_{2}=\right) . \mathrm{GC}-\mathrm{MS}: m / z=302$.

Data for $\mathrm{CH}_{2}=\mathrm{CHOPh}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.34\left(\mathrm{t}, J=7,2 \mathrm{H}, \mathrm{H}_{\text {meta }}\right), 7.08(\mathrm{t}, J=7,1 \mathrm{H}$, $\left.\mathrm{H}_{\text {para }}\right), 7.00\left(\mathrm{~d}, J=8,2 \mathrm{H}, \mathrm{H}_{\text {ortho }}\right), 6.67\left(\mathrm{dd}, J=14,6 ; 1 \mathrm{H}, \mathrm{H}_{\text {int }}\right), 4.75\left(\mathrm{~d}, J=15,1 \mathrm{H}, \mathrm{H}_{\text {trans }}\right), 4.43$ $\left(\mathrm{d}, J=6,1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}\right) . \mathrm{GC}-\mathrm{MS}: m / z=120$.

1.2 Derivation of eq $\mathbf{7}$ of the manuscript and estimation of limits for $\boldsymbol{k}_{\boldsymbol{\beta} \text {-OR }}$ for $\mathbf{5 c}$-f.

$$
\begin{align*}
& 4 \xlongequal{K_{5 / 4}} 5 \\
& K_{5 / 4}=[\mathbf{5}] /[\mathbf{4}] \\
& {[\mathbf{5}]=K_{\beta / 4} \cdot[\mathbf{4}]} \\
& {[\mathbf{4}]+[\mathbf{O R}]=\left(K_{5 / 4}+1\right)[\mathbf{4}]} \\
& \mathrm{d}([\mathbf{6}]) / \mathrm{dt}=k_{\beta-\mathrm{OR}, \mathrm{obs}}([\mathbf{4}]+[\mathbf{5}]) \\
& ==\mathrm{d}([\mathbf{6}]) / \mathrm{dt}=k_{\beta-\mathrm{OR}, \mathrm{obs}}\left(K_{5 / 4}+1\right)[\mathbf{4}] \\
& \mathrm{d}([\mathbf{6}]) / \mathrm{dt}=k_{\beta-\mathrm{OR}}[\mathbf{4}] \\
& \text { from eq i and eq ii }==>k_{\beta-\mathrm{OR}, \mathrm{obs}}\left(K_{5 / 4}+1\right)[\mathbf{4}]=k_{\beta-\mathrm{OR}[\mathbf{4}]} \tag{i}\\
& ==>k_{\beta-\mathrm{OR}}=k_{\beta-\mathrm{OR}, \mathrm{obs}}\left(K_{5 / 4}+1\right) \tag{ii}
\end{align*}
$$

Estimation of limits for $k_{\beta-\text { or }}$ for $\mathbf{5 c} \mathbf{c} \mathbf{f}$ based on pre-equilibrium assumption:
since $K_{5 c / 4 c}>19$, from eq 7
$==>k_{\beta-\text { OR }}>20 k_{\beta-\mathrm{OR}, \text { obs }}$

1.3 Estimation of limits for $\mathbf{k}_{\boldsymbol{\beta} \text {-or }}$ for $\mathbf{5 c - f}$ based on the steady state approximation for

 4c-f.$$
\begin{align*}
& \mathrm{d}([\mathbf{4}]) / \mathrm{dt}=\mathrm{k}_{\mathbf{5} \text { to } 4}[\mathbf{5}]-\mathrm{k}_{\mathbf{4} \text { to } 5}[\mathbf{4}]-k_{\beta-\mathrm{OR}}[\mathbf{4}]=0 \\
& {[\mathbf{4}]=\mathrm{k}_{\mathbf{5} \text { to } 4}[\mathbf{5}] /\left(\mathrm{k}_{\mathbf{4} \text { to }} \mathbf{5}+k_{\beta-\mathrm{OR}}\right)} \tag{iii}\\
& \mathrm{d}([\mathbf{6}]) / \mathrm{dt}=k_{\beta-\mathrm{OR}, \mathrm{obs}}[\mathbf{5}] \tag{iv}\\
& \mathrm{d}([\mathbf{6}]) / \mathrm{dt}=k_{\beta-\mathrm{OR}}[\mathbf{4}] \tag{v}\\
& \text { from (iv) and }(\mathrm{v}): k_{\beta-\mathrm{OR}, \mathrm{obs}}[\mathbf{5}]=k_{\beta-\mathrm{OR}}[\mathbf{4}] \\
& ==>[\mathbf{4}]=\left(k_{\beta-\mathrm{OR}, \mathrm{obs}}[\mathbf{5}]\right) / k_{\beta-\mathrm{OR}} \tag{vi}
\end{align*}
$$

from (iii) and (vi): $\mathrm{k}_{\mathbf{5} \text { to }} \mathbf{4}[\mathbf{5}] /\left(\mathrm{k}_{\mathbf{4} \text { to }} \mathbf{5}+k_{\beta-\mathrm{OR}}\right)=\left(k_{\beta-\mathrm{OR}, \mathrm{obs}}[\mathbf{5}]\right) / k_{\beta-\mathrm{OR}}$
$==>k_{\beta-\mathrm{OR}}=k_{\beta-\mathrm{OR}, \mathrm{obs}} k_{4 \text { to } 5} /\left(k_{5 \text { to } 4}-k_{\beta-\mathrm{OR}, \mathrm{obs}}\right)$
$k_{\beta-\mathrm{OR}}>k_{\beta-\mathrm{OR}, \mathrm{obs}} k_{4 \text { to } 5} / k_{5 \text { to } 4}$
$k_{\beta-\mathrm{OR}}>k_{\beta \text {-OR,obs }} K_{5 / 4}$
$k_{\beta-\mathrm{OR}}>19 k_{\beta-\mathrm{OR}, \text { obs }}$
1.4 Methods for kinetic studies. For all cases, the kinetics of both the decrease of the reactants and the increase of the products were measured, and found to be in good agreement.

The kinetics of the decrease of the reactants was analyzed according to the following equations:

$$
\begin{aligned}
& \operatorname{Ln}\left([\mathrm{A}] /[\mathrm{A}]_{0}\right)=\mathrm{kt} \\
& {[\mathrm{~A}] /[\mathrm{A}]_{0}=\mathrm{I}_{\text {normalized }} / \mathrm{I}_{0, \text { normalized }}} \\
& \mathrm{I}_{\text {normalized }}=\mathrm{I}^{*} / \mathrm{I}_{\text {std }} \\
& \mathrm{I}_{0, \text { normalized }}=\mathrm{I}_{0} / \mathrm{I}_{\text {std }}
\end{aligned}
$$

I^{*} is the intensity of the peak of interest, for example, the $\mathrm{Pd} M e$ resonance for insertion studies and the $\mathrm{PdCMe} e_{2}$ resonance for β-OR elimination studies. In some cases the integration of the $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ resonance of OEt_{2} was used as $\mathrm{I}_{\text {std }}$. If peaks from other species overlapped
with the $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ resonance we used the whole aromatic region as $\mathrm{I}_{\text {std }}$. For the reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with $\mathbf{2 f}$, we analyzed the results by using both $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ resonance from OEt_{2} and the whole aromatic region as $\mathrm{I}_{\text {std }}$, which gave the same results.

The kinetics of the increase of the products was analyzed according to the following equations:

$$
\begin{aligned}
& \operatorname{Ln}\left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]=\mathrm{kt} \\
& \left([\mathrm{~B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)=\left(\mathrm{I}_{\infty, \text { normalized }}-\mathrm{I}^{*}\right) /\left(\mathrm{I}_{\infty, \text { normalized }}-\mathrm{I}_{0, \text { normalized }}\right) \\
& \mathrm{I}_{\text {normalized }}=\mathrm{I}^{*} / \mathrm{I}_{\text {std }} \\
& \mathrm{I}_{0, \text { normalized }}=\mathrm{I}_{0} / \mathrm{I}_{\text {std }}
\end{aligned}
$$

I* is the intensity of the peak of interest, for example, the PdCMe_{2} and $\mathrm{PdCH}_{2} \mathrm{CH}(\mathrm{OEt}) \mathrm{Me}$ resonances for insertion studies and the $\operatorname{Pd}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$ resonance for β-OR elimination studies. Specifically, for the case of $\mathrm{CH}_{2}=\mathrm{CHOEt}$ and $\mathrm{CH}_{2}=\mathrm{CHOPh}$, in which the β-OR elimination rate is comparable with the insertion rate, we used the sum of PdCMe_{2}, $\mathrm{PdCH}_{2} \mathrm{CH}(\mathrm{OEt}) \mathrm{Me}$ and $\mathrm{Pd}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$ resonances as the I* for insertion kinetics. Kinetic data and plots are shown in Sections 5, 6 and 7; representative NMR spectra from kinetic studies are shown in Section 10.

2. Cationic Polymerization of 2a,c and Characterization of Poly(vinyl ether).

2.1 Cationic polymerization of $\mathrm{CH}_{2}=\mathrm{CHO}^{t} \mathrm{Bu}(2 \mathrm{a})$ by $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. An

 NMR tube was charged with $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](22.7 \mathrm{mg}, 0.0254 \mathrm{mmol}) . \mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4$ mL) was added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$ and shaken. 2a $(1.25 \mathrm{mmol})$ was added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$, shaken vigorously, and monitored periodically by NMR. ${ }^{1} \mathrm{H}$ NMR spectra showed that 2a wasquantitatively converted to polymer after $20 \mathrm{~h} .2,6$-di-tert-butylpyridine significantly retards the polymerization of 2a by $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$.
2.2 Cationic polymerization of $\mathrm{CH}_{2}=\mathrm{CHO}^{t} \mathrm{Bu}(2 a)$ by $\left[\mathrm{Ph}_{3} \mathbf{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathbf{F}_{5}\right)_{4}\right]$. An NMR tube was charged with $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](24.5 \mathrm{mg}, 0.0266 \mathrm{mmol}) . \mathrm{CDCl}_{3}(0.4 \mathrm{~mL})$ was added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$ and shaken. 2a (1.25 mmol) was added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$, shaken vigorously, and monitored periodically by NMR. ${ }^{1}$ H NMR spectra showed that 2a was quantitatively converted to polymer after 20 h .
2.3 Polymerization of $\mathbf{C H}_{2}=\mathbf{C H O S i M e}_{3}(2 \mathrm{c})$ by $\mathbf{1}\left[\mathbf{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. A Schlenk flask was charged with (α-diimine $) \mathrm{PdMeCl}(11.4 \mathrm{mg}, 0.0203 \mathrm{mmol})$ and $\left.\left[\mathrm{Li}^{(} \mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](17.6$ $\mathrm{mg}, 0.0197 \mathrm{mmol}) . \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added by syringe. The mixture was stirred vigorously at $20^{\circ} \mathrm{C}$ for 10 min . A solution of $\mathbf{2 c}(400 \mathrm{mg}, 3.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was added by cannula. The mixture became dark within 10 min , indicating the formation of Pd^{0}. After 20 h , the volatiles were removed under vacuum, affording dark oil. NMR analysis showed that the oil contained poly(trimethylsilyl vinyl ether) $\left(-\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}}-\right)$, free α-diimine and other unidentified species. Approximately 7% of 2c was converted to polymer. 2,6-di-tert-butylpyridine does not significantly affect the polymerization of $\mathbf{2 c}$ by $1\left[\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$.
2.4 Attempted polymerization of $\mathbf{C H}_{\mathbf{2}}=\mathbf{C H O S i P h}_{3}$ by $\mathbf{1}\left[\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{4}\right]$. An NMR tube was charged with (α-diimine) $\mathrm{PdMeCl}(5.5 \mathrm{mg}, 0.010 \mathrm{mmol}),\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](8.3$ $\mathrm{mg}, 0.0093 \mathrm{mmol})$ and $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}(176 \mathrm{mg}, 0.582 \mathrm{mmol}) . \mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added
by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$, shaken and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. NMR spectra showed that no polymer had formed after 20 h .
2.5 Attempted polymerization of $\mathbf{C H}_{\mathbf{2}}=\mathbf{C H O P h}$ by $\mathbf{1}\left[\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{4}\right]$. An NMR tube was charged with (α-diimine) $\mathrm{PdMeCl}(8.4 \mathrm{mg}, 0.015 \mathrm{mmol}),\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](13.4 \mathrm{mg}$, 0.0150 mmol) and $\mathrm{CH}_{2}=\mathrm{CHOPh}(33 \mathrm{mg}, 0.27 \mathrm{mmol}) . \mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added by vacuum transfer at $-196{ }^{\circ} \mathrm{C}$. The tube was warmed to $20{ }^{\circ} \mathrm{C}$, shaken, and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. NMR spectra showed that no polymer had formed after 20 h .

2.6 Cationic polymerization of $\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}(2 \mathrm{c})$ by $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. A

 Schlenk flask was charged with $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](17.8 \mathrm{mg}, 0.0199 \mathrm{mmol})$. A solution of 2c ($320 \mathrm{mg}, 2.67 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added by cannula and the mixture was stirred vigorously at $20^{\circ} \mathrm{C}$. After 20 h , the volatiles were removed under vacuum. The nonvolatile oily residue was dried under vacuum to yield a white oil (120 mg), which was identified as poly(trimethylsilyl vinyl ether) $\left(-\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}}-\right)$ by NMR.2.7 Cationic polymerization of $\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}(2 \mathrm{c})$ by $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. A flask was charged with $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ ($24.4 \mathrm{mg}, 0.0265 \mathrm{mmol}$) and cooled to $-196{ }^{\circ} \mathrm{C}$. Chlorobenzene (1.2 mL) was added by vacuum transfer. The mixture was warmed to $23^{\circ} \mathrm{C}$. A Schlenk tube was charged with chlorobenzene or toluene (1.2 mL) and cooled to $-196^{\circ} \mathrm{C} .2 \mathbf{c}$ ($1.50 \mathrm{~mL}, 1.17 \mathrm{~g}, 375$ equiv) was added by vacuum transfer. The Schlenk tube was warmed to $-40^{\circ} \mathrm{C}$ with a dry ice/acetonitrile bath. The catalyst solution (at $23{ }^{\circ} \mathrm{C}$) was transferred by cannula to the Schlenk tube. The mixture was stirred for 2 h at $-40^{\circ} \mathrm{C}$ and then quenched with methanol (1 mL) pre-cooled to $-40{ }^{\circ} \mathrm{C}$. Immediate gellation occurred upon the addition of
methanol. The mixture was transferred to a flask containing methanol (75 mL) and the mixture was stirred for 7.5 h . The white solid precipitate was collected by filtration, washed with methanol, dried under vacuum, and identified as poly(vinyl alcohol). ${ }^{1}$ For reaction in chlorobenzene: yield 339 mg (76%), $\mathrm{M}_{n} 4000$. For reaction in toluene: yield 429 mg (97%), $\mathrm{M}_{n} 7000$.
2.8 Key NMR data for $-\left[\mathbf{C H}_{2} \mathbf{C H}\left(\mathbf{O S i M e}_{3}\right)\right]_{\mathrm{n}}-{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): \delta 9.72(\mathrm{~m}$,
$\left.-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right) \mathrm{CH}_{2} \mathrm{C}(=\mathrm{O}) \mathrm{H}\right), \quad 5.52 \quad\left(-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right) \mathrm{CH}=\mathrm{CHCH}_{2}-\right), \quad 5.42$
$\left(-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right) \mathrm{CH}=\mathrm{CHCH}_{2}-\right)$, $3.84 \quad\left(\mathrm{br}, \quad-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)-\right)$, $1.57 \quad(\mathrm{br}$,
$\left.-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)-\right), 0.10$ (br, $\left.-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSi} M e_{3}\right)-\right) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right): \delta 70.8$ (br,
$\left.-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)-\right)$, 69.4 (br, $\left.-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)-\right)$, 65.7 (br, $-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)$), 65.4 (br,
$\left.-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)-\right), 46.6$ (br, $\left.-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)-\right), 1.0\left(\right.$ br, $\left.-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)-\right)$.

3. Generation of $\left[(\alpha\right.$-diimine $\left.) P d M e\left(\mathrm{CH}_{2}=\mathbf{C H O R}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(3 \mathrm{~b}-\mathrm{g}\left[\mathrm{SbF}_{6}\right]\right)$ Complexes from 1[SbF ${ }_{6}$].

The adducts $\quad\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOEt}\right)\right]\left[\mathrm{SbF}_{6}\right] \quad\left(3 \mathrm{~b}\left[\mathrm{SbF}_{6}\right]\right)$, $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right] \quad\left(\mathbf{3 c}\left[\mathrm{SbF}_{6}\right]\right)$, $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{2} \mathrm{Ph}\right)\right]\left[\mathrm{SbF}_{6}\right] \quad$ (3d $\left.\left[\mathrm{SbF}_{6}\right]\right)$, $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiMePh}_{2}\right)\right]\left[\mathrm{SbF}_{6}\right] \quad\left(3 \mathrm{e}\left[\mathrm{SbF}_{6}\right]\right)$,
$\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]$ (3f[SbF $\left.\left.{ }_{6}\right]\right)$ and $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOPh}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(3 \mathrm{~g}\left[\mathrm{SbF}_{6}\right]\right)$ were generated using the procedure described for $\mathbf{3 a}\left[\mathrm{SbF}_{6}\right]$ on similar scales and with similar yields.
3.1 Generation of $\left[(\alpha\right.$-diimine $\left.) \mathbf{P d M e}\left(\mathbf{C H}_{2}=\mathbf{C H O E t}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(\mathbf{3 b}\left[\mathrm{SbF}_{6}\right]\right)$. An NMR tube was charged with $\mathbf{1}\left[\mathrm{SbF}_{6}\right](13.0 \mathrm{mg}, 0.0157 \mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added by vacuum transfer at $-196^{\circ} \mathrm{C} . \mathbf{2 b}(0.0173 \mathrm{mmol})$ was added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The
tube was warmed to $-78^{\circ} \mathrm{C}$, shaken to dissolve and thoroughly mix the components, and placed in an NMR probe that had been pre-cooled to $-20^{\circ} \mathrm{C}$. NMR spectra at $-60^{\circ} \mathrm{C}$ showed that $\mathbf{3 b}\left[\mathrm{SbF}_{6}\right](95 \%)$ had formed. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}\right): \delta 7.37-7.32(\mathrm{~m}, 6 \mathrm{H}), 6.76(\mathrm{dd}, J=13$, $\left.4 ; 1 \mathrm{H}, \mathrm{H}_{\mathrm{int}}\right), 4.04\left(\mathrm{dq}, \mathrm{J}=17,8,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.26\left(\mathrm{~d}, J=13,1 \mathrm{H}, \mathrm{H}_{\text {trans }}\right), 3.11(\mathrm{~d}, J=4,1 \mathrm{H}$, $\mathrm{H}_{\text {cis }}$), 3.00 (sept, $J=7,1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), 2.85 (sept, $J=7,1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), 2.81 (sept, $J=7,1 \mathrm{H}$, $\mathrm{C} H \mathrm{Me}_{2}$), 2.73 (sept, $J=7,1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), $2.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 1.41(\mathrm{~d}, J$ $\left.=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.37\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.32\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.29(\mathrm{~d}, J=7,3 \mathrm{H}$, $\mathrm{CHMe} 2), 1.28\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CHMe} e_{2}\right), 1.19\left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.15(\mathrm{~d}, J=7,3 \mathrm{H}$, $\mathrm{CH} M e_{2}$), $1.13\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.08$ (free $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH} M e_{2}$), $0.18(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Pd} M e)$. ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C}\right): \delta 179.8(\mathrm{~N}=\mathrm{CMe}), 175.7(\mathrm{~N}=\mathrm{CMe}), 148.4\left(\mathrm{CH}_{2}=\mathrm{CHOEt}\right)$, $139.8,139.4,138.3,138.2,138.1,137.4,128.65,128.60,125.2,125.0,124.7,124.5,71.8$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 56.7\left(\mathrm{CH}_{2}=\mathrm{CHOEt}\right), 29.3,29.2,29.0,28.9,24.6(2 \mathrm{C}), 23.9,23.8,23.5,23.4,23.3$, 23.0, 22.0, 21.7, $15.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 14.9(\mathrm{Pd} M e)$.
$3.2\left[(\alpha\right.$-diimine $\left.) \mathbf{P d M e}\left(\mathbf{C H}_{2}=\mathbf{C H O S i M e} 3\right)\right]\left[\mathbf{S b F}_{6}\right]\left(\mathbf{3 c}\left[\mathbf{S b F}_{6}\right]\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60\right.$ $\left.{ }^{\circ} \mathrm{C}\right): ~ \delta 7.38-7.25(\mathrm{~m}, 6 \mathrm{H}), 6.91\left(\mathrm{dd}, J=12,4 ; 1 \mathrm{H}, \mathrm{H}_{\mathrm{int}}\right), 3.36\left(\mathrm{~d}, J=12,1 \mathrm{H}, \mathrm{H}_{\text {trans }}\right), 3.14(\mathrm{~d}, J=$ $4,1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}$), 2.87-2.78(m, 4H, CHMe_{2}), $2.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 1.36(\mathrm{~d}, J$ $\left.=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.33\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.28\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.23(\mathrm{~d}, J=7,3 \mathrm{H}$, $\mathrm{CHMe} 2), 1.18\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.15\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.12\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right)$, $1.06\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi} M e_{3}\right), 0.15(\mathrm{~s}, \mathrm{Pd} M e) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60\right.$ $\left.{ }^{\circ} \mathrm{C}\right): \delta 179.8(\mathrm{~N}=\mathrm{CMe}), 175.4(\mathrm{~N}=\mathrm{CMe}), 143.1\left(\mathrm{CH}_{2}=C \mathrm{HOSiMe}_{3}\right), 139.2,138.7,138.0,137.7$, 137.5, 137.0, 128.1 (2C), 124.6, 124.5, 124.1, 124.0, $60.6\left(\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}\right), 28.70,28.68$,
28.31, 28.27, 24.3, 24.0, 23.8, 23.6, 23.4, 23.3, 22.7, 22.6, 21.5, 21.4, $15.6(\operatorname{Pd} M e),-1.0$ (OSiMe_{3}).
3.3 [(α-diimine $\left.) \mathbf{P d M e}\left(\mathbf{C H}_{2}=\mathbf{C H O S i M e} \mathbf{2}_{2} \mathbf{P h}\right)\right]\left[\mathbf{S b F}_{6}\right]\left(\mathbf{3 d}\left[\mathbf{S b F}_{6}\right]\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\left.-60^{\circ} \mathrm{C}\right): \delta 6.83\left(\mathrm{dd}, J=12,3 ; 1 \mathrm{H}, \mathrm{H}_{\mathrm{int}}\right), 3.50\left(\mathrm{~d}, J=12,1 \mathrm{H}, \mathrm{H}_{\text {trans }}\right), 3.18\left(\mathrm{~d}, J=3,1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}\right), 2.91$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.34(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 1.29(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CHMe} 2), 1.23\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.12(\mathrm{~d}, J=$ 7, $3 \mathrm{H}, \mathrm{CH} \mathrm{Ce}_{2}$), $1.03\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH} e_{2}\right), 0.91\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} \mathrm{Ce}_{2}\right), 0.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.44(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Pd} \mathrm{Me})$; the α-diimine and free and coordinated $\mathrm{CH}_{2}=\mathrm{CHOSiMePh}_{2}$ aromatic resonances overlap and are not listed. Key ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60{ }^{\circ} \mathrm{C}\right)$ data: $\delta 180.2$ $(\mathrm{N}=C \mathrm{Me}), 175.6(\mathrm{~N}=C \mathrm{Me}), 142.6\left(\mathrm{CH}_{2}=\mathrm{CHOSiMePh}_{2}\right), 139.2\left(\mathrm{Ar}, \mathrm{C}_{\mathrm{ipso}}\right), 138.5\left(\mathrm{Ar}, \mathrm{C}_{\mathrm{ipso}}\right)$, $138.1\left(\mathrm{Ar}, \mathrm{C}_{o}\right), 138.0\left(\mathrm{Ar}, \mathrm{C}_{o}\right), 137.4\left(\mathrm{Ar}, \mathrm{C}_{o}\right), 137.1\left(\mathrm{Ar}, \mathrm{C}_{o}\right), 124.6\left(\mathrm{Ar}, \mathrm{C}_{m}\right), 124.4\left(\mathrm{Ar}, \mathrm{C}_{m}\right)$, $124.2\left(\mathrm{Ar}, \mathrm{C}_{m}\right), 124.0\left(\mathrm{Ar}, \mathrm{C}_{m}\right), 61.6\left(\mathrm{CH}_{2}=\mathrm{CHOSiMePh}_{2}\right), 28.8\left(C \mathrm{HMe}_{2}\right), 28.7\left(C \mathrm{HMe}_{2}\right), 28.3$ ($\left.\left.\mathrm{CHMe}_{2}, 2 \mathrm{C}\right), 24.2(\mathrm{CHMe} 2), 23.9\left(\mathrm{CH} M e_{2}\right), 23.8\left(\mathrm{CHMe} e_{2}\right), 23.6(\mathrm{CHMe})_{2}\right), 23.4\left(\mathrm{CHMe} e_{2}\right)$, $23.3\left(\mathrm{CH} M e_{2}\right), 22.9(\mathrm{CHMe} 2), 22.6(\mathrm{CHMe} 2), 21.5(\mathrm{~N}=\mathrm{CMe}), 21.4(\mathrm{~N}=\mathrm{CMe}), 9.0(\mathrm{Pd} M e),-2.0$ (SiMe), -2.3 (SiMe).
$3.4\left[(\alpha\right.$-diimine $\left.) \mathbf{P d M e}\left(\mathbf{C H}_{2}=\mathbf{C H O S i M e P h}_{2}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(3 \mathrm{e}\left[\mathrm{SbF}_{6}\right]\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\left.-60^{\circ} \mathrm{C}\right): \delta 6.89\left(\mathrm{dd}, J=12,3 ; 1 \mathrm{H}, \mathrm{H}_{\mathrm{int}}\right), 3.67\left(\mathrm{~d}, J=12,1 \mathrm{H}, \mathrm{H}_{\text {trans }}\right), 3.18\left(\mathrm{~d}, J=3,1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}\right)$, 3.03-2.30 (m, 4H, CHMe $)$, 2.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}$), $2.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}$), 1.28-1.21 (m, 12H, $\left.\mathrm{CH} M e_{2}\right), 1.17\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.12\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.02\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right)$, $0.97(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CHMe} 2), 0.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Pd} \mathrm{Me})$; the α-diimine and free and coordinated $\mathrm{CH}_{2}=\mathrm{CHOSiMePh} h_{2}$ aromatic resonances overlap and are not listed. Key ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}\right)$ data: $\delta 180.5(\mathrm{~N}=\mathrm{CMe}), 175.7(\mathrm{~N}=\mathrm{CMe}), 141.8\left(\mathrm{CH}_{2}=\mathrm{CHOSiMePh} 2\right), 139.2$
$\left(\mathrm{Ar}, \mathrm{C}_{\mathrm{ipso}}\right), 138.4\left(\mathrm{Ar}, \mathrm{C}_{\mathrm{ipso}}\right), 138.2\left(\mathrm{Ar}, \mathrm{C}_{o}\right), 138.0\left(\mathrm{Ar}, \mathrm{C}_{o}\right), 137.1\left(\mathrm{Ar}, \mathrm{C}_{o}\right), 137.0\left(\mathrm{Ar}, \mathrm{C}_{o}\right)$, $124.6\left(\mathrm{Ar}, \mathrm{C}_{m}\right), 124.3\left(\mathrm{Ar}, \mathrm{C}_{m}\right), 124.2\left(\mathrm{Ar}, \mathrm{C}_{m}\right), 124.0\left(\mathrm{Ar}, \mathrm{C}_{m}\right), 62.5\left(\mathrm{CH}_{2}=\mathrm{CHOSiMePh}_{2}\right)$, $28.9\left(\mathrm{CHMe}_{2}\right), 28.8\left(\mathrm{CHMe}_{2}\right), 28.4\left(\mathrm{CHMe}_{2}, 2 \mathrm{C}\right), 24.1(\mathrm{CHMe} 2), 24.0(\mathrm{CHMe} 2), 23.8$ $\left(\mathrm{CHMe} e_{2}\right), 23.7(\mathrm{CHMe} 2), 23.3\left(\mathrm{CHMe} e_{2}\right), 23.1\left(\mathrm{CHMe} e_{2}\right), 22.7(\mathrm{CHMe} 2), 22.5\left(\mathrm{CHMe} e_{2}\right), 21.5$ $(\mathrm{N}=\mathrm{CMe}), 21.4(\mathrm{~N}=\mathrm{CMe}), 8.9(\mathrm{Pd} M e),-1.1\left(\mathrm{SiMePh}_{2}\right)$.
$3.5\left[(\alpha\right.$-diimine $\left.) \mathbf{P d M e}\left(\mathbf{C H}_{2}=\mathbf{C H O S i P h}_{3}\right)\right]\left[\mathbf{S b F}_{6}\right]\left(\mathbf{3 f}\left[\mathbf{S b F}_{6}\right]\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60\right.$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 7.12\left(\mathrm{dd}, J=12,4 ; 1 \mathrm{H}, \mathrm{H}_{\mathrm{int}}\right), 3.78\left(\mathrm{~d}, J=12,1 \mathrm{H}, \mathrm{H}_{\text {trans }}\right), 3.22\left(\mathrm{~d}, J=4,1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}\right)$, 2.97-2.65 (m, 4H, CHMe $)$, $2.37(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 1.29(\mathrm{~d}, J=7,3 \mathrm{H}$, $\left.\mathrm{CH} M e_{2}\right), 1.25\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.11\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.05\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right)$, $0.91\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.84\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.34\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.23(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Pd} \mathrm{Me}$); the α-diimine and free and coordinated $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}$ aromatic resonances overlap and are not listed. Key ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60{ }^{\circ} \mathrm{C}\right)$ data: $\delta 180.7(\mathrm{~N}=\mathrm{CMe}), 175.9$ $(\mathrm{N}=C \mathrm{Me}), 141.8\left(\mathrm{CH}_{2}=C \mathrm{HOSiPh}_{3}\right), 139.2\left(\mathrm{Ar}, \mathrm{C}_{\mathrm{ipso}}\right), 138.6\left(\mathrm{Ar}, \mathrm{C}_{\mathrm{ipso}}\right), 138.2\left(\mathrm{Ar}, \mathrm{C}_{o}\right), 138.0$ $\left(\mathrm{Ar}, \mathrm{C}_{o}\right), 137.6\left(\mathrm{Ar}, \mathrm{C}_{o}\right), 137.0\left(\mathrm{Ar}, \mathrm{C}_{o}\right), 124.6\left(\mathrm{Ar}, \mathrm{C}_{m}\right), 124.3\left(\mathrm{Ar}, \mathrm{C}_{m}\right), 124.2\left(\mathrm{Ar}, \mathrm{C}_{m}\right), 124.0$ $\left(\mathrm{Ar}, \mathrm{C}_{m}\right), 62.8\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right), 28.9\left(\mathrm{CHMe}_{2}\right), 28.8\left(\mathrm{CHMe}_{2}\right), 28.6\left(\mathrm{CHMe}_{2}\right), 28.4$ $\left(\mathrm{CHMe}_{2}\right), 24.0(\mathrm{CHMe}), 23.9(\mathrm{CHMe} 2), 23.7\left(\mathrm{CH} \mathrm{Me}_{2}\right), 23.3(\mathrm{CHMe} 2), 23.2\left(\mathrm{CHMe} e_{2}\right), 22.7$ $\left(\mathrm{CH} M e_{2}\right), 22.4\left(\mathrm{CH} M e_{2}\right), 22.3\left(\mathrm{CH} M e_{2}\right), 21.5(\mathrm{~N}=\mathrm{CMe}), 21.4(\mathrm{~N}=\mathrm{CMe}), 9.0(\mathrm{Pd} M e)$.
$3.6\left[(\alpha\right.$-diimine $\left.) \mathbf{P d M e}\left(\mathbf{C H}_{\mathbf{2}}=\mathbf{C H O P h}\right)\right]\left[\mathbf{S b F}_{6}\right]\left(\mathbf{3 g}\left[\mathbf{S b F}_{6}\right]\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}\right)^{2}$ $\delta 7.51\left(\mathrm{t}, J=8,2 \mathrm{H}, \mathrm{H}_{\text {meta }}\right), 7.39-7.27(\mathrm{~m}, 9 \mathrm{H}), 7.00\left(\mathrm{dd}, J=12,4 ; 1 \mathrm{H}, \mathrm{H}_{\mathrm{int}}\right), 3.77(\mathrm{~d}, J=12,1 \mathrm{H}$, $\left.\mathrm{H}_{\text {trans }}\right), 3.35\left(\mathrm{~d}, J=4,1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}\right), 2.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.82(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHMe} 2), 2.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 1.35\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.24(\mathrm{~d}, J=$ 7, 3H, CHMe 2), $1.22\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.20\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.18(\mathrm{~d}, J=7,3 \mathrm{H}$,
$\left.\mathrm{CH} M e_{2}\right), 1.10\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.08\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.94\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right)$, 0.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Pd} M e$).
$3.7\left[\left(2,6-{ }^{\mathbf{i}} \mathbf{P r}_{2}-\mathrm{C}_{6} \mathbf{H}_{3}\right) \mathrm{N}=\mathbf{C A n C A n}=\mathbf{N}\left(\mathbf{2 , 6}{ }^{-}{ }^{\mathbf{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathbf{H}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(\mathbf{3 h}\left[\mathbf{S b F}_{6}\right]\right)$. A NMR tube was charged with $\left[\left(2,6-{ }^{-} \operatorname{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}=\mathrm{CAnCAn}=\mathrm{N}\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right] \mathrm{PdMeCl}(19.2 \mathrm{mg}, 29.0$ $\mu \mathrm{mol}), \mathrm{AgSbF}_{6}(10 \mathrm{mg}, 29.1 \mu \mathrm{~mol})$ and $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}(8.8 \mathrm{mg}, 29.1 \mu \mathrm{~mol})$, and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4$ mL) was added by vacuum transfer at $-78^{\circ} \mathrm{C}$. The tube was shaken to dissolve and thoroughly mix the components, and placed in an NMR probe that had been pre-cooled to $-60^{\circ} \mathrm{C}$. NMR spectra at $-60{ }^{\circ} \mathrm{C}$ showed that $\mathbf{3 h}\left[\mathrm{SbF}_{6}\right]$ (95%) had formed. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60{ }^{\circ} \mathrm{C}\right)$: $\delta 8.24\left(\delta, J=8,1 H, A n: H_{p}\right), 8.19\left(\delta, J=8,1 H, A n: H_{p}\right), 7.65-7.33\left(m, 23 H, A n: H_{m}, H_{m^{\prime}}, 6\right.$ $\mathrm{H}_{\text {aryl }}, 15 \mathrm{H}_{\text {aryl }}$ from $\left.\mathrm{SiPh}_{3}\right), 7.32\left(\mathrm{dd}, J=12,4 ; 1 \mathrm{H}, \mathrm{H}_{\text {int }}\right), 6.49\left(\delta, J=7,1 \mathrm{H}, \mathrm{An}: \mathrm{H}_{o}\right), 6.39(\delta, J=$ 7, 1H, An: $\mathrm{H}_{o^{\prime}}$), $4.00\left(\mathrm{~d}, J=12,1 \mathrm{H}, \mathrm{H}_{\text {trans }}\right), 3.59\left(\mathrm{~d}, J=4,1 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}\right), 3.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 3.01$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}$), $2.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Me}_{2}\right), 1.29\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CHMe} e_{2}\right), 1.27\left(\mathrm{br}, 3 \mathrm{H}, \mathrm{CHMe} e_{2}\right)$, 1.06 (br, 3H, CHMe $), 0.97\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.81\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.70(\mathrm{~d}, 6 \mathrm{H}$, $\mathrm{CH} \mathrm{Me}_{2}$), 0.51 (s, 3H, PdMe), 0.48 (br, 3H, CHMe $)$. Key ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60{ }^{\circ} \mathrm{C}\right)$ data: $\delta 175.4(\mathrm{~N}=\mathrm{CMe}), 171.2(\mathrm{~N}=\mathrm{CMe}), 141.7\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right), 145.7,139.0,138.8,138.5$, $138.0,137.3,137.2,135.2,133.6,132.7,131.5,130.9,129.5,129.2,129.1,128.9,128.5,128.2$, $126.6,126.1,125.2,125.0,124.9,124.8,124.7$ and 124.6 (An 4 quaternary $\mathrm{C}, \mathrm{C}_{o}, \mathrm{C}_{o}{ }^{\prime}, \mathrm{C}_{m}, \mathrm{C}_{m}{ }^{\prime}$, $\mathrm{C}_{p}, \mathrm{C}_{p}^{\prime} ; \mathrm{Ar}, \mathrm{Ar}^{\prime} \mathrm{C}_{i p s o}, \mathrm{C}_{i p s o}{ }^{\prime}, \mathrm{C}_{o}, \mathrm{C}_{o}{ }^{\prime}, \mathrm{C}_{o}{ }^{\prime \prime}, \mathrm{C}_{o}{ }^{\prime \prime}, \mathrm{C}_{m}, \mathrm{C}_{m}{ }^{\prime}, \mathrm{C}_{m}{ }^{\prime \prime}, \mathrm{C}_{m}{ }^{\prime \prime}, \mathrm{C}_{p}, \mathrm{C}_{p}{ }^{\prime} ; \operatorname{SiPh} \mathrm{C}_{i p s o}, \mathrm{C}_{o}, \mathrm{C}_{m}, \mathrm{C}_{p}$,) , $62.2\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right), 29.4\left(\mathrm{CHMe}_{2}\right), 29.2\left(\mathrm{CHMe}_{2}\right), 29.0\left(\mathrm{CHMe}_{2}\right), 28.9\left(\mathrm{CHMe}_{2}\right), 24.7$ $\left(\mathrm{CHMe} e_{2}\right), 24.5\left(\mathrm{CH} M e_{2}\right), 23.8\left(\mathrm{CHMe} e_{2}\right), 23.4\left(\mathrm{CH} M e_{2}\right), 23.3(\mathrm{CHMe} 2), 23.0\left(\mathrm{CH} M e_{2}\right), 22.8$ $\left.(\mathrm{CHMe})_{2}\right), 22.4\left(\mathrm{CHMe} e_{2}\right), 13.4(\mathrm{Pd} M e)$.

$3.8\left[\left\{\left(4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{N}=\mathbf{C M e C M e}=\mathbf{N}\left(4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{5}\right)\right\} \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3 i})$.

A NMR tube was charged with (α-diimine- Me) $\mathrm{PdMeCl}(19.2 \mathrm{mg}, 29.0 \mu \mathrm{~mol}), \mathrm{AgSbF}_{6}(10 \mathrm{mg}$, $29.1 \mu \mathrm{~mol})$ and $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}(8.8 \mathrm{mg}$, $29.1 \mu \mathrm{~mol})$, and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added by vacuum transfer at $-78{ }^{\circ} \mathrm{C}$. The tube was shaken to dissolve and thoroughly mix the components. NMR spectra at $-70{ }^{\circ} \mathrm{C}$ showed that two rotamers of $\mathbf{3 i}(95 \%)$ had formed. ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-70^{\circ} \mathrm{C}\right) \delta 7.59\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{C}_{m}, \mathrm{Si}-\mathrm{Ph}\right), 7.55\left(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{C}_{o}, \mathrm{Si}-\mathrm{Ph}\right)$, 7.44 (t, J = $\left.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}_{p}, \mathrm{Si}-\mathrm{Ph}\right), 7.35(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}), 7.32(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.26(\mathrm{~b}$, $1 \mathrm{H}, \operatorname{Ar}), 7.25(\mathrm{~d}, 2 \mathrm{H}, \operatorname{Ar}), 7.17(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.94(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.92(\mathrm{~d}, \mathrm{~J}=4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{int}}\right), 6.78(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.76(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.74(\mathrm{~d}, \mathrm{~J}$ $=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.67(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 6.65(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}), 6.64(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), $6.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{int}}\right), 6.05(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}), 5.62(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 3.78(\mathrm{~d}, J=12,1 \mathrm{H}$, $\left.\mathrm{H}_{\text {trans }}\right), 3.56\left(\mathrm{~b}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{cis}}\right), 3.49\left(\mathrm{~d}, J=12,1 \mathrm{H}, \mathrm{H}_{\text {trans }}\right), 2.37,2.34,2.32,2.25,2.24,2.16,2.04$, 1.91, 0.17 (s, 3H, Pd-Me), -0.18 (s, 3H, Pd-Me).

Figure 3.1. NOSEY NMR of $\mathbf{3 d}\left[\mathrm{SbF}_{6}\right]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}\right)$: expansion of the $\delta 8.0-0.0 ; 8.0-0.0$ region.

Figure 3.2. NOSEY NMR of $\mathbf{3 e}\left[\mathrm{SbF}_{6}\right]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}\right)$: expansion of the $\delta 8.0-0.0 ; 8.0-0.0$ region.

Figure 3.3. NOSEY NMR of $\mathbf{3 f}\left[\mathrm{SbF}_{6}\right]\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}\right)$: expansion of the $\delta 8.0-0.0 ; 8.0-0.0$ region.

4. Competitive Binding Studies.

4.1 Competitive binding of $2 \mathrm{~d}-\mathrm{g}$ and 2 c to $1\left[\mathrm{SbF}_{6}\right]$ at $-20^{\circ} \mathrm{C}$ (eq 5). The procedure for $\mathbf{2 d}$ is described here; an identical procedure was used for $\mathbf{2 e} \mathbf{e}$. An NMR tube was charged with $\mathbf{1}\left[\mathrm{SbF}_{6}\right](15.0 \mathrm{mg}, 0.0179 \mathrm{mmol})$ and $\mathbf{2 d}(31.0 \mathrm{mg}, 0.258 \mathrm{mmol}) . \mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ and $\mathbf{2 c}$ (0.034 mmol) were added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $-78{ }^{\circ} \mathrm{C}$, shaken and placed in an NMR probe that had been pre-cooled to $-20^{\circ} \mathrm{C}$. The reaction was monitored periodically by ${ }^{1} \mathrm{H}$ NMR at $-20^{\circ} \mathrm{C}$ until after 30 min , when the reaction quotient $\mathrm{Q}_{\mathbf{2 e} / 2 \mathbf{c}}=[\mathbf{3 d}][\mathbf{2 c}][\mathbf{3 c}]^{-1}[\mathbf{2 d}]^{-1}$ reached a constant value. Additional $\mathbf{2 d}(0.14 \mathrm{mmol})$ was added by
vacuum transfer to change the $\mathbf{2 c} / \mathbf{2 d}$ ratio, and the tube was monitored by ${ }^{1} \mathrm{H}$ NMR at $-20{ }^{\circ} \mathrm{C}$ until $\mathrm{Q}_{2 \mathrm{~d} / 2 \mathrm{c}}$ again reached a constant value. The process was repeated one more time and the average $K_{2 \mathrm{~d} / 2 \mathrm{c}}$ value is reported in Table 2 of the text.
4.2 Competitive binding of ethylene and $\mathrm{CH}_{2}=\mathbf{C H O R}(2 \mathrm{a}-\mathrm{c}, 2 \mathrm{~g})$ to $1\left[\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $-60{ }^{\circ} \mathbf{C}$ (eq 4). The procedure for $\mathbf{2 a}$ is described here; an identical procedure was used for $\mathbf{2 b}$, $\mathbf{2 c}, \mathbf{2 f}, \mathbf{2 g}$. An NMR tube was charged with (α-diimine) $\mathrm{PdMeCl}(11.2 \mathrm{mg}, 0.0199 \mathrm{mmol})$ and $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](17.5 \mathrm{mg}, 0.0196 \mathrm{mmol}) . \mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$ and shaken. Ethylene (0.062 mmol) and 2a (0.040 mmol) were added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $-78{ }^{\circ} \mathrm{C}$, shaken, and placed in an NMR probe that had been pre-cooled to $-60^{\circ} \mathrm{C}$. The reaction was monitored periodically by ${ }^{1} \mathrm{H}$ NMR at $-60{ }^{\circ} \mathrm{C}$ until after 1 h , when the reaction quotient $\mathrm{Q}_{\text {2a/ethylene }}=[\mathbf{3 a}]\left[\mathrm{CH}_{2}=\mathrm{CH}_{2}\right]\left[(\alpha \text {-diimine }) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)^{+}\right]^{-1}[\mathbf{2 a}]^{-1}$ reached a constant value. Additional 2a (0.062 mmol) was added by vacuum transfer to change the ethylene $/ \mathbf{2 a}$ ratio, and the tube was monitored by ${ }^{1} \mathrm{H}$ NMR at $-60{ }^{\circ} \mathrm{C}$ until $\mathrm{Q}_{2 \text { aethylene }}$ reached a constant value again.

5. Reaction of $\mathrm{CH}_{2}=\mathrm{CHO}^{\mathrm{t}} \mathrm{Bu}$ (2a) with $1\left[\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$.

5.1 Kinetics of insertion of $\mathbf{3 a}\left[\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{4}\right]$. The first-order rate constant for the consumption of $\mathbf{3 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right], k_{\text {insert, } 3 \mathrm{a}}$, was measured by the disappearance of the $\mathrm{Pd} M e^{1} \mathrm{H}$ NMR resonance and the increase of the $\mathrm{PdCH}_{2} \mathrm{CHMe}$ resonance of $\mathbf{4 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ plus the $\mathrm{PdCMe} 2_{2}$ resonance of $\mathbf{5 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, both at $0{ }^{\circ} \mathrm{C}$ and at $20^{\circ} \mathrm{C}$.

Figure 5.1. First-order consumption of $\mathbf{3 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $0^{\circ} \mathrm{C}$.

Figure 5.2. First-order consumption of $\mathbf{3 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $0{ }^{\circ} \mathrm{C}$ based on the increase of the sum of $\mathbf{4 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]+\mathbf{5 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 5.3. First-order consumption of $\mathbf{3 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20^{\circ} \mathrm{C}$.

$[\mathrm{B}]_{\infty}-[\mathrm{B}] /$	$\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right)\right.$	
$[\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}$	$\left./\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$	Time (s)
1	0	0
0.6694	-0.40137	600
0.4007	-0.91454	1320
0.2921	-1.23066	1800
0.1932	-1.64403	2400
0.113	-2.18037	3180
0.0561	-2.88062	4200
0.0336	-3.39323	4920

Figure 5.4. First-order consumption of $\mathbf{3 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20^{\circ} \mathrm{C}$ based on the increase of the sum of $\mathbf{4 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]+\mathbf{5 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

5.2 Kinetics of the $\boldsymbol{\beta}-\mathbf{O}^{\mathbf{t}} \mathbf{B u}$ elimination of $\mathbf{5 a}\left[\mathbf{B}\left(\mathbf{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and $\mathbf{4 a}\left[\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{4}\right]$. The

 first-order rate constant for consumption of the total of $\mathbf{4 a}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and $\mathbf{5 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right], k_{\beta \text {-OtBu }}$, obs, was measured by the disappearance of the $\mathrm{PdCH}_{2} \mathbf{C H M e}$ resonance of $\mathbf{4 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and the PdCMe_{2} resonance of $\mathbf{5 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and the increase of the $H_{\text {int }}$ resonance of $\mathbf{6}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at 20 ${ }^{\circ} \mathrm{C}$.

Figure 5.5. First-order consumption of the sum of $\mathbf{4 a}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]+\mathbf{5 a}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20^{\circ} \mathrm{C}$.

Figure 5.6. First-order consumption of the sum of $\mathbf{4 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]+\mathbf{5 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20^{\circ} \mathbf{C}$ based on the increase of $\mathbf{6}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

6. Reaction of $1\left[B\left(C_{6} F_{5}\right)_{4}\right]$ with $2 \mathrm{~b}-\mathrm{g}$.

6.1 Reaction of $1\left[\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{4}\right]$ with $\mathbf{C H}_{\mathbf{2}}=\mathbf{C H O E t}(\mathbf{2 b})$. An NMR tube was charged with (α-diimine) $\mathrm{PdMeCl}(14.0 \mathrm{mg}, 0.0249 \mathrm{mmol})$ and $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](22.0 \mathrm{mg}, 0.0246$ $\mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ were added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$, shaken vigorously. After $20 \mathrm{~min}, \mathbf{2 b}(0.0325 \mathrm{mmol})$ were added by vacuum transfer at $-196{ }^{\circ} \mathrm{C}$. The tube was kept at $0{ }^{\circ} \mathrm{C}$ for 10 min . All the volatiles were evacuated and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ $(0.4 \mathrm{~mL})$ was added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$, shaken vigorously and monitored periodically by NMR. NMR analysis showed that after 10 min , a mixture of $\left[\{(\alpha \text {-diimine }) \mathrm{PdMe}\}_{2}(\mu-\mathrm{Cl})\right]^{+}(8 \%),\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOEt}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ $\left(\mathbf{3 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right], 27 \%\right),\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OEt}) \mathrm{Me}\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\left(\mathbf{4 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right], 18 \%\right)$, $\left[(\alpha\right.$-diimine $\left.) P d\left\{\mathrm{CMe}_{2}(\mathrm{OEt})\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\left(\mathbf{5 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right], 35 \%\right), \mathbf{6}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](12 \%)$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(12 \%)$ was present. After $1 \mathrm{~h}, 6$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}^{3}$ had formed quantitatively. The S24
α-diimine and OEt ${ }^{1} \mathrm{H}$ NMR resonances of $\mathbf{3} \mathbf{b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right], \mathbf{4} \mathbf{b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and $\mathbf{5 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ overlap. Therefore only key NMR data are listed. Key Data for $\mathbf{4 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]:{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}\right) \delta 4.86\left(\right.$ sextet, $\left.J=7, \mathrm{PdCH}_{2} \mathrm{CH}(\mathrm{OEt}) \mathrm{Me}\right), 3.41\left(\mathrm{q}, \mathrm{J}=7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.20$ $(\mathrm{s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 0.59\left(\mathrm{t}, \mathrm{J}=7,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.37(\mathrm{t}, J=7$, $\left.\mathrm{PdCH} \mathrm{H}^{\prime} \mathrm{CH}(\mathrm{OEt}) \mathrm{Me}\right)$. The $\mathrm{PdCH} H^{\prime} \mathrm{CH}(\mathrm{OEt}) \mathrm{Me}$ and $\mathrm{PdCH}_{2} \mathrm{CH}(\mathrm{OEt}) M e$ resonances are obscured by the α-diimine resonances. Key Data for $\mathbf{5 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]:{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}\right)$ $\delta 3.56\left(\mathrm{q}, \mathrm{J}=7,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.92\left(\mathrm{septa}, \mathrm{J}=7,1 \mathrm{H}, \mathrm{C} H \mathrm{Ce}_{2}\right), 2.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.19(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 1.41\left(\mathrm{~d}, \mathrm{~J}=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.39\left(\mathrm{~d}, \mathrm{~J}=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.29(\mathrm{~d}, \mathrm{~J}=7,6 \mathrm{H}$, $\left.\mathrm{CHMe} e_{2}\right), 1.16\left(\mathrm{~d}, \mathrm{~J}=7,6 \mathrm{H}, \mathrm{CHMe} e_{2}\right), 0.60\left(\mathrm{~s}, \mathrm{PdCMe}_{2}(\mathrm{OEt})\right) 0.55(\mathrm{t}, J=7$, $\left.\mathrm{PdCMe}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)\right)$. The first-order rate constant for the consumption of $\mathbf{3} \mathbf{b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ measured by the disappearance of the $\operatorname{Pd} M e^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert, } 3 \mathrm{c}}=8.01(6) \times 10^{-5} \mathrm{~s}^{-1}$ at $0{ }^{\circ} \mathrm{C}$ and $k_{\text {insert, } 3 \mathrm{c}}=\sim 2.0 \times 10^{-3} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}(\mathrm{ca} .83 \%$ consumption after 15 min$)$. The first-order rate constant for consumption of the total of $\mathbf{4 b}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and $\mathbf{5 b}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ measured by the disappearance of the $\mathrm{PdCH}_{2} \mathbf{C H M e}$ resonance of $\mathbf{4 b}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and the PdCMe 2_{2} resonance of $\mathbf{5 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, or by the appearance of the $\mathrm{H}_{\text {int }}$ resonance of $\mathbf{6}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ is $k_{\beta \text {-OEt, obs }}=9.12(1) \times 10^{-4} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$.

Figure 6.1. First-order consumption of $\mathbf{3 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $0{ }^{\circ} \mathrm{C}$.

Figure 6.2. First-order consumption of $\mathbf{3 b}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $0{ }^{\circ} \mathrm{C}$ based on the increase of the sum of $\mathbf{4 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]+\mathbf{5 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]+\mathbf{6}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 6.3. First-order consumption of the sum of $\mathbf{4 b}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]+\mathbf{5 b}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $0^{\circ} \mathbf{C}$.

Figure 6.4. First-order consumption of the sum of $\mathbf{4 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]+\mathbf{5 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $0^{\circ} \mathrm{C}$ based on increase of $6\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 6.5. First-order consumption of the sum of $\mathbf{4 b}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]+\mathbf{5 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20^{\circ} \mathrm{C}$.

Figure 6.6. First-order consumption of the sum of $\mathbf{4 b}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]+\mathbf{5 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20^{\circ} \mathrm{C}$ based on increase of $6\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.
6.2 Reaction of $1\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with $\mathrm{CH}_{2}=\mathbf{C H O S i M e} 3$ (2c). An NMR tube was charged with (α-diimine) $\mathrm{PdMeCl}(14.0 \mathrm{mg}, 0.0249 \mathrm{mmol})$ and $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](22.0 \mathrm{mg}$, $0.0246 \mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ were added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$, shaken vigorously. After 20min, $\mathbf{2 c}(0.0225 \mathrm{mmol})$ were added by vacuum transfer at $-196{ }^{\circ} \mathrm{C}$. The tube was warmed to $20{ }^{\circ} \mathrm{C}$, shaken vigorously and monitored periodically by NMR. NMR analysis showed that after 10 min, $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMe}_{3}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\left(\mathbf{5 c}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$ had formed quantitatively. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.35(\mathrm{~s}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{sept}, J=7,2 \mathrm{H}, \mathrm{CHMe} 2), 2.95$ (sept, $J=7$, $2 \mathrm{H}, \mathrm{CHMe} 2), 2.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.17(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 1.44\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.40(\mathrm{~d}$, $\left.J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.27\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.16\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.54(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{PdCMe}_{2}\left(\mathrm{OSiMe}_{3}\right)\right),-0.07(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSiMe} 3)$; the aromatic reagion is simpler than expected due to accidental degeneracies. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}\right): \delta 174.2(\mathrm{~N}=\mathrm{CMe}), 170.7(\mathrm{~N}=\mathrm{CMe})$, 143.2, 142.6, 136.5, 135.9, 127.6, 127.2, 124.1, 123.8, $84.5\left(\mathrm{PdCMe}_{2}\left(\mathrm{OSiMe}_{3}\right)\right), 28.7,28.4$, $25.4, \quad 23.4, \quad 23.2, \quad 22.4, \quad 22.2, \quad 20.9, \quad 18.9, \quad-0.3 \quad\left(\mathrm{OSi}_{3} e_{3}\right) . \quad$ ESI-MS: $(\alpha$-dimine $) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMe}_{3}\right)\right\}^{+}$calcd. $m / z=641.3$, found $641.2 . \mathbf{5 c}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ converts to $\mathrm{Me}_{3} \mathrm{SiOH}$ and $\mathbf{6}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] .{ }^{4} \mathrm{Me}_{3} \mathrm{SiOH}$ was slowly converted to $\mathrm{Me}_{3} \mathrm{SiOSiMe}_{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at RT over 1 week.

The first-order rate constant for consumption of $\mathbf{5 c}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ measured by the disappearance of the PdCMe_{2} resonance is $k_{\beta \text {-OSiMe } 3, \text { obs }}=3.22(2) \times 10^{-5} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$. Since $K_{5 \mathrm{c} / 4 \mathrm{c}}$ >20, the actual $\beta-\mathrm{OSiMe}_{3}$ elimination rate constant $k_{\beta \text {-OSiMe3 }}=k_{\beta-\mathrm{OSiMe3} \text {, obs }}\left(K_{\mathbf{5 c / 4 c}}+1\right)>7.35 \times$ $10^{-4} \mathrm{~s}^{-1}$.

Figure 6.7. First-order consumption of $\mathbf{5 c}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20^{\circ} \mathrm{C}$.

Figure 6.8. First-order consumption of $\mathbf{5 c}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20{ }^{\circ} \mathrm{C}$ based on the increase of $\mathbf{6}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.
6.3 Reaction of $\mathbf{5 c}\left[\mathbf{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with $\mathbf{M e C N}$. An NMR tube containing a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{5 c}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](0.020 \mathrm{mmol})$ was frozen at $-196{ }^{\circ} \mathrm{C}$ and $\mathrm{MeCN}(0.040 \mathrm{mmol})$ was added by vacuum transfer. The tube was warmed to $-78^{\circ} \mathrm{C}$, agitated to mix the components, placed in an NMR probe that had been pre-cooled to $-40^{\circ} \mathrm{C}$, and monitored by NMR. ${ }^{1} \mathrm{H}$ NMR spectra showed that after $10 \mathrm{~min}, 36 \%$ of $\mathbf{5 c}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ had been converted to $[\mathbf{4 c}-\mathbf{M e C N}]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. Therefore the tube was warmed to $0{ }^{\circ} \mathrm{C}$ for 10 min to facilitate the reaction of $\mathbf{5 c}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with MeCN. The tube was cooled to $-40^{\circ} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra were recorded and showed that 90 \% of $\mathbf{5 c}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ had been converted to $[\mathbf{4 c}-\mathbf{M e C N}]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. This species decomposes within a few minutes at $20{ }^{\circ} \mathrm{C}$. Key NMR data for $[\mathbf{4 c - M e C N}]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]:{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\left.-40^{\circ} \mathrm{C}\right)$ 8 7.38-7.24 (m, 6H), $\left.3.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PdCH}_{2} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)\right), 2.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHMe})_{2}\right), 2.81$ (m, 2H, CHMe 2), $2.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.21(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 1.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeCN}), 1.44(\mathrm{~m}$, $\left.1 \mathrm{H}, \quad \mathrm{PdCHH} \mathrm{H}^{\prime} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)\right), \quad 1.32\left(\mathrm{~d}, \quad J=7,12 \mathrm{H}, \quad \mathrm{CH} M e_{2}\right), 1.25(\mathrm{~m}, \quad 1 \mathrm{H}$, PdCH $H^{\prime} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)$), $1.17\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.16\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.12(3 \mathrm{H}$, $\mathrm{CH} \mathrm{Me}_{2}$), $1.10\left(3 \mathrm{H}, \mathrm{CHMe} e_{2}\right.$, partially obscured by $\mathrm{Et}_{2} \mathrm{O}$ resonance), $0.93(\mathrm{~d}, J=6,3 \mathrm{H}$, $\left.\mathrm{PdCH}_{2} \mathrm{CH} M e\left(\mathrm{OSiMe}_{3}\right)\right),-0.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSi} M e_{3}\right) . \mathrm{Key}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations $\delta / \delta:\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\left.-40 \quad{ }^{\circ} \mathrm{C}\right) \quad 3.49 \quad\left(\mathrm{PdCH}_{2} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)\right) / 1.44 \quad\left(\mathrm{PdCHH}{ }^{\prime} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)\right) ; \quad 3.49$ $\left(\mathrm{PdCH}_{2} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)\right) / 1.25\left(\mathrm{PdCH} H^{\prime} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)\right) ; 3.49\left(\mathrm{PdCH}_{2} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)\right) / 0.93$ $\left(\mathrm{PdCH}_{2} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)\right) ; 1.44\left(\mathrm{PdCHH}{ }^{\prime} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)\right) / 1.25$ ($\left.\mathrm{PdCH} H{ }^{\prime} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60{ }^{\circ} \mathrm{C}\right): \delta 179.7(\mathrm{~N}=C \mathrm{Me}), 172.1(\mathrm{~N}=C \mathrm{Me}), 139.4,139.1,138.2$, $138.0, \quad 137.2, \quad 137.1,128.6,127.8,124.4,124.3,123.9,123.8,121.6,68.9$ $\left(\mathrm{PdCH}_{2} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)\right), 37.9\left(\mathrm{PdCH}_{2} \mathrm{CHMe}\left(\mathrm{OSiMe}_{3}\right)\right)$, 28.7, 28.5, 25.6, 23.6, 23.4, 23.4, 23.1, 23.0, 22.9, 22.8, 22.7, 22.5, 22.3, 22.0, 19.9, 2.2 (MeCN), -0.4 ($\mathrm{OSi} \mathrm{Me}_{3}$).

6.4 Reaction of $1\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOSiMe} 2 \mathrm{Ph}(2 \mathrm{~d})$.

An NMR tube was charged with (α-diimine) $\mathrm{PdMeCl}(14.0 \mathrm{mg}, 0.0249 \mathrm{mmol}$) and $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](22.0 \mathrm{mg}, 0.0246 \mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ were added by vacuum transfer at $-196{ }^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$, shaken vigorously. After 20min, 2d (0.0224 mmol) were added by syringe at $-196^{\circ} \mathrm{C}$ under nitrogen. The tube was warmed to 20 ${ }^{\circ} \mathrm{C}$, shaken vigorously and monitored periodically by NMR. NMR spectrum showed that $\mathbf{5 d}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ was generated cleanly after 10 min at $\mathrm{RT} . \mathbf{5 d}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ converts to $\mathrm{PhMe}_{2} \mathrm{SiOH}$ and $6\left[\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] .{ }^{5} \mathrm{PhMe}_{2} \mathrm{SiOH}$ was slowly converted to $\mathrm{PhMe}_{2} \mathrm{SiOSiMe}_{2} \mathrm{Ph}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at RT over 1 week.

The first-order rate constant for consumption of of $\mathbf{5 d}$ measured by the disappearance of the PdCMe_{2} resonance is $k_{\beta \text {-OSiMe2Ph, obs }}=5.06(2) \times 10^{-5} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$. The actual first-order rate constant $k_{\beta-\text { OSiPh } 3}=k_{\beta \text {-OSiPh } 3, \text { obs }}\left(K_{5 d / 4 \mathrm{~d}}+1\right)>1.8 \times 10^{-3} \mathrm{~s}^{-1}\left(K_{5 \mathrm{~d} / 4 \mathrm{~d}}>20\right)$.

$[\mathrm{A}] /[\mathrm{A}]_{0}$	$\ln \left([\mathrm{~A}] /[\mathrm{A}]_{0}\right)$	Time (s)
1	0	0
0.92138	-0.08188	1980
0.83677	-0.17821	3780
0.7379	-0.30395	6120
0.65545	-0.42243	8340
0.60408	-0.50405	9960
0.55127	-0.59553	11760
0.09892	-2.31344	45900
0.09021	-2.40561	47760
0.05748	-2.85632	57480
0.04112	-3.19126	62820
0.0215	-3.8397	75540

Figure 6.9. First-order consumption of $\mathbf{5 d}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20^{\circ} \mathrm{C}$.

Figure 6.10. First-order consumption of $\mathbf{5 d}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20{ }^{\circ} \mathrm{C}$ based on the increase of $6\left[\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \cdot \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

6.5 Reaction of $1\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with $\mathrm{CH}_{2}=\mathrm{CHOSiMePh}_{2}(2 \mathrm{e})$.

An NMR tube was charged with (α-diimine) $\mathrm{PdMeCl}(14.0 \mathrm{mg}, 0.0249 \mathrm{mmol}$) and $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](22.0 \mathrm{mg}, 0.0246 \mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ were added by vacuum transfer at $-196{ }^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$, shaken vigorously. After 20min, 2e (0.0242 mmol) were added by syringe at $-196^{\circ} \mathrm{C}$ under nitrogen. The tube was warmed to 20 ${ }^{\circ} \mathrm{C}$, shaken vigorously and monitored periodically by NMR. NMR spectrum showed that $\mathbf{5 e}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ was generated cleanly after 10 min at $\mathrm{RT} . \mathbf{5 e}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ converts to $\mathrm{Ph}_{2} \mathrm{MeSiOH}$ and $6\left[\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] .{ }^{6} \mathrm{Ph}_{2} \mathrm{MeSiOH}$ does not react to generate $\mathrm{Ph}_{2} \mathrm{MeSiOSiMePh}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at RT over 2 weeks.

The first-order rate constant for consumption of of $\mathbf{5 e}$ measured by the disappearance of the PdCMe_{2} resonance is $k_{\beta \text {-OSiMePh2, obs }}=1.34(1) \times 10^{-4} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$. The actual first-order rate constant $k_{\beta-\text { OSiPh } 3}=k_{\beta \text {-OSiPh } 3, \text { obs }}\left(K_{5 d / 4 d}+1\right)>1.8 \times 10^{-3} \mathrm{~s}^{-1}\left(K_{5 \mathrm{~d} / 4 \mathrm{~d}}>20\right)$.

Figure 6.11. First-order consumption of $\mathbf{5 e}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20^{\circ} \mathbf{C}$.

Figure 6.12. First-order consumption of $\mathbf{5 e}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20{ }^{\circ} \mathrm{C}$ based on the increase of $\mathbf{6}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 6.13. First-order consumption of $\mathbf{5 e}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20{ }^{\circ} \mathrm{C}$ based on the increase of $\mathrm{Ph}_{2} \mathrm{MeSiOH} . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.
6.6 Reaction of $\mathbf{1}\left[\mathbf{B}\left(\mathrm{C}_{6} \mathbf{F}_{5}\right)_{4}\right]$ with $\mathbf{C H}_{2}=\mathbf{C H O S i P h}_{3}$ (2f). An NMR tube was charged with (α-diimine) $\mathrm{PdMeCl}(14.0 \mathrm{mg}, 0.0249 \mathrm{mmol})$ and $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](22.0 \mathrm{mg}$, $0.0246 \mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ were added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$, shaken vigorously. After $20 \mathrm{~min}, \mathbf{2 f}(0.0232 \mathrm{mmol})$ were added by syringe at $-196{ }^{\circ} \mathrm{C}$ under nitrogen. The tube was warmed to $20^{\circ} \mathrm{C}$, shaken vigorously and monitored periodically by NMR. NMR analysis showed that after 10 min at $20{ }^{\circ} \mathrm{C}$, $\left[\{(\alpha \text {-diimine }) \mathrm{PdMe}\}_{2}(\mu-\mathrm{Cl})\right]^{+} \quad(14 \quad \%), \quad$ free \quad 2f $(17 \quad \%)$, $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{5 f}, 64 \%)$ and $\mathbf{6}(2 \%)$ were present. After 20 min the free $\mathbf{2 f}$ was completely consumed, and a mixture of $\left[\{(\alpha \text {-diimine }) \operatorname{PdMe}\}_{2}(\mu-\mathrm{Cl})\right]^{+}(6 \%), \mathbf{5 f}$ (65%) and $6(11 \%)$ was present. The resonances of the elimination product $\mathrm{Ph}_{3} \mathrm{SiOH}$ overlaped with other resonances. But $\mathrm{Ph}_{3} \mathrm{SiOH}$ was isolated by hexanes wash after the elimination, and it does not react to generate $\mathrm{Ph}_{3} \mathrm{SiOSiPh}_{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature over

2 weeks. ${ }^{7}$ ESI-MS: $(\alpha$-diimine $) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right\}^{+}$calcd. $m / z=827.4$, found 827.2. Key NMR Data for 5d: ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)^{8} \delta 7.45\left(\mathrm{~d}, J=8, \mathrm{H}_{\text {ortho }}\right.$ of $\left.\mathrm{OSi} P h_{3}\right), 7.31\left(\mathrm{~m}, \mathrm{OSi}^{2} P h_{3}\right)$, 7.28 (m, OSiPh $), 3.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHMe}_{2}\right), 2.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHMe}_{2}\right), 2.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.11(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 1.35(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CHMe} 2), 1.19\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.16(\mathrm{~d}, J=7,6 \mathrm{H}$, $\left.\mathrm{CHMe} e_{2}\right), 1.13(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CHMe}), 0.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{PdCMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\left.-40{ }^{\circ} \mathrm{C}\right): \delta 175.0(\mathrm{~N}=C \mathrm{Me}), 172.1(\mathrm{~N}=C \mathrm{Me}), 142.9,142.4,137.1,136.6,134.8,131.4,128.3$, 127.9, 127.7, 124.4, 124.1, $87.2\left(\mathrm{PdCMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right)$, 28.9, 28.6, 26.1, 23.8, 23.5, 22.9, 22.7, 21.6, 19.6. The $\mathrm{C}_{\text {ipso }}$ signal of OSiPh_{3} was obscured.

The first-order rate constant for consumption of of $\mathbf{5 f}$ measured by the disappearance of the PdCMe_{2} resonance is $k_{\beta \text {-OSiPh3, obs }}=1.071(5) \times 10^{-4} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$. The actual first-order rate constant $k_{\beta \text {-OSiPh3 }}=k_{\beta-\text { OSiPh } 3, \text { obs }}\left(K_{5 f / 4 \mathrm{f}}+1\right)>1.8 \times 10^{-3} \mathrm{~s}^{-1}\left(K_{5 f / 4 \mathrm{f}}>20\right)$.

Figure 6.14. First-order consumption of $\mathbf{5 f}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20^{\circ} \mathrm{C}$.

Figure 6.15. First-order consumption of $\mathbf{5 f}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ at $20{ }^{\circ} \mathrm{C}$ based on the increase of $\mathbf{6}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.
6.7 Reaction of $\mathbf{5 f}\left[\mathbf{B}\left(\mathrm{C}_{6} \mathbf{F}_{5}\right)_{4}\right]$ with $\mathbf{M e C N}$. An NMR tube containing a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{5 f}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](0.020 \mathrm{mmol})$ was frozen at $-196^{\circ} \mathrm{C}$ and $\mathrm{MeCN}(0.030 \mathrm{mmol})$ was added by vacuum transfer. The tube was warmed to $-78^{\circ} \mathrm{C}$, agitated to mix the components, placed in an NMR probe that had been pre-cooled to $-60^{\circ} \mathrm{C}$, and monitored by NMR. ${ }^{1} \mathrm{H}$ NMR spectra showed that after 5 min , complex $\mathbf{5 f}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ had been converted cleanly to [4f-MeCN][B($\left.\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60{ }^{\circ} \mathrm{C}\right): \delta 7.58\left(\mathrm{t}, J=8,3 \mathrm{H}, \mathrm{H}_{\text {para }}\right.$ of $\left.\mathrm{OSiPh}_{3}\right), 7.43$ $\left(\mathrm{d}, J=7,6 \mathrm{H}, \mathrm{H}_{\text {ortho }}\right.$ of $\left.\mathrm{OSiPh}_{3}\right), 3.66\left(\mathrm{q}, J=6,1 \mathrm{H}, \mathrm{PdCH}_{2} \mathrm{CHMe}\left(\mathrm{OSiPh}_{3}\right)\right), 2.92(\mathrm{sept}, J=7$, $1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), $2.75\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right.$), $2.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}$), 2.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}$), 1.99 (br s, $M e \mathrm{CN}), 1.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PdC} H \mathrm{H}^{\prime} \mathrm{CHMe}\left(\mathrm{OSiPh}_{3}\right)\right), 1.31\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.23(\mathrm{~d}, J=7,3 \mathrm{H}$, $\left.\mathrm{CH} M e_{2}\right), 1.15\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.14\left(\mathrm{~d}, J=7,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.12\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH} M e_{2}\right.$, partially obscured by $\mathrm{Et}_{2} \mathrm{O}$ resonance), $1.05\left(\mathrm{~d}, J=6,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.04\left(\mathrm{~d}, J=6,3 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.99(\mathrm{~d}$, $\left.J=6,3 \mathrm{H}, \mathrm{PdCH}_{2} \mathrm{CH} M e\left(\mathrm{OSiPh}_{3}\right)\right), 0.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PdCH} H{ }^{\prime} \mathrm{CHMe}\left(\mathrm{OSiPh}_{3}\right)\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$
$\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-60^{\circ} \mathrm{C}\right): \delta 179.6(\mathrm{~N}=C \mathrm{Me}), 172.3(\mathrm{~N}=C \mathrm{Me}), 139.2,139.1,138.2,137.8,137.1,137.0$, $135.0,134.6,134.3,129.8,127.9,127.7,127.5,124.4,124.3,123.9,123.7,121.0\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, $71.5\left(\mathrm{PdCH}_{2} \mathrm{CHMe}\left(\mathrm{OSiPh}_{3}\right)\right), 38.9\left(\mathrm{PdCH}_{2} \mathrm{CHMe}\left(\mathrm{OSiPh}_{3}\right)\right)$, 28.8, 28.7, 28.6, 28.5, 25.1, 23.6, 23.3, 23.12, 23.08, 23.0, 22.8 (2C), 22.6, 22.0, 19.9, 1.1 (MeCN).
6.8 Reaction of $1\left[B\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{4}\right]$ with $\mathbf{C H}_{\mathbf{2}}=\mathbf{C H O P h}(2 g)$. An NMR tube was charged with (α-diimine) $\mathrm{PdMeCl}(11.1 \mathrm{mg}, 0.0198 \mathrm{mmol})$ and $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](18.4 \mathrm{mg}, 0.0206$ $\mathrm{mmol}) . \mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ and $\mathbf{2 g}(0.021 \mathrm{mmol})$ were added by vacuum transfer at $-196^{\circ} \mathrm{C}$. The tube was warmed to $20^{\circ} \mathrm{C}$, shaken vigorously, and monitored periodically by NMR. NMR analysis showed that after $10 \mathrm{~min}, \mathbf{6}$ and phenol had formed quantitatively.

7. Reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with 2a-g.

7.1 Reaction of $1\left[\mathbf{S b F}_{6}\right]$ with $\mathbf{C H}_{\mathbf{2}}=\mathbf{C H O}^{\mathbf{t}} \mathbf{B u}$ (2a). An NMR tube was charged with $\mathbf{1}\left[\mathrm{SbF}_{6}\right](14.9 \mathrm{mg}, 0.0178 \mathrm{mmol})$ and $\mathbf{2 a}(0.0325 \mathrm{mmol}) . \mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added by vacuum transfer at $-196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum at $-60{ }^{\circ} \mathrm{C}$ confirmed the formation of $\mathbf{3 a}\left[\mathrm{SbF}_{6}\right]$. The tube was kept at $0{ }^{\circ} \mathrm{C}$ for 10 min . All the volatiles were evacuated and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added by vacuum transfer at $-196{ }^{\circ} \mathrm{C}$. The tube was warmed to $0{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. Complex $\mathbf{3 a}\left[\mathrm{SbF}_{6}\right]$ was converted to $\mathbf{4 a}\left[\mathrm{SbF}_{6}\right]$ and $\mathbf{5 a}\left[\mathrm{SbF}_{6}\right]$. The NMR resonances of $\mathbf{4 a}\left[\mathrm{SbF}_{6}\right]$ and $\mathbf{5 a}\left[\mathrm{SbF}_{6}\right]$ is very similar to $\mathbf{4 a}\left[\mathbf{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and $\mathbf{5 a}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. The first-order rate constant for the consumption of $\mathbf{3 a}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\operatorname{Pd} M e{ }^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert, }} \mathbf{3 c}=3.29(2) \times 10^{-5} \mathrm{~s}^{-1}$ at $0{ }^{\circ} \mathrm{C}$. After $\mathbf{3 a}\left[\mathrm{SbF}_{6}\right]$ is fully consumed, the tube was warmed to $20{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. NMR analysis showed a mixture of $\mathbf{4 a}\left[\mathrm{SbF}_{6}\right](66 \%), \mathbf{5 a}\left[\mathrm{SbF}_{6}\right](22 \%)$ and $\mathbf{6}\left[\mathrm{SbF}_{6}\right](12 \%)$ was present after 5 min . The first-order rate constant for the consumption of $\mathbf{3 a}\left[\mathrm{SbF}_{6}\right]$ measured by the
disappearance of the $\operatorname{Pd} M e{ }^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert, } 3 \mathrm{c}}=3.29(2) \times 10^{-5} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$ and $k_{\text {insert, }}$, $3 \mathrm{c}=6.33(5) \times 10^{-4} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$. The first-order rate constant for consumption of the total of $\mathbf{4 a}\left[\mathrm{SbF}_{6}\right]$ and $\mathbf{5 a}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\mathrm{PdCH}_{2} \mathbf{C H M e}$ resonance of $\mathbf{4 a}\left[\mathrm{SbF}_{6}\right]$ and the $\mathrm{PdCMe} e_{2}$ resonance of $\mathbf{5 a}\left[\mathrm{SbF}_{6}\right]$ is $k_{\beta-\mathrm{OtBu}, \text { obs }}=1.50(2) \times 10^{-5} \mathrm{~s}^{-1}$ at $20^{\circ} \mathbf{C}$.

Figure 7.1. First-order consumption of $\mathbf{3 a}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$.

Figure 7.2. First-order consumption of $\mathbf{3 a}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$ based on increase of the sum of $\mathbf{4 a}\left[\mathrm{SbF}_{6}\right]+\mathbf{5 a}\left[\mathrm{SbF}_{6}\right] \cdot \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 7.3. First-order consumption of $\mathbf{3 a}\left[\mathrm{SbF}_{6}\right]$ at $20^{\circ} \mathrm{C}$.

Figure 7.4. First-order consumption of $\mathbf{3 a}\left[\mathrm{SbF}_{6}\right]$ at $20^{\circ} \mathrm{C}$ based on the increase of the sum of
$\mathbf{4 a}\left[\mathrm{SbF}_{6}\right]+\mathbf{5 a}\left[\mathrm{SbF}_{6}\right]+\mathbf{6}\left[\mathrm{SbF}_{6}\right] \cdot \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

		$[\mathrm{A}] /[\mathrm{A}]_{0}$	$\ln \left([\mathrm{A}] /[\mathrm{A}]_{0}\right)$ 0	Time(s)
		0.95849	-0.0424	2400
		0.8945	-0.11149	6060
	$\begin{aligned} & \begin{array}{l} y=-1.50(2) E-5 x-0.0224 \\ R=0.997 \end{array} \end{aligned}$	0.8105	-0.2101	13980
		0.741	-0.29975	20400
		0.6992	-0.35782	23820
		0.65734	-0.41955	28380
		0.6361	-0.4524	33600
		0.6145	-0.48695	36780
		0.3723	-0.98806	69900
		0.3616	-1.01722	74220
-2.0-		0.3279	-1.11505	78960
		0.241	-1.42296	96720
-2.5-	-	0.221	-1.50959	102060
-20000	120000400006000008000014000001200001400000616000018000	0.2	-1.60944	111060
	time (sec)	0.0907	-2.4002	159420
		0.07851	-2.54453	165900

Figure7.5. First-order consumption of the sum of $\mathbf{4 a}\left[\mathrm{SbF}_{6}\right]+\mathbf{5 a}\left[\mathrm{SbF}_{6}\right]$ at $20^{\circ} \mathbf{C}$.

$[\mathrm{B}]_{\infty}-[\mathrm{B}] /$	$\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\right.$	
$[\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}$	$\left.\left([\mathrm{~B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$	Time (s)
1	0	0
0.97674	-0.02353	2400
0.909	-0.09541	7140
0.844	-0.1696	13980
0.8019	-0.22077	20400
0.7769	-0.25244	23820
0.7386	-0.303	28380
0.6976	-0.36011	33600
0.6698	-0.40078	36780
0.4266	-0.85191	69900
0.404	-0.90634	74220
0.38385	-0.9575	78960
0.2925	-1.22929	96720
0.2682	-1.31602	102060
0.2388	-1.43213	111060
0.127	-2.06357	159420
0.1232	-2.09395	165900

Figure 7.6. First-order consumption of the sum of $\mathbf{4 a}\left[\mathrm{SbF}_{6}\right]+\mathbf{5 a}\left[\mathrm{SbF}_{6}\right]$ at $20{ }^{\circ} \mathbf{C}$ based on increase of $6\left[\mathrm{SbF}_{6}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.
7.2 Reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with $\mathbf{C H}_{\mathbf{2}}=\mathbf{C H O E t}$ (2b). An NMR tube was charged with $\mathbf{1}\left[\mathrm{SbF}_{6}\right](14.9 \mathrm{mg}, 0.0178 \mathrm{mmol})$ and $\mathbf{2 b}(0.0325 \mathrm{mmol}) . \mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added by vacuum transfer at $-196^{\circ} \mathrm{C}$. A ${ }^{1} \mathrm{H}$ NMR spectrum at $-60^{\circ} \mathrm{C}$ confirmed the formation of $\mathbf{3 b}\left[\mathrm{SbF}_{6}\right]$. The tube was kept at $0{ }^{\circ} \mathrm{C}$ for 10 min . All the volatiles were evacuated and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added by vacuum transfer at $-196{ }^{\circ} \mathrm{C}$. The tube was warmed to $0{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. Complex $\mathbf{3 b}\left[\mathrm{SbF}_{6}\right]$ was converted to $\mathbf{4 b}\left[\mathrm{SbF}_{6}\right]$ and $\mathbf{5 b}\left[\mathrm{SbF}_{6}\right]$. The NMR resonances of $\mathbf{4 b}\left[\mathrm{SbF}_{6}\right]$ and $\mathbf{5 b}\left[\mathrm{SbF}_{6}\right]$ is very similar to $\mathbf{4 b}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and $\mathbf{5 b}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. The first-order rate constant for the consumption of $\mathbf{3 b}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\mathrm{Pd} M e{ }^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert, }} \mathbf{c}=8.41(6) \times 10^{-5} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$. After $\mathbf{3 b}\left[\mathrm{SbF}_{6}\right]$ is fully consumed, the tube was warmed to $20{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. NMR analysis showed a mixture of $\mathbf{4 b}\left[\mathrm{SbF}_{6}\right](13 \%), \mathbf{5 b}\left[\mathrm{SbF}_{6}\right](27 \%)$ and $\mathbf{6}\left[\mathrm{SbF}_{6}\right](60 \%)$ was present
after 5 min . The first-order rate constant for consumption of the total of $\mathbf{4 a}\left[\mathrm{SbF}_{6}\right]$ and $\mathbf{5 a}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\mathrm{PdCH}_{2} \mathbf{C H M e}$ resonance of $\mathbf{4 b}\left[\mathrm{SbF}_{6}\right]$ and the $\mathrm{PdCMe}{ }_{2}$ resonance of $\mathbf{5 b}\left[\mathrm{SbF}_{6}\right]$ is $k_{\beta-\mathrm{OtBu}, \text { obs }}=1.200(8) \times 10^{-3} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$. The first-order rate constant for the consumption of $\mathbf{3} \mathbf{b}\left[\mathrm{SbF}_{6}\right]$ estimated by the disappearance of the $\mathrm{Pd} M e{ }^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert, } 3 \mathrm{c}}=\sim 2.7 \times 10^{-3} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$ (ca. 56% consumption after 5 min).

Figure 7.7. First-order consumption of $\mathbf{3 b}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$.

Figure 7.8. First-order consumption of $\mathbf{3 b}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$ based on increase of the sum of $\mathbf{4 b}\left[\mathrm{SbF}_{6}\right]+\mathbf{5 b}\left[\mathrm{SbF}_{6}\right]+\mathbf{6}\left[\mathrm{SbF}_{6}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 7.9. First-order consumption of the sum of $\mathbf{4 b}\left[\mathrm{SbF}_{6}\right]+\mathbf{5 b}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$. $\mathrm{B}=$ $\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 7.10. First-order consumption of the sum of $\mathbf{4 b}\left[\mathrm{SbF}_{6}\right]+\mathbf{5 b}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$ based on increase of $\mathbf{6}\left[\mathrm{SbF}_{6}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 7.11. First-order consumption of the sum of $\mathbf{4 b}\left[\mathrm{SbF}_{6}\right]+\mathbf{5 b}\left[\mathrm{SbF}_{6}\right]$ at $20^{\circ} \mathbf{C}$.

Figure 7.12. First-order consumption of the sum of $\mathbf{4 b}\left[\mathrm{SbF}_{6}\right]+\mathbf{5 b}\left[\mathrm{SbF}_{6}\right]$ at $20{ }^{\circ} \mathrm{C}$ based on increase of $6\left[\mathrm{SbF}_{6}\right] . \mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

7.3 Simulation of the concentration data for the reaction of $1\left[\mathrm{SbF}_{6}\right]$ with $\mathbf{2 b}$.

The first-order rate constant for the consumption of $\mathbf{3 b}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\operatorname{Pd} M e{ }^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert, } \mathbf{3 b}}=8.41(6) \times 10^{-5} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$. The first-order rate constant for consumption of the total of $\mathbf{4 b}\left[\mathrm{SbF}_{6}\right]$ and $\mathbf{5 b}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\mathrm{PdCH}_{2} \mathbf{C H M e}$ resonance of $\mathbf{4 b}\left[\mathrm{SbF}_{6}\right]$ and the $\mathrm{PdCMe}{ }_{2}$ resonance of $\mathbf{5 b}\left[\mathrm{SbF}_{6}\right]$ is $k_{\beta-\mathrm{OtBu} \text {, obs }}=2.65(3) \times 10^{-5} \mathrm{~s}^{-1}$ at $0{ }^{\circ} \mathrm{C}$. By using these two rate constants, simulation ${ }^{9}$ was performed to demonstrate the change in concentrations of $\mathbf{3} \mathbf{b}\left[\mathrm{SbF}_{6}\right], \mathbf{4 b}\left[\mathrm{SbF}_{6}\right]$, $\mathbf{5 b}\left[\mathrm{SbF}_{6}\right]$ and $\mathbf{6}\left[\mathrm{SbF}_{6}\right]$ over time. The simulated data agree very well with the experimental data. Similarly, the comparison between the simulated data and the experimental data was carried out for the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$ anion, which also shows good agreement.

Based on the simulation results, it is concluded that the rate constants determined from the experimental data are very reliable. The comparison of the $k_{\text {insert, } \mathbf{3 b}}$ between SbF_{6} anion
and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$ anion both at $0^{\circ} \mathrm{C}$ and at $20^{\circ} \mathrm{C}$ showed that the anion only has minimal affect on the insertion rate (Table 2, 3). The similar comparison of the $k_{\text {insert, 3a }}$ gave the same conclusion.

Figure 7.13. The experimental and simulated concentration vs time plot for SbF_{6} anion. Series 1-3 are the simulated concentration of $\mathbf{3 b}, \mathbf{4 b}+\mathbf{5 b}$ and $\mathbf{6}$ over time, by using $k_{\text {insert }, 3}=$ $8.41 \times 10^{-5} \mathrm{~s}^{-1}$, and $k_{\beta-\text { OR, obs }}=2.65 \times 10^{-5} \mathrm{~s}^{-1}$. Series 4-6 are the experimental concentration of 3b, $\mathbf{4 b}+\mathbf{5 b}$ and $\mathbf{6}$ over time.

Figure 7.14. The experimental and simulated concentration vs time plot for $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$ anion. Series 1-3 are the simulated concentration of $\mathbf{3 b}, \mathbf{4 b}+\mathbf{5 b}$ and $\mathbf{6}$ over time, by using $k_{\text {insert }, 3}=$ $8.01 \times 10^{-5} \mathrm{~s}^{-1}$, and $k_{\beta-\mathrm{OR} \text {, obs }}=1.94 \times 10^{-5} \mathrm{~s}^{-1}$. Series 4-6 are the experimental concentration of $\mathbf{3 b}$, $\mathbf{4 b}+\mathbf{5 b}$ and $\mathbf{6}$ over time.
7.4 Reaction of $1\left[\mathrm{SbF}_{6}\right]$ with $\mathbf{C H}_{\mathbf{2}}=\mathbf{C H O S i M e} 3$ (2c). An NMR tube was charged with $\mathbf{1}\left[\mathrm{SbF}_{6}\right](14.9 \mathrm{mg}, 0.0178 \mathrm{mmol})$ and $\mathbf{2 c}(0.027 \mathrm{mmol}) . \mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added by vacuum transfer at $-196^{\circ} \mathrm{C}$. A ${ }^{1} \mathrm{H}$ NMR spectrum at $-60^{\circ} \mathrm{C}$ confirmed the formation of $\mathbf{3 c}\left[\mathrm{SbF}_{6}\right]$. The tube was warmed to $0{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. Complex $\mathbf{3 c}\left[\mathrm{SbF}_{6}\right]$ was converted to $\mathbf{5 c}\left[\mathrm{SbF}_{6}\right]$. The NMR resonances of $\mathbf{5 c}\left[\mathrm{SbF}_{6}\right]$ is very similar to $\mathbf{5 c}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. The first-order rate constant for the consumption of $\mathbf{3 c}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\mathrm{Pd} M e{ }^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert, } \mathbf{3 c}}=1.645(7) \times 10^{-4} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$. After $\mathbf{3 c}\left[\mathrm{SbF}_{6}\right]$ is fully consumed, the tube was warmed to $20{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. Complex $\mathbf{5 c}\left[\mathrm{SbF}_{6}\right]$ was converted to $\mathbf{6}\left[\mathrm{SbF}_{6}\right]$. The first-order rate constant for consumption of $\mathbf{5 c}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the PdCMe_{2} resonance is $k_{\beta \text {-OSiMe } 3, \text { obs }}=1.11(2) \times 10^{-4} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$.

Figure 7.15. First-order consumption of $\mathbf{3 c}\left[\mathrm{SbF}_{6}\right]$ at $0^{\circ} \mathrm{C}$.

Figure 7.16. First-order consumption of $\mathbf{3 c}\left[\mathrm{SbF}_{6}\right]$ at $0^{\circ} \mathrm{C}$ based on increase of $\mathbf{4 c}\left[\mathrm{SbF}_{6}\right] . \mathrm{B}=$ $\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 7.17. First-order consumption of $\mathbf{5 c}\left[\mathrm{SbF}_{6}\right]$ at $20^{\circ} \mathrm{C}$.

$[\mathrm{B}]_{\infty}-[\mathrm{B}] /$	$\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\right.$	
$[\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}$	$\left.\left([\mathrm{~B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$	Time (s)
1	0	0
0.9796	-0.02061	360
0.9394	-0.06251	900
0.7112	-0.3408	4020
0.6183	-0.48078	5460
0.4583	-0.78023	8400
0.2629	-1.33598	12360
0.1651	-1.8012	15660
0.0842	-2.47456	22920
0.0352	-3.34671	30300

Figure 7.18. First-order consumption of $\mathbf{5 c}\left[\mathrm{SbF}_{6}\right]$ at $20^{\circ} \mathrm{C}$ based on increase of $\mathbf{6}\left[\mathrm{SbF}_{6}\right] . \mathrm{B}=$ $\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.
7.5 Reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with $\mathbf{C H}_{\mathbf{2}}=\mathbf{C H O S i M e} \mathbf{2}_{2} \mathbf{P h}$ (2d). A NMR tube was charged with (α-diimine) $\mathrm{PdMeCl}(16.3 \mathrm{mg}, 29.0 \mu \mathrm{~mol}), \mathrm{AgSbF}_{6}(10 \mathrm{mg}, 29.1 \mu \mathrm{~mol})$ and $\mathrm{CH}_{2}=\mathrm{CHOSiMe} 2 \mathrm{Ph}(5.2 \mathrm{mg}, 29.2 \mu \mathrm{~mol})$, and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added by vacuum transfer
at $-78{ }^{\circ} \mathrm{C}$. The tube was shaken to dissolve and thoroughly mix the components. A ${ }^{1} \mathrm{H}$ NMR spectrum at $-60{ }^{\circ} \mathrm{C}$ confirmed the formation of $\mathbf{3 d}\left[\mathrm{SbF}_{6}\right]$. The tube was warmed to $0{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. Complex $\mathbf{3 d}\left[\mathrm{SbF}_{6}\right]$ was converted to $\mathbf{5 d}\left[\mathrm{SbF}_{6}\right]$. Key NMR Data for 5d[SbF ${ }_{6}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 3.05\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.21(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 1.46\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.38\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.30(\mathrm{~d}, J=7,6 \mathrm{H}$, $\mathrm{CHMe} 2), 1.18(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CHMe} 2), 0.38\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{PdCMe}_{2}\left(\mathrm{OSiMe}_{2} \mathrm{Ph}\right)\right), 0.19\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right)$. The first-order rate constant for the consumption of $\mathbf{3 d}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\mathrm{Pd} M e{ }^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert, } 3 \mathrm{~d}}=3.18(5) \times 10^{-4} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$. After $\mathbf{3 d}\left[\mathrm{SbF}_{6}\right]$ is fully consumed, the tube was warmed to $20{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. Complex $\mathbf{5 d}\left[\mathrm{SbF}_{6}\right]$ was converted to $\mathbf{6}\left[\mathrm{SbF}_{6}\right]$. The first-order rate constant for consumption of $\mathbf{5 d}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\mathrm{PdCMe} e_{2}$ resonance is $k_{\beta \text {-OSiMe2Ph }, \text { obs }}=1.56(3) \times 10^{-4} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$.

Figure 7.19. First-order consumption of $\mathbf{3 d}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$.

Figure 7.20. First-order consumption of $\mathbf{3 d}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$ based on increase of $\mathbf{4 d}\left[\mathrm{SbF}_{6}\right] . \mathrm{B}=$ $\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 7.21. First-order consumption of $\mathbf{5 d}\left[\mathrm{SbF}_{6}\right]$ at $20^{\circ} \mathrm{C}$.

| |
| ---: | :--- | ---: | ---: | ---: |

Figure 7.22. First-order consumption of $\mathbf{5 d}\left[\mathrm{SbF}_{6}\right]$ at $20^{\circ} \mathrm{C}$ based on the increase of $\mathbf{6}\left[\mathrm{SbF}_{6}\right]$. B $=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.
7.6 Reaction of $\mathbf{1}\left[\mathrm{SbF}_{6}\right]$ with $\mathrm{CH}_{2}=\mathbf{C H O S i M e P h} \mathbf{2}_{\mathbf{2}}$ (2e). A NMR tube was charged with (α-diimine) $\mathrm{PdMeCl}(16.3 \mathrm{mg}, 29.0 \mu \mathrm{~mol}), \mathrm{AgSbF}_{6}(10 \mathrm{mg}, 29.1 \mu \mathrm{~mol})$ and $\mathrm{CH}_{2}=\mathrm{CHOSiMePh} 2(6.9 \mathrm{mg}, 29.1 \mu \mathrm{~mol})$, and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added by vacuum transfer at $-78^{\circ} \mathrm{C}$. The tube was shaken to dissolve and thoroughly mix the components. A ${ }^{1} \mathrm{H}$ NMR spectrum at $-60{ }^{\circ} \mathrm{C}$ confirmed the formation of $3 \mathrm{e}\left[\mathrm{SbF}_{6}\right]$. The tube was warmed to $0{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. Complex $\mathbf{3 e}\left[\mathrm{SbF}_{6}\right]$ was converted to $\mathbf{5 e}\left[\mathrm{SbF}_{6}\right]$. Key NMR Data for $\mathbf{5 e}\left[\mathrm{SbF}_{6}\right]:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 3.06\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 2.18(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{N}=\mathrm{CMe}), 1.37\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.30\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 1.25(\mathrm{~d}, J=7,6 \mathrm{H}$, $\mathrm{CHMe} 2), 1.16\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.57(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 0.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{PdCMe}_{2}\left(\mathrm{OSiMePh}_{2}\right)\right)$. The first-order rate constant for the consumption of $\mathbf{3 e}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\operatorname{Pd} M e{ }^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert, } 3 \mathrm{~d}}=5.22(7) \times 10^{-4} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$. After $\mathbf{3 e}\left[\mathrm{SbF}_{6}\right]$ is fully consumed, the tube was warmed to $20{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. Complex
$\mathbf{5 e}\left[\mathrm{SbF}_{6}\right]$ was converted to $\mathbf{6}\left[\mathrm{SbF}_{6}\right]$. The first-order rate constant for consumption of $\mathbf{5 e}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\mathrm{PdCMe} e_{2}$ resonance is $k_{\beta-\text { OSiMePh2, obs }}=2.46(4) \times 10^{-4} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$.

Figure 7.23. First-order consumption of $\mathbf{3 e}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$.

Figure 7.24. First-order consumption of $\mathbf{3 e}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$ based on increase of $\mathbf{4 e} . \mathrm{B}=$ $\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 7.25. First-order consumption of $\mathbf{5 e}\left[\mathrm{SbF}_{6}\right]$ at $20^{\circ} \mathrm{C}$.

Figure 7.26. First-order consumption of $\mathbf{5 e}\left[\mathrm{SbF}_{6}\right]$ at $20^{\circ} \mathrm{C}$ based on the increase of $\mathbf{6}\left[\mathrm{SbF}_{6}\right]$. $=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.
7.7 Reaction of $\mathbf{1}\left[\mathbf{S b F}_{6}\right]$ with $\mathbf{C H}_{\mathbf{2}}=\mathbf{C H O S i P h} \mathbf{3}_{\mathbf{3}}$ (2f). A NMR tube was charged with (α-diimine) $\mathrm{PdMeCl}(16.3 \mathrm{mg}, 29.0 \mu \mathrm{~mol}), \mathrm{AgSbF}_{6}(10 \mathrm{mg}, 29.1 \mu \mathrm{~mol})$ and $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}$ ($8.8 \mathrm{mg}, 29.1 \mu \mathrm{~mol}$), and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added by vacuum transfer at $-7{ }^{\circ} \mathrm{C}$. The tube was shaken to dissolve and thoroughly mix the components. A ${ }^{1} \mathrm{H}$ NMR spectrum at $-60{ }^{\circ} \mathrm{C}$ confirmed the formation of $\mathbf{3 f}\left[\mathrm{SbF}_{6}\right]$. The tube was warmed to $0{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. Complex $\mathbf{3 f}\left[\mathrm{SbF}_{6}\right]$ was converted to $\mathbf{5 f}\left[\mathrm{SbF}_{6}\right]$. The NMR resonances of $\mathbf{5 f}\left[\mathrm{SbF}_{6}\right]$ is very similar to $\mathbf{5 f}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. The first-order rate constant for the consumption of $\mathbf{3 f}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\mathrm{H}_{\text {trans }}{ }^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert, } 3 \mathrm{f}}=8.06(6) \times 10^{-4} \mathrm{~s}^{-1}$ at $0{ }^{\circ} \mathrm{C}$. After $\mathbf{3 f}\left[\mathrm{SbF}_{6}\right]$ is fully consumed, the tube was warmed to $20{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. Complex $\mathbf{5 f}\left[\mathrm{SbF}_{6}\right]$ was converted to $\mathbf{6}\left[\mathrm{SbF}_{6}\right]$. The first-order rate constant for consumption of $\mathbf{5 f}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the PdCMe_{2} resonance is $k_{\beta-\text { OSiMePh } 2, \text { obs }}=3.78(1) \times 10^{-4} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$.

Figure 7.27. First-order consumption of $\mathbf{3 f}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$.

Figure 7.28. First-order consumption of $\mathbf{3 f}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$ based on increase of $\mathbf{4} . \mathrm{B}=$ $\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 7.29. First-order consumption of $\mathbf{5 f}\left[\mathrm{SbF}_{6}\right]$ at $20^{\circ} \mathrm{C}$.

| |
| :--- | :--- | :--- |

Figure 7.30. First-order consumption of $\mathbf{5} \mathbf{f}\left[\mathrm{SbF}_{6}\right]$ at $20^{\circ} \mathrm{C}$ based on increase of $\mathbf{6}\left[\mathrm{SbF}_{6}\right] . \mathrm{B}=$ $\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.
7.8 Insertion of $\left[(\alpha\right.$-diimine $\left.) \mathbf{P d M e}\left(\mathbf{C H}_{2}=\mathbf{C H O P h}\right)\right]\left[\mathrm{SbF}_{6}\right]\left(3 \mathrm{~g}\left[\mathrm{SbF}_{6}\right]\right)$. An NMR tube was charged with $\mathbf{1}\left[\mathrm{SbF}_{6}\right](14.6 \mathrm{mg}, 0.0176 \mathrm{mmol})$ and $\mathbf{1 g}(0.043 \mathrm{mmol}) . \mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added by vacuum transfer at $-196{ }^{\circ} \mathrm{C}$. The tube was warmed to $0{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR
periodically. Complex $\mathbf{3 g}\left[\mathrm{SbF}_{6}\right]$ was cleanly converted to $\mathbf{6}\left[\mathrm{SbF}_{6}\right]$. No intermediates were detected. The first-order rate constant for the consumption of $3 \mathrm{~g}\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\mathrm{H}_{\text {trans }}{ }^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert, } 3 \mathrm{e}}=1.50(4) \times 10^{-3} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$.

Figure 7.31. First-order consumption of $\mathbf{3 g}\left[\mathrm{SbF}_{6}\right]$ at $0{ }^{\circ} \mathrm{C}$.

Figure 7.32. First-order consumption of $\mathbf{3 g}\left[\mathrm{SbF}_{6}\right]$ at $0^{\circ} \mathrm{C}$ based on the increase of $\mathbf{6}\left[\mathrm{SbF}_{6}\right] . \mathrm{B}=$ $\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.
7.9 Construction of the energy diagram for competitive binding of vinyl ethers and insertion of 3a-g (Figure 1 in manuscript).

The competitive binding of ethylene and $\mathrm{CH}_{2}=\mathrm{CHOR}$ (2a-c) (eq 1) was quantified by measuring $K_{2 / \text { ethylene }}=[3]\left[\mathrm{CH}_{2}=\mathrm{CH}_{2}\right]\left[(\alpha \text {-diimine }) \operatorname{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)^{+}\right]^{-1}[\mathbf{2}]^{-1}$. The $K_{2 \mathrm{a} / 2 \mathrm{c}}$ was determined according to equation i-iii. $K_{\mathbf{2 b} / \mathbf{c} \mathbf{c}}$ was determined in an analogous manners and the results are shown in Tables 2 and 3.

$$
\begin{align*}
& K_{2 \mathrm{a} \text { aethylene }}=[\mathbf{3 a}]\left[\mathrm{CH}_{2}=\mathrm{CH}_{2}\right]\left[(\alpha \text {-diimine }) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)^{+}\right]^{-1}[\mathbf{2 a}]^{-1} \tag{i}\\
& K_{2 \mathbf{2 c} \text { /ethylene }}=[\mathbf{3}]\left[\mathrm{CH}_{2}=\mathrm{CH}_{2}\right]\left[(\alpha \text {-diimine }) \operatorname{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)^{+}\right]^{-1}[\mathbf{2 c}]^{-1} \tag{ii}\\
& K_{2 \mathrm{a} / 2 \mathbf{c}}=[\mathbf{3 a}][\mathbf{2 c}][\mathbf{3 c}]^{-1}[\mathbf{2 a}]^{-1}=K_{2 a / \text { ethylene }} / K_{2 \mathbf{2 c} \text { /ethylene }} \tag{iii}
\end{align*}
$$

ΔG for (α-diimine $) \operatorname{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOR}\right)^{+}(\mathbf{3 a - g})$ versus 3c was determined by equation (iv).

$$
\begin{equation*}
\Delta G=-\mathrm{RT} \ln K \tag{iv}
\end{equation*}
$$

The free energy barrier for the insertion of $\mathbf{3 a - g}\left(\Delta G^{\neq}\right)$was calculated by Erying equation
(v). The results are compared in Figure 1.

$$
\begin{equation*}
\Delta G^{\neq}=-\mathrm{RT} \ln \left(k_{\text {insert }, 3} \mathrm{~h} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right) \tag{v}
\end{equation*}
$$

$\left[\left\{\left(2,6-{ }^{-} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}=\mathbf{C A n C A n}=\mathrm{N}\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right\} \operatorname{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]$ (3h) and $\boldsymbol{\beta}-\mathrm{OSiPh}_{3}$ elimination of $\mathbf{5 h}$. A NMR tube was charged with $\left\{\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}=\mathrm{C}(\mathrm{An})-\mathrm{C}(\mathrm{An})=\mathrm{N}\left(2,6-{ }_{-} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right\} \mathrm{PdMeCl}(19.2 \mathrm{mg}, 29.0 \mu \mathrm{~mol}), \mathrm{AgSbF}_{6}$ (10 mg , $29.1 \mu \mathrm{~mol}$) and $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}(8.8 \mathrm{mg}, 29.1 \mu \mathrm{~mol})$, and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added by vacuum transfer at $-78{ }^{\circ} \mathrm{C}$. The tube was shaken to dissolve and thoroughly mix the components. NMR spectra at $23{ }^{\circ} \mathrm{C}$ showed that $\mathbf{3 h}\left[\mathrm{SbF}_{6}\right](90 \%)$ had formed. Key NMR Data for 5d: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right) \delta 8.20\left(\mathrm{~d}, J=8,1 \mathrm{H}, \mathrm{An}: \mathrm{H}_{p}\right), 8.16\left(\mathrm{~d}, J=8,1 \mathrm{H}, \mathrm{An}: \mathrm{H}_{p}\right)$, 7.58-7.25 (m, 23 H , An: $\mathrm{H}_{\mathrm{m}}, \mathrm{H}_{\mathrm{m}^{\prime}}, 6 \mathrm{H}_{\text {aryl }}, 15 \mathrm{H}_{\text {aryl }}$ from $\left.\mathrm{SiPh}_{3}\right)$, $6.58\left(\mathrm{~d}, J=8,2 \mathrm{H}, \mathrm{An}: \mathrm{H}_{o}\right), 3.35$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), $3.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 1.32(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CHMe} 2), 1.14(\mathrm{~d}, J=7,6 \mathrm{H}$, $\left.\mathrm{CH} M e_{2}\right), 0.98\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CH} M e_{2}\right), 0.88\left(\mathrm{~d}, J=7,6 \mathrm{H}, \mathrm{CHMe} e_{2}\right), 0.47(\mathrm{~s}, 6 \mathrm{H}$, $\left.\operatorname{PdCMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}\right)$ data: $\delta 171.8(\mathrm{~N}=\mathrm{CMe}), 168.8(\mathrm{~N}=\mathrm{CMe}), 141.7$ $\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh} 3\right), 144.9,143.3,142.9,138.0,137.3,135.1,135.0,133.4,132.9,131.8,131.4$, $129.8,129.5,128.8,128.6,128.1,126.3,126.1,125.6,125.5,125.3$ and 124.8 (An 4 quaternary $\left.\mathrm{C}, \mathrm{C}_{o}, \mathrm{C}_{o}{ }^{\prime}, \mathrm{C}_{m}, \mathrm{C}_{m}^{\prime}, \mathrm{C}_{p}, \mathrm{C}_{p}^{\prime} ; \mathrm{Ar}, \mathrm{Ar}^{\prime} \mathrm{C}_{i p s o}, \mathrm{C}_{i p s o^{\prime}}, \mathrm{C}_{o}, \mathrm{C}_{o}{ }^{\prime}, \mathrm{C}_{m}, \mathrm{C}_{m}{ }^{\prime}, \mathrm{C}_{p}, \mathrm{C}_{p}{ }^{\prime} ; \operatorname{SiPh} \mathrm{C}_{i p s o}, \mathrm{C}_{o}, \mathrm{C}_{m}, \mathrm{C}_{p},\right)$, $87.9\left(\mathrm{PdCMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right), 29.5\left(C \mathrm{HMe}_{2}\right), 29.2(\mathrm{CHMe} 2), 26.4,24.7,23.4,23.2$ and $23.1(4$ $\mathrm{CHMe} 2_{2}$ and $\left.\mathrm{PdCMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right)$.

The first-order rate constant for the consumption of $\left[\left\{\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}=\mathrm{CAnCAn}=\mathrm{N}\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right\} \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]$ measured by the disappearance of the $\mathrm{H}_{\text {trans }}{ }^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert,3h }}=1.98(2) \times 10^{-4} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$. After $\left[\left\{\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}=\mathrm{CAnCAn}=\mathrm{N}\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right\} \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]$ is fully consumed, the tube was warmed to $20{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR periodically. Complex
$\left[\left\{\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}=\mathrm{CAnCAn}=\mathrm{N}\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right\} \mathrm{PdCMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]$ was converted to 6[SbF 6]. The first-order rate constant for consumption of $\left[\left\{\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}=\mathrm{CAnCAn}=\mathrm{N}\left(2,6-\mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right\} \mathrm{PdCMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]$ (5h) measured by the disappearance of the PdCMe_{2} resonance is $k_{\beta \text {-OsiPh } 3 \text {, obs }}=1.37(1) \times 10^{-4} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$.

Figure 7.33. First-order consumption of $\mathbf{3 h}$ at $0^{\circ} \mathrm{C}$.

Figure 7.34. First-order consumption of $\mathbf{3 h}$ at $0^{\circ} \mathrm{C}$ based on increase of insertion product. $\mathrm{B}=$ $\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.

Figure 7.35. First-order consumption of
$\left[\left\{\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}=\mathrm{CAnCAn}=\mathrm{N}\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right\} \mathrm{PdCMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]\left[\mathrm{SbF}_{6}\right]$ at $20{ }^{\circ} \mathrm{C}$.

Figure 7.36. First-order consumption of $\left[\left\{\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}=\mathrm{CAnCAn}=\mathrm{N}\left(2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right\} \mathrm{PdCMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right]\left[\mathrm{SbF}_{6}\right]$ at $20{ }^{\circ} \mathrm{C}$ based on increase of the allyl product. $\mathrm{B}=\ln \left[\left([\mathrm{B}]_{\infty}-[\mathrm{B}]\right) /\left([\mathrm{B}]_{\infty}-[\mathrm{B}]_{0}\right)\right]$.
7.11

Insertion
of $\left[\left\{\left(4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{N}=\mathbf{C M e C M e}=\mathbf{N}\left(4-\mathrm{Me}-\mathbf{C}_{6} \mathbf{H}_{5}\right)\right\} \operatorname{PdMe}\left(\mathbf{C H}_{2}=\mathbf{C H O S i P h}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right] \quad$ (3i). The first-order rate constant for the consumption of $\mathbf{3 i}$ measured by the disappearance of the $\mathrm{H}_{\text {trans }}$ ${ }^{1} \mathrm{H}$ NMR resonance is $k_{\text {insert, } 3 \mathrm{i}}=1.76(4) \times 10^{-4} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$.

$[\mathrm{A}] /[\mathrm{A}]_{0}$	$\ln \left([\mathrm{~A}] /[\mathrm{A}]_{0}\right)$	Time (s)
1	0	0
0.724343	-0.32249	2100
0.413114	-0.88403	5220
0.252423	-1.37665	7860

Figure 7.37. First-order consumption of $\mathbf{3 i}$ at $0^{\circ} \mathrm{C}$.

8. X-Ray Crystallography.

8.1 $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left(\boldsymbol{\eta}^{3}-\mathrm{C}_{3} \mathbf{H}_{5}\right)\right]\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\left(6\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right)$. Single crystals of $\mathbf{6}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ were obtained by slow diffusion of hexanes into the concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at room temperature. The molecular structure of $\mathbf{6}\left[\mathbf{B}\left(\mathbf{C}_{\mathbf{6}} \mathbf{F}_{\mathbf{5}}\right)_{\mathbf{4}}\right]$ was determined by X-ray diffraction and is shown in Figure 8.1 and the crystallographic data are summarized in Table 8.1. Data were collected on a Bruker Smart Apex diffractometer using Mo K α radiation (0.71073 Å). Direct methods were used to locate The Pd atom as well as many C atoms from the E-map. Repeated difference Fourier maps allowed recognition of all expected non-H atoms. Following anisotropic refinement of all non-hydrogen atoms, ideal H atom positions were calculated. Final refinement was anisotropic for $\mathrm{Pd}, \mathrm{N}, \mathrm{B} \mathrm{F}$ and C and isotropic-riding for H atoms. Positional disorder was apparent for C29, C30 and C31. C30 was spit into two atoms, C30A and C30B each with occupancies of 0.5 . C30A and C30B were refined as isotropic atoms while the displacement parameters for C29 and C31 showed elongation due to the positional disorder. No other anomalous bond lengths or thermal parameters were noted. All ORTEP diagrams have been drawn with 50% probability ellipsoids.

Figure 8.1. Molecular structure of $\mathbf{6}\left[\mathbf{B}\left(\mathbf{C}_{\mathbf{6}} \mathbf{F}_{5}\right)_{4}\right]$. Hydrogen atoms and the anion are omitted for clarity.

Table 8.1. Summary of X-Ray Diffraction Data for $\mathbf{6}\left[\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)_{\mathbf{4}}\right]$.

formula	$\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{Pd}+\mathrm{C}_{24} \mathrm{BF}_{20}$
formula weight	1226.10 (including solvent)
crystal system	Monoclinic
space group	$\mathrm{P} 21 / \mathrm{c}$
$a(\AA)$	$15.922(3)$
$b(\AA)$	$20.076(4)$
$c(\AA)$	$19.176(3)$
$\beta\left({ }^{\circ}\right)$	$121.573(10)$
$V\left(\AA^{3}\right)$	$5222.3(16)$
Z	4
$T(\mathrm{~K})$	100
crystal color, habit	yellow, fragment
GOF on F^{2}	1.018
R indices $[I>2 \sigma(I)]^{a}$	$\mathrm{R} 1=0.0435, \mathrm{wR} 2=0.0972$
R indices $(\text { all data })^{a}$	$\mathrm{R} 1=0.0664, \mathrm{wR} 2=0.1042$
$\quad{ }^{a} \mathrm{R} 1=\Sigma\| \| \mathrm{F}_{\mathrm{o}}\left\|-\left\|\mathrm{F}_{\mathrm{c}}\right\|\right\| / \Sigma\left\|\mathrm{F}_{\mathrm{o}}\right\| ; \mathrm{wR} 2=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$, where $w=\mathrm{q}\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(\mathrm{aP})^{2}+\right.$	
$\quad \mathrm{bP}]^{-1}$	

9. DFT Calculations.

9.1 DFT studies of the structure of 4a and 5a. DFT studies at the B3LYP level using the 6-31G* (for C, $\mathrm{H}, \mathrm{N}, \mathrm{O}$) and Lanl2DZ (for Pd) basis sets provide additional evidence for the O-chelated structures in $\mathbf{4 a}$ and $\mathbf{5 a} .{ }^{10}$ The optimized structures of $\mathbf{4 a}$ and $\mathbf{5 a}$ are shown in Figure 9.1. The calculated Pd-O distances are $2.19 \AA(\mathbf{4 a})$ and $2.15 \AA(\mathbf{5 a})$, which are typical for $\mathbf{P d}(\mathrm{II})-\mathrm{OR}_{2}$ distances. ${ }^{11}$ DFT studies show that the energy difference between $\mathbf{4 a}$ and $\mathbf{5 a}$ is
small $\left(\mathrm{E}_{4 \mathrm{a}}-\mathrm{E}_{5 \mathrm{a}}=0.2 \pm 1.0 \mathrm{kcal} / \mathrm{mol}\right)$, which is consistent with the fact that both isomers are observed.

Figure 9.1. Optimized structures of the 4a and 5a cations. Hydrogens are omitted.
9.2 DFT studies of the structure of $4 c$ and $5 c$.

Figure 9.2. Optimized structure of the (α-diimine $\left.) \mathrm{Pd}\left\{\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right) \mathrm{CH}_{3}\right\}\right)^{+}(\mathbf{4 c})$ cation.

Figure 9.3. Optimized structure of the $(\alpha$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMe}_{3}\right)\right\}\right)^{+}(\mathbf{5 c})$ cation.

10. NMR Spectra for Cationic Polymers and Kinetics Studies.

10. 1 Spectra of -[$\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{O}^{t} \mathrm{Bu}\right)\right]_{\mathrm{n}}$ - homopolymer.

Figure 10-1a. ${ }^{1} \mathrm{H}$ NMR of $-\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{O}^{t} \mathrm{Bu}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: full spectrum.

Figure 10-1b. ${ }^{1} \mathrm{H}$ NMR of $-\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: vertical expansion.

Figure 10-1c. ${ }^{1} \mathrm{H}$ NMR of $-\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: expansion of the δ 6.0-3.0 region.

Figure 10-1d. COSY NMR of - $\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: expansion of the δ 6.0-0.7; 6.0-0.7 region.

Figure 10-1e. ${ }^{13} \mathrm{C}$ NMR of - $\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: full spectrum.

Figure 10-1f. ${ }^{13} \mathrm{C}$ NMR of $-\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: expansion of the δ $75-65$ region. The sharp signal at $\delta 70.6$ is from $\mathrm{HO}^{\mathrm{t}} \mathrm{Bu}$.

Figure 10-1g. ${ }^{13} \mathrm{C}$ NMR of $-\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{O}^{t} \mathrm{Bu}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: expansion of the δ $50-40$ region. The sharp signal at $\delta 31.0$ is from $\mathrm{HO}^{\mathrm{t}} \mathrm{Bu}$.

Figure 10-1h. ${ }^{13} \mathrm{C}$ NMR of $-\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{O}^{t} \mathrm{Bu}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: expansion of the δ 35-25 region.

10.2 Spectra of - $\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}}$ - homopolymer and attempted polymerization

 of $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}$ and $\mathrm{CH}_{2}=\mathrm{CHOPh}$.

Figure 10-2a. ${ }^{1} \mathrm{H}$ NMR of $-\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: full spectrum.

Figure 10-2b. ${ }^{1} \mathrm{H}$ NMR of - $\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: vertical expansion.

Figure 10-2c. ${ }^{1} \mathrm{H}$ NMR of - $\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{n}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: expansion of the δ 4.3-3.4 region.

Figure 10-2d. ${ }^{1} \mathrm{H}$ NMR of - $\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: expansion of the δ 1.8-0.5 region.

Figure 10-2e. ${ }^{1} \mathrm{H}$ NMR of - $\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: expansion of the δ 0.3--0.1 region.
\qquad

Figure 10-2f. ${ }^{13} \mathrm{C}$ NMR of - $\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: full spectrum.
\qquad

Figure 10-2g. ${ }^{13} \mathrm{C}$ NMR of - $\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}}-\left(\mathrm{CDCl}_{3}\right)$: expansion of the $\delta 75-60$ region.

Figure 10-2h. ${ }^{13} \mathrm{C}$ NMR of - $\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: expansion of the δ 50-40 region.

Figure 10-2i. ${ }^{13} \mathrm{C}$ NMR of - $\left[\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiMe}_{3}\right)\right]_{\mathrm{n}}$ - homopolymer $\left(\mathrm{CDCl}_{3}\right)$: expansion of the $\delta 5$ - -5 region.

10.3 Selected ${ }^{1} \mathrm{H}$ NMR spectra for $\mathrm{CH}_{2}=\mathrm{CHO}^{\mathbf{t}} \mathrm{Bu}$ case:

Figure
10-3a.
Selected spectra
for the insertion
of $\left[(\alpha\right.$-dimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHO}^{t} \mathrm{Bu}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (3a) to produce $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CH}_{2} \mathrm{CHMe}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$
(4b)
and
$\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{5 b})$ at $0^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 5.1 and Figure 5.2.

Figure 10-3b. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHO}^{\mathrm{t}} \mathrm{Bu}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{3 a})$ at $0{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The peak at 0.35 is $\left[\{(\alpha \text {-diimine }) \mathrm{PdMe}\}_{2}(\mu-\mathrm{Cl})\right]\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 5.1 and Figure 5.2.

Figure 10-3c. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CH}_{2} \mathrm{CHMe}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \quad(\mathbf{4 b})$ and $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{5 b})$ at $20^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 5.5 and Figure 5.6.

Figure 10-3d. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CH}_{2} \mathrm{CHMe}\left(\mathrm{O}^{t} \mathrm{Bu}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$
(4b)
and $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{5 b})$ at $20{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The peak at ca. 0.4 is $\left[\{(\alpha \text {-diimine }) P d M e\}_{2}(\mu-\mathrm{Cl})\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 5.5 and Figure 5.6.

Figure 10-3e. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHO}^{\mathrm{t}} \mathrm{Bu}\right)\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3 a})$ at $0{ }^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.1 and Figure 7.2.

Figure 10-3f. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHO}^{\mathrm{t}} \mathrm{Bu}\right)\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3 a})$ at $0{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.9-0.1$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.1 and Figure 7.2.

Figure 10-3g. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $) \operatorname{Pd}\left\{\mathrm{CH}_{2} \mathrm{CHMe}^{\left.\left.\left(\mathrm{O}^{t} \mathrm{Bu}\right)\right\}\right]\left[\mathrm{SbF}_{6}\right] \text { (4a) and }\left[(\alpha \text {-diimine }) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)\right\}\right]\left[\mathrm{SbF}_{6}\right], ~}\right.$ $\mathbf{(5 a)}$ at $20^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90\% completion. For kinetics analysis see Figure 7.5 and Figure 7.6.

Figure 10-3h. Selected spectra for the first-order consumption of
 $\mathbf{(5 a)}$ at $20^{\circ} \mathrm{C}$: expansion of $\delta 0.9-0.1$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.5 and Figure 7.6.
10.4 Selected ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectra for $\mathbf{C H}_{2}=\mathbf{C H O E t}$ case:

Figure 10-4a. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOEt}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{3 b})$ at $0^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.1 and Figure 6.2.

Figure 10-4b. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOEt}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{3 b})$ at $0^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The peak at 0.35 is $\left[\{(\alpha \text {-diimine }) \mathrm{PdMe}\}_{2}(\mu-\mathrm{Cl})\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.1 and Figure 6.2.

Figure 10-4c. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CH}_{2} \mathrm{CHMe}(\mathrm{OEt})\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (4b) and $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}(\mathrm{OEt})\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{5 b})$ at $20^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.5 and Figure 6.6.

Figure 10-4d. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{Pd}\left\{\mathrm{CH}_{2} \mathrm{CHMe}(\mathrm{OEt})\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$
(4b)
and $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}(\mathrm{OEt})\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{5 b})$ at $20{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The peak at 0.42 is $\left[\{(\alpha \text {-diimine }) \operatorname{PdMe}\}_{2}(\mu-\mathrm{Cl})\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.5 and Figure 6.6.

Figure 10-4e. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOEt}\right)\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3 b})$ at $0^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.7 and Figure 7.8.

Figure 10-4f. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOEt}\right)\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3 b})$ at $0{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.7 and Figure 7.8.

Figure 10-4g. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CH}_{2} \mathrm{CHMe}(\mathrm{OEt})\right\}\right]\left[\mathrm{SbF}_{6}\right](\mathbf{4 b})$ and $\left[(\alpha\right.$-diimine $\left.) \mathrm{Pd}\left\{\mathrm{CMe}_{2}(\mathrm{OEt})\right\}\right]\left[\mathrm{SbF}_{6}\right]$ (5b) at $20^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.11 and Figure 7.12.

Figure 10-4h. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CH}_{2} \mathrm{CHMe}^{(\mathrm{OEt})}\right\}\right]\left[\mathrm{SbF}_{6}\right](\mathbf{4 b})$ and $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}(\mathrm{OEt})\right\}\right]\left[\mathrm{SbF}_{6}\right]$ (5b) at $20^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.11 and Figure 7.12.
10. 5 Selected ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectra for $\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}$ case:

Figure 10-5a. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right](3 \mathrm{c})$ at $0{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.15 and Figure 6.16.

Figure 10-5b. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right](3 \mathrm{c})$ at $0{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8--0.2$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.15 and Figure 6.16.

Figure 10-5c. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMe}_{3}\right)\right\}\right]\left[\mathrm{SbF}_{6}\right](\mathbf{5 c})$ at $20^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.17 and Figure 6.18.

Figure 10-5d. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMe}_{3}\right)\right\}\right]\left[\mathrm{SbF}_{6}\right](\mathbf{5 c})$ at $20{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8--0.2$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.17 and Figure 6.18.

Figure 10-5e. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMe}_{3}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{5 c})$ at $20^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows the conversion of $\mathrm{Me}_{3} \mathrm{SiOH}$ to $\mathrm{Me}_{3} \mathrm{SiOSiMe}_{3}$. For kinetics analysis see Figure 6.7 and Figure 6.8.

Figure 10-5f. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMe}_{3}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{5 c})$ at $20{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8--0.2$. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows the conversion of $\mathrm{Me}_{3} \mathrm{SiOH}$ to $\mathrm{Me}_{3} \mathrm{SiOSiMe}_{3}$. For kinetics analysis see Figure 6.7 and Figure 6.8.
10.6 Selected ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectra for $\mathbf{C H}_{2}=\mathbf{C H S i M e} \mathbf{H}_{2} \mathbf{P h}$ case.

Figure 10-6a. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{2} \mathrm{Ph}\right)\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3 d})$ at $0^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.19 and Figure 6.20.

Figure 10-6b. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiMe}_{2} \mathrm{Ph}\right)\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3 d})$ at $0{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.19 and Figure 6.20.

Figure 10-6c. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMe}_{2} \mathrm{Ph}\right)\right\}\right]\left[\mathrm{SbF}_{6}\right](\mathbf{5 d})$ at $20^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows the conversion of $\mathrm{PhMe}_{2} \mathrm{SiOH}$ to $\mathrm{PhMe}_{2} \mathrm{SiOSiMe}_{2} \mathrm{Ph}$. For kinetics analysis see Figure 6.21 and Figure 6.22.

Figure 10-6d. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{Pd}_{\{ }\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMe}_{2} \mathrm{Ph}\right)\right\}\right]\left[\mathrm{SbF}_{6}\right](5 d)$ at $20^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows the conversion of $\mathrm{PhMe}_{2} \mathrm{SiOH}$ to $\mathrm{PhMe}_{2} \mathrm{SiOSiMe}_{2} \mathrm{Ph}$. For kinetics analysis see Figure 6.21 and Figure 6.22.

Figure 10-6e. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) P d\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMe}_{2} \mathrm{Ph}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (5d) at $20{ }^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows the conversion of $\mathrm{PhMe}_{2} \mathrm{SiOH}$ to $\mathrm{PhMe}_{2} \mathrm{SiOSiMe}_{2} \mathrm{Ph}$. For kinetics analysis see Figure 6.9 and Figure 6.10.

Figure 10-6f. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMe}_{2} \mathrm{Ph}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{5 d})$ at $20{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows the conversion of $\mathrm{PhMe}_{2} \mathrm{SiOH}$ to $\mathrm{PhMe}_{2} \mathrm{SiOSiMe}_{2} \mathrm{Ph}$. For kinetics analysis see Figure 6.9 and Figure 6.10.

10.7 Selected ${ }^{1} \mathrm{H}$ NMR spectra for $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{2} \mathbf{P h}$ case.

Figure 10-7a. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiMePh}_{2}\right)\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3 e})$ at $0^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.23 and Figure 6.24.

Figure 10-7b. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiMePh}_{2}\right)\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3 e})$ at $0{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.23 and Figure 6.24.

Figure 10-7c. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) P d\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMePh}_{2}\right)\right\}\right]\left[\mathrm{SbF}_{6}\right](\mathbf{5 e})$ at $20^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.25 and Figure 6.26.

Figure 10-7d. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMePh}_{2}\right)\right\}\right]\left[\mathrm{SbF}_{6}\right](5 e)$ at $20^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.25 and Figure 6.26.

Figure 10-7e. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) P d\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMePh}_{2}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ (5e) at $20{ }^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows $\mathrm{Ph}_{2} \mathrm{MeSiOH}$ does not convert to $\mathrm{Ph}_{2} \mathrm{MeSiOSiMePh} 2$. For kinetics analysis see Figure 6.11, Figure 6.12 and Figure 6.13.

Figure 10-7f. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiMePh}_{2}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{5 e})$ at $20{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows $\mathrm{Ph}_{2} \mathrm{MeSiOH}$ does not convert to $\mathrm{Ph}_{2} \mathrm{MeSiOSiMePh}_{2}$. For kinetics analysis see Figure 6.11, Figure 6.12 and Figure 6.13.
10.8 Selected ${ }^{\mathbf{1}} \mathbf{H}$ NMR spectra for $\mathrm{CH}_{2}=\mathrm{CHSiPh}_{3}$ case:

Figure 10-8a. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \mathrm{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3 f})$ at $0{ }^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the starting point of the reaction at $-60^{\circ} \mathrm{C}$, the middle spectrum corresponds to ca. 50% completion at $0{ }^{\circ} \mathrm{C}$ and the top spectrum corresponds to ca. 90% completion at $0^{\circ} \mathrm{C}$. For kinetics analysis see Figure 6.27 and Figure 6.28.

Figure 10-8b. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{PdMe}\left(\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}\right)\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3 f})$ at $0{ }^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The bottom spectrum is the starting point of the reaction at $-60^{\circ} \mathrm{C}$, the middle spectrum corresponds to ca. 50% completion at $0^{\circ} \mathrm{C}$ and the top spectrum corresponds to ca. 90% completion at $0^{\circ} \mathrm{C}$. For kinetics analysis see Figure 6.27 and Figure 6.28.

Figure 10-8c. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right\}\right]\left[\mathrm{SbF}_{6}\right](\mathbf{5 f})$ at $20^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to $\mathrm{ca} .50 \%$ completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.29 and Figure 6.30.

Figure 10-8d. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right\}\right]\left[\mathrm{SbF}_{6}\right](\mathbf{5 f})$ at $20{ }^{\circ} \mathrm{C}$: expansion of δ 0.8-0.1. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.29 and Figure 6.30.

Figure 10-8e. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{5 f})$ at $20^{\circ} \mathrm{C}$: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to $\mathrm{ca} .50 \%$ completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.14 and Figure 6.15.

Figure 10-8f. Selected spectra for the first-order consumption of $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}\left\{\mathrm{CMe}_{2}\left(\mathrm{OSiPh}_{3}\right)\right\}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](\mathbf{5 f})$ at $20^{\circ} \mathrm{C}$: expansion of $\delta 0.8-0.1$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.14 and Figure 6.15.

11 References

${ }^{1}$ NMR tube experiments demonstrated that poly(vinyl trimethylsilyl ether) had formed prior to hydrolysis in methanol. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}\right)$: $\delta 4.15$ (br s, $1 \mathrm{H}, \mathrm{CH}$), 1.85 (br s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 0.29 (br, 9H, SiMe_{3}).
${ }^{2}$ The $\mathrm{CH}_{2}=\mathrm{CHOPh}$ resonances of $2 \mathbf{e}$ were broad at $-60^{\circ} \mathrm{C}$.
${ }^{3}$ Key NMR data for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}:{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right.$): $\delta 3.73$ (d of $\mathrm{q}, \mathrm{J}=6,7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.71(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.17\left(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{4}$ Key NMR data for $\mathrm{Me}_{3} \mathrm{SiOH}:{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right): \delta 2.57((\mathrm{~b}, \mathrm{SiOH}), 0.14(\mathrm{~s}, \mathrm{Si} M e)$. Key NMR data for $\mathrm{Me}_{3} \mathrm{SiOSiMe}_{3}:{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right): \delta 0.07(\mathrm{~s}, \mathrm{Si} M e)$.
${ }^{5}$ Key NMR data for $\mathrm{PhMe}_{2} \mathrm{SiOH}:{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right)$: $\delta 2.45$ ((b, SiOH$), 0.34$ (s, $\mathrm{Si} M e)$. Key NMR data for $\mathrm{PhMe}_{2} \mathrm{SiOSiMe}_{2} \mathrm{Ph}:{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right)$: $\delta 0.40(\mathrm{~s}, \mathrm{SiMe})$.
${ }^{6}$ Key NMR data for $\mathrm{Ph}_{2} \mathrm{MeSiOH}:{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right): \delta 2.51((\mathrm{~b}, \mathrm{SiOH}), 0.66(\mathrm{~s}, \mathrm{SiMe})$
${ }^{7}$ NMR data for $\mathrm{Ph}_{3} \mathrm{SiOH}:{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right): \delta 7.63\left(\mathrm{t}, \mathrm{H}_{\text {meta }}\right), 7.44\left(\mathrm{~d}, \mathrm{H}_{\text {ortho }}\right), 7.39(\mathrm{t}$, $\mathrm{H}_{\text {para }}$), $2.87(\mathrm{~b}, \mathrm{SiOH})$.
${ }^{8}$ The α-diimine aromatic signal overlap with $\mathrm{OSi} P h_{3}$ signals.
${ }^{9}$ The simulation was done by using Kintecus software. Ianni, J. Kintecus V3.8.
${ }^{10}$ Complete citation for reference 73 in the paper.
Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
${ }^{11} \mathrm{Pd}^{2}-\mathrm{OR}_{2}$ distances in square planar $\mathrm{Pd}(\mathrm{II})$ complexes are in the range 2.11-2.20 \AA. (a) Bei, X.; Uno, T.; Norris, J.; Turner, H. W.; Weinberg, W. H.; Guram, A. S. Organometallics 1999, 18, 1840. (b) Kim, Y.; Verkade, J. G. J. Organomet. Chem. 2003, 669, 32.

