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1. Materials and Methods 

 1.1 NMR characterization of some known compounds. 

Data for (-diimine)PdMeCl: 
1
H NMR (CD2Cl2, 20 

o
C) 7.34-7.11 (m, 6H), 3.07 (sept, 

J = 7, 2H, CHMe2), 3.01 (sept, J = 7, 2H, CHMe2), 2.04 (s, 3H, N=CMe), 2.03 (s, 3H, N=CMe), 

1.40 (d, J = 7, 6H, CHMe2), 1.36 (d, J = 7, 6H, CHMe2), 1.19 (d, J = 7, 6H, CHMe2), 1.17 (d, J 

= 7, 6H, CHMe2), 0.37 (s, 3H, PdMe). 

Data for [(-diimine)PdMe(OEt2)][SbF6]: 
1
H NMR (CD3CN, 20 

o
C) 7.37-7.34 (m, 

6H), 3.04 (sept, J = 7, 2H, CHMe2), 2.99 (sept, J = 7, 2H, CHMe2), 2.22 (s, 3H, N=CMe), 2.21 

(s, 3H, N=CMe), 1.36 (d, J = 7, 6H, CHMe2), 1.29 (d, J = 7, 6H, CHMe2), 1.25 (d, J = 7, 6H, 

CHMe2), 1.21 (d, J = 7, 6H, CHMe2), 0.31 (s, 3H, PdMe). 
13

C{
1
H} NMR (CD3CN, 20 

o
C):  

183.0 (N=CMe), 175.0 (N=CMe), 141.5, 141.3, 139.7, 138.9, 129.4, 128.6, 125.2, 124.9, 29.4, 

29.1, 24.1, 23.8, 23.7, 23.2, 21.9, 20.3, 4.7 (PdMe). 
1
H NMR (CD2Cl2, -20 

o
C) 7.31-7.21 (m, 

6H), 3.00 (sept, J = 7, 2H, CHMe2), 2.93 (sept, J = 7, 2H, CHMe2), 2.03 (b, 6H, N=CMe), 1.34 

(d, J = 7, 6H, CHMe2), 1.30 (d, J = 7, 6H, CHMe2), 1.13 (d, J = 7, 12H, CHMe2), 0.26 (s, 3H, 

PdMe). 

Data for (tmeda)Pd(OPh)2: 
1
H NMR (CD2Cl2, 20 

o
C)  7.12 (d, J = 8, 4H, Hortho), 6.96 (t, 

J = 7, 4H, Hmeta), 6.43 (t, J = 7, 2H, Hpara), 2.58 (s, 12H, NMe2), 2.55 (s, 4H, -CH2-). 
13

C{
1
H} 

NMR (CD2Cl2, 20 
o
C)  168.3 (Cipso), 127.9, 118.8, 113.7, 62.3 (-CH2-), 50.6 (NMe2). 

Data for KOPh: 
1
H NMR (THF-d8, 20 

o
C)  6.81 (t, J = 8, 2H, Hmeta), 6.28 (d, J = 8, 2H, 

Hortho), 6.03 (t, J = 7, 1H, Hpara). 
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Data for CH2=CHO
t
Bu:

 1
H NMR (CD2Cl2, 20 

o
C)  6.48 (dd, J = 14, 6; 1H, Hint), 4.30 (d, 

J = 14, 1H, Htrans), 3.97 (d, J = 6, 1H, Hcis), 1.26 (s, 9H, OCMe3). 
13

C{
1
H} NMR (CD2Cl2, 20 

o
C)  147.1 (CH2=CH), 90.4 (CH2=CH), 76.4 (OCMe3), 28.3 (OCMe3). 

  Data for CH2=CHOEt: 
1
H NMR data (CD2Cl2, 20 

o
C):  6.46 (dd, 1H, Hint), 4.15 (d, 1H, 

Htrans), 3.96 (d, 1H, Hcis), 3.73 (q, 2H, OCH2CH3), 1.16 (t, 1H, OCH2CH3). 
13

C{1H} NMR 

(CD2Cl2, 20 
o
C):  152.4 (CH2=CH), 86.5.4 (CH2=CH), 64.2 (OCH2CH3), 14.9 (OCH2CH3). 

  Data for CH2=CHOSiMe3: 
1
H NMR (CD2Cl2, 20 

o
C): 6.41 (dd, J = 13, 6; 1H, Hint), 4.38 

(d, J = 13, 1H, Htrans), 4.11 (d, J = 6, 1H, Hcis), 0.19 (s, 9H, OSiMe3). 
13

C{1H} NMR (CD2Cl2, 

20 
o
C):  146.4 (CH2=CH), 94.6 (CH2=CH), -0.45 (OSiMe3). 

Data for CH2=CHOSiMe2Ph: 
1
H NMR (CD2Cl2, 20 

o
C):  7.68 (d, J = 8, 6H, Hortho), 7.48 

(t, J = 7, 3H, Hpara), 7.45 (t, J = 7, 6H, Hmeta), 6.49 (dd, J = 14, 6; 1H, Hint), 4.72 (d, J = 14, 1H, 

Htrans), 4.21 (d, J = 6, 1H, Hcis) 0.53 (s, 6H, SiCH3).
 13

C NMR (CD2Cl2, 20 
o
C):  146.6 (=CH), 

137.3 (Cipso), 134.1, 130.6, 128.6, 95.5 (=CH2), -1.4 (SiCH3). 

Data for CH2=CHOSiMePh2: 
1
H NMR (CD2Cl2, 20 

o
C): 7.55 (d, J = 8, 6H, Hortho), 7.37 

(t, J = 7, 3H, Hpara), 7.33 (t, J = 7, 6H, Hmeta), 6.63 (dd, J = 14, 6 Hz, 1 H, =CH), 4.69 (dd, J = 14, 

1 Hz, 1 H, =CH2), 4,32 (dd, J = 6, 1 Hz, 1 H, =CH2), 0.87 (s, 3 H, SiCH3). 
13

C NMR (CD2Cl2, 

20 
o
C):  146.7 (=CH), 135.6 (Cipso), 135.0, 130.9, 128.7, 96.0 (=CH2), -2.6 (SiCH3).  

Data for CH2=CHOSiPh3: 
1
H NMR (CD2Cl2)  7.67 (d, J = 8, 6H, Hortho), 7.49 (t, J = 7, 

3H, Hpara), 7.43 (t, J = 7, 6H, Hmeta), 6.65 (dd, J = 14, 6; 1H, Hint), 4.65 (d, J = 14, 1H, Htrans), 

4.22 (d, J = 6, 1H, Hcis). 
13

C NMR (CD2Cl2) 146.6 (=CH), 135.9, 133.5 (Cipso), 131.0, 128.6, 

96.1 (CH2=). GC-MS: m/z = 302. 
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Data for CH2=CHOPh: 
1
H NMR (CD2Cl2):  7.34 (t, J = 7, 2H, Hmeta), 7.08 (t, J = 7, 1H, 

Hpara), 7.00 (d, J = 8, 2H, Hortho), 6.67 (dd, J = 14, 6; 1H, Hint), 4.75 (d, J = 15, 1H, Htrans), 4.43 

(d, J = 6, 1H, Hcis). GC-MS: m/z = 120. 

 1.2 Derivation of eq 7 of the manuscript and estimation of limits for kβ-OR for 5c-f. 

 

4 5

6

k-OR

K5/4

 

 

K5/4 = [5]/[4]  

[5] = K5/4·[4] 

[4] + [5] = (K5/4 + 1)[4] 

d([6])/dt = kβ-OR,obs ([4] + [5])  

==> d([6])/dt = kβ-OR,obs (K5/4 + 1)[4]             (i) 

d([6])/dt = kβ-OR[4]                (ii) 

from eq i and eq ii ==> kβ-OR,obs (K5/4 + 1)[4] = kβ-OR[4] 

==>  kβ-OR = kβ-OR,obs (K5/4 + 1)             (7) 

 

Estimation of limits for kβ-OR for 5c-f based on pre-equilibrium assumption:  

since K5c/4c > 19, from eq 7 

==>  k-OR >20 k-OR,obs                



S7 

 1.3 Estimation of limits for kβ-OR for 5c-f based on the steady state approximation for 

4c-f. 

d([4])/dt = k5 to 4[5] - k4 to 5[4] - kβ-OR[4] = 0 

[4] = k5 to 4[5]/( k4 to 5 + kβ-OR)             (iii) 

d([6])/dt = kβ-OR,obs[5]               (iv) 

d([6])/dt = kβ-OR[4]                (v) 

from (iv) and (v): kβ-OR,obs[5] = kβ-OR[4] 

 ==> [4] = (kβ-OR,obs[5])/kβ-OR             (vi) 

from (iii) and (vi): k5 to 4[5]/( k4 to 5 + kβ-OR) = (kβ-OR,obs[5])/kβ-OR 

  ==> k-OR = k-OR,obs k4 to 5 /(k5 to 4 - k-OR,obs)             

  k-OR > k-OR,obs k4 to 5/k5 to 4                             

  k-OR > k-OR,obs K5/4                                     

  k-OR > 19 k-OR,obs                                     (8) 

1.4 Methods for kinetic studies. For all cases, the kinetics of both the decrease of the 

reactants and the increase of the products were measured, and found to be in good agreement.  

The kinetics of the decrease of the reactants was analyzed according to the following 

equations: 

Ln([A]/[A]0) = kt 

[A]/[A]0 = Inormalized/I0, normalized 

Inormalized = I*/Istd 

I0, normalized = I0/Istd  

I* is the intensity of the peak of interest, for example, the PdMe resonance for insertion 

studies and the PdCMe2 resonance for β-OR elimination studies. In some cases the integration 

of the OCH2CH3 resonance of OEt2 was used as Istd. If peaks from other species overlapped 
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with the OCH2CH3 resonance we used the whole aromatic region as Istd. For the reaction of 

1[SbF6] with 2f, we analyzed the results by using both OCH2CH3 resonance from OEt2 and the 

whole aromatic region as Istd, which gave the same results. 

  The kinetics of the increase of the products was analyzed according to the following 

equations: 

Ln[([B]∞-[B])/([B]∞-[B]0)] = kt 

([B]∞-[B])/([B]∞-[B]0) = (I∞, normalized - I*)/(I∞, normalized - I0, normalized) 

Inormalized = I*/Istd 

      I0, normalized = I0/Istd 

I* is the intensity of the peak of interest, for example, the PdCMe2 and PdCH2CH(OEt)Me 

resonances for insertion studies and the Pd(η
3
-CH2CHCH2) resonance for β-OR elimination 

studies. Specifically, for the case of CH2=CHOEt and CH2=CHOPh, in which the β-OR 

elimination rate is comparable with the insertion rate, we used the sum of PdCMe2, 

PdCH2CH(OEt)Me and Pd(η
3
-CH2CHCH2) resonances as the I* for insertion kinetics. Kinetic 

data and plots are shown in Sections 5, 6 and 7; representative NMR spectra from kinetic 

studies are shown in Section 10. 

2. Cationic Polymerization of 2a,c and Characterization of Poly(vinyl ether). 

 2.1 Cationic polymerization of CH2=CHO
t
Bu (2a) by [Li(Et2O)2.8][B(C6F5)4]. An 

NMR tube was charged with [Li(Et2O)2.8][B(C6F5)4] (22.7 mg, 0.0254 mmol). CD2Cl2 (0.4 

mL) was added by vacuum transfer at -196 °C. The tube was warmed to 20 °C and shaken. 2a 

(1.25 mmol) was added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken 

vigorously, and monitored periodically by NMR. 
1
H NMR spectra showed that 2a was 
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quantitatively converted to polymer after 20 h. 2,6-di-tert-butylpyridine significantly retards 

the polymerization of 2a by [Li(Et2O)2.8][B(C6F5)4]. 

 2.2 Cationic polymerization of CH2=CHO
t
Bu (2a) by [Ph3C][B(C6F5)4]. An NMR tube 

was charged with [Ph3C][B(C6F5)4] (24.5 mg, 0.0266 mmol). CDCl3 (0.4 mL) was added by 

vacuum transfer at -196 °C. The tube was warmed to 20 °C and shaken. 2a (1.25 mmol) was 

added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously, and 

monitored periodically by NMR. 
1
H NMR spectra showed that 2a was quantitatively converted 

to polymer after 20 h. 

2.3 Polymerization of CH2=CHOSiMe3 (2c) by 1[B(C6F5)4]. A Schlenk flask was 

charged with (-diimine)PdMeCl (11.4 mg, 0.0203 mmol) and [Li(Et2O)2.8][B(C6F5)4] (17.6 

mg, 0.0197 mmol). CH2Cl2 (1 mL) was added by syringe. The mixture was stirred vigorously 

at 20 
o
C for 10 min. A solution of 2c (400 mg, 3.33 mmol) in CH2Cl2 (9 mL) was added by 

cannula. The mixture became dark within 10 min, indicating the formation of Pd
0
. After 20 h, 

the volatiles were removed under vacuum, affording dark oil. NMR analysis showed that the 

oil contained poly(trimethylsilyl vinyl ether) (-[CH2CH(OSiMe3)]n-), free -diimine and 

other unidentified species. Approximately 7 % of 2c was converted to polymer. 

2,6-di-tert-butylpyridine does not significantly affect the polymerization of 2c by 

1[B(C6F5)4]. 

2.4 Attempted polymerization of CH2=CHOSiPh3 by 1[B(C6F5)4]. An NMR tube 

was charged with (-diimine)PdMeCl (5.5 mg, 0.010 mmol), [Li(Et2O)2.8][B(C6F5)4] (8.3 

mg, 0.0093 mmol) and CH2=CHOSiPh3 (176 mg, 0.582 mmol). CD2Cl2 (0.4 mL) was added 
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by vacuum transfer at -196 
o
C. The tube was warmed to 20 

o
C, shaken and monitored by 

1
H 

NMR periodically. NMR spectra showed that no polymer had formed after 20 h. 

2.5 Attempted polymerization of CH2=CHOPh by 1[B(C6F5)4]. An NMR tube was 

charged with (-diimine)PdMeCl (8.4 mg, 0.015 mmol), [Li(Et2O)2.8][B(C6F5)4] (13.4 mg, 

0.0150 mmol) and CH2=CHOPh (33 mg, 0.27 mmol). CD2Cl2 (0.4 mL) was added by 

vacuum transfer at -196 
o
C. The tube was warmed to 20 

o
C, shaken, and monitored by 

1
H 

NMR periodically. NMR spectra showed that no polymer had formed after 20 h. 

 2.6 Cationic polymerization of CH2=CHOSiMe3 (2c) by [Li(Et2O)2.8][B(C6F5)4]. A 

Schlenk flask was charged with [Li(Et2O)2.8][B(C6F5)4] (17.8 mg, 0.0199 mmol). A solution of 

2c (320 mg, 2.67 mmol) in CH2Cl2 (10 mL) was added by cannula and the mixture was stirred 

vigorously at 20 
o
C. After 20 h, the volatiles were removed under vacuum.  The nonvolatile 

oily residue was dried under vacuum to yield a white oil (120 mg), which was identified as 

poly(trimethylsilyl vinyl ether) (-[CH2CH(OSiMe3)]n-) by NMR. 

2.7 Cationic polymerization of CH2=CHOSiMe3 (2c) by [Ph3C][B(C6F5)4]. A flask 

was charged with [Ph3C][B(C6F5)4] (24.4 mg, 0.0265 mmol) and cooled to -196 
o
C. 

Chlorobenzene (1.2 mL) was added by vacuum transfer. The mixture was warmed to 23 
o
C. A 

Schlenk tube was charged with chlorobenzene or toluene (1.2 mL) and cooled to -196 
o
C. 2c 

(1.50 mL, 1.17 g, 375 equiv) was added by vacuum transfer. The Schlenk tube was warmed to 

-40 
o
C with a dry ice/acetonitrile bath. The catalyst solution (at 23 

o
C) was transferred by 

cannula to the Schlenk tube. The mixture was stirred for 2 h at -40 
o
C and then quenched with 

methanol (1 mL) pre-cooled to -40 
o
C. Immediate gellation occurred upon the addition of 
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methanol. The mixture was transferred to a flask containing methanol (75 mL) and the mixture 

was stirred for 7.5 h. The white solid precipitate was collected by filtration, washed with 

methanol, dried under vacuum, and identified as poly(vinyl alcohol).
1
 For reaction in 

chlorobenzene: yield 339 mg (76%), Mn 4000. For reaction in toluene: yield 429 mg (97 %), 

Mn 7000. 

2.8 Key NMR data for -[CH2CH(OSiMe3)]n-. 
1
H NMR (CDCl3):  

–CH2CH(OSiMe3)CH2C(=O)H), 5.52 (-CH2CH(OSiMe3)CH=CHCH2-), 5.42 

(-CH2CH(OSiMe3)CH=CHCH2-), 3.84 (br, -CH2CH(OSiMe3)-), 1.57 (br, 

-CH2CH(OSiMe3)-), 0.10 (br, -CH2CH(OSiMe3)-). 
13

C{
1
H} NMR (CDCl3):  70.8 (br, 

-CH2CH(OSiMe3)-), 69.4 (br, -CH2CH(OSiMe3)-), 65.7 (br, -CH2CH(OSiMe3)-), 65.4 (br, 

-CH2CH(OSiMe3)-), 46.6 (br, -CH2CH(OSiMe3)-), 1.0 (br, -CH2CH(OSiMe3)-). 

3. Generation of [(-diimine)PdMe(CH2=CHOR)][SbF6] (3b-g[SbF6]) Complexes from 

1[SbF6]. 

The adducts [(-diimine)PdMe(CH2=CHOEt)][SbF6] (3b[SbF6]), 

[(-diimine)PdMe(CH2=CHOSiMe3)][SbF6] (3c[SbF6]), 

[(-diimine)PdMe(CH2=CHOSiMe2Ph)][SbF6] (3d[SbF6]), 

[(-diimine)PdMe(CH2=CHOSiMePh2)][SbF6] (3e[SbF6]), 

[(-diimine)PdMe(CH2=CHOSiPh3)][SbF6] (3f[SbF6]) and 

[(-diimine)PdMe(CH2=CHOPh)][SbF6] (3g[SbF6]) were generated using the procedure 

described for 3a[SbF6] on similar scales and with similar yields. 

3.1 Generation of [(-diimine)PdMe(CH2=CHOEt)][SbF6] (3b[SbF6]). An NMR 

tube was charged with 1[SbF6] (13.0 mg, 0.0157 mmol) and CD2Cl2 (0.4 mL) was added by 

vacuum transfer at -196 °C. 2b (0.0173 mmol) was added by vacuum transfer at -196 °C. The 



S12 

tube was warmed to -78 °C, shaken to dissolve and thoroughly mix the components, and placed 

in an NMR probe that had been pre-cooled to -20 °C. NMR spectra at -60 °C showed that 

3b[SbF6] (95 %) had formed. 
1
H NMR (CD2Cl2, -20 °C):  7.37-7.32 (m, 6H), 6.76 (dd, J = 13, 

4; 1H, Hint), 4.04 (dq, J = 17, 8, 2H, OCH2CH3), 3.26 (d, J = 13, 1H, Htrans), 3.11 (d, J = 4, 1H, 

Hcis), 3.00 (sept, J = 7, 1H, CHMe2), 2.85 (sept, J = 7, 1H, CHMe2), 2.81 (sept, J = 7, 1H, 

CHMe2), 2.73 (sept, J = 7, 1H, CHMe2), 2.33 (s, 3H, N=CMe), 2.25 (s, 3H, N=CMe), 1.41 (d, J 

= 7, 3H, CHMe2), 1.37 (d, J = 7, 3H, CHMe2), 1.32 (d, J = 7, 3H, CHMe2), 1.29 (d, J = 7, 3H, 

CHMe2), 1.28 (d, J = 7, 3H, CHMe2), 1.19 (t, J = 7, 3H, OCH2CH3), 1.15 (d, J = 7, 3H, 

CHMe2), 1.13 (d, J = 7, 3H, CHMe2), 1.08 (free Et2O and CHMe2), 0.18 (s, 3H, PdMe). 

13
C{

1
H} NMR (CD2Cl2, -20 °C):  179.8 (N=CMe), 175.7 (N=CMe), 148.4 (CH2=CHOEt), 

139.8, 139.4, 138.3, 138.2, 138.1, 137.4, 128.65, 128.60, 125.2, 125.0, 124.7, 124.5, 71.8 

(OCH2CH3), 56.7 (CH2=CHOEt), 29.3, 29.2, 29.0, 28.9, 24.6 (2C), 23.9, 23.8, 23.5, 23.4, 23.3, 

23.0, 22.0, 21.7, 15.4 (OCH2CH3), 14.9 (PdMe). 

3.2 [(-diimine)PdMe(CH2=CHOSiMe3)][SbF6] (3c[SbF6]). 
1
H NMR (CD2Cl2, -60 

°C):  7.38-7.25 (m, 6H), 6.91 (dd, J = 12, 4; 1H, Hint), 3.36 (d, J = 12, 1H, Htrans), 3.14 (d, J = 

4, 1H, Hcis), 2.87-2.78 (m, 4H, CHMe2), 2.32 (s, 3H, N=CMe), 2.24 (s, 3H, N=CMe), 1.36 (d, J 

= 7, 3H, CHMe2), 1.33 (d, J = 7, 3H, CHMe2), 1.28 (d, J = 7, 3H, CHMe2), 1.23 (d, J = 7, 3H, 

CHMe2), 1.18 (d, J = 7, 3H, CHMe2), 1.15 (d, J = 7, 3H, CHMe2), 1.12 (d, J = 7, 3H, CHMe2), 

1.06 (d, J = 7, 3H, CHMe2), 0.25 (s, 9H, OSiMe3), 0.15 (s, PdMe). 
13

C{
1
H} NMR (CD2Cl2, -60 

°C):  179.8 (N=CMe), 175.4 (N=CMe), 143.1 (CH2=CHOSiMe3), 139.2, 138.7, 138.0, 137.7, 

137.5, 137.0, 128.1 (2C), 124.6, 124.5, 124.1, 124.0, 60.6 (CH2=CHOSiMe3), 28.70, 28.68, 
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28.31, 28.27, 24.3, 24.0, 23.8, 23.6, 23.4, 23.3, 22.7, 22.6, 21.5, 21.4, 15.6 (PdMe), -1.0 

(OSiMe3). 

3.3 [(-diimine)PdMe(CH2=CHOSiMe2Ph)][SbF6] (3d[SbF6]). 
1
H NMR (CD2Cl2, 

-60 °C): 6.83 (dd, J = 12, 3; 1H, Hint), 3.50 (d, J = 12, 1H, Htrans), 3.18 (d, J = 3, 1H, Hcis), 2.91 

(m, 1H, CHMe2), 2.83 (m, 1H, CHMe2), 2.78 (m, 1H, CHMe2), 2.56 (m, 1H, CHMe2), 2.34 (s, 

3H, N=CMe), 2.22 (s, 3H, N=CMe), 1.29 (m, 6H, CHMe2), 1.23 (m, 6H, CHMe2), 1.12 (d, J = 

7, 3H, CHMe2), 1.03 (m, 6H, CHMe2), 0.91 (d, J = 7, 3H, CHMe2), 0.53 (s, 3H, SiCH3), 0.44 (s, 

3H, SiCH3), 0.20 (s, 3H, PdMe); the -diimine and free and coordinated CH2=CHOSiMePh2 

aromatic resonances overlap and are not listed. Key 
13

C NMR (CD2Cl2, -60 
o
C) data: 180.2 

(N=CMe), 175.6 (N=CMe), 142.6 (CH2=CHOSiMePh2), 139.2 (Ar, Cipso), 138.5 (Ar, Cipso), 

138.1 (Ar, Co), 138.0 (Ar, Co), 137.4 (Ar, Co), 137.1 (Ar, Co), 124.6 (Ar, Cm), 124.4 (Ar, Cm), 

124.2 (Ar, Cm), 124.0 (Ar, Cm), 61.6 (CH2=CHOSiMePh2), 28.8 (CHMe2), 28.7 (CHMe2), 28.3 

(CHMe2, 2C), 24.2 (CHMe2), 23.9 (CHMe2), 23.8 (CHMe2), 23.6 (CHMe2), 23.4 (CHMe2), 

23.3 (CHMe2), 22.9 (CHMe2), 22.6 (CHMe2), 21.5 (N=CMe), 21.4 (N=CMe), 9.0 (PdMe), -2.0 

(SiMe), -2.3 (SiMe). 

3.4 [(-diimine)PdMe(CH2=CHOSiMePh2)][SbF6] (3e[SbF6]). 
1
H NMR (CD2Cl2, 

-60 °C): 6.89 (dd, J = 12, 3; 1H, Hint), 3.67 (d, J = 12, 1H, Htrans), 3.18 (d, J = 3, 1H, Hcis), 

3.03-2.30 (m, 4H, CHMe2), 2.37 (s, 3H, N=CMe), 2.22 (s, 3H, N=CMe), 1.28-1.21 (m, 12H, 

CHMe2), 1.17 (d, J = 7, 3H, CHMe2), 1.12 (d, J = 7, 3H, CHMe2), 1.02 (d, J = 7, 3H, CHMe2), 

0.97 (d, J = 7, 3H, CHMe2), 0.70 (s, 3H, SiCH3), 0.26 (s, 3H, PdMe); the -diimine and free and 

coordinated CH2=CHOSiMePh2 aromatic resonances overlap and are not listed. Key 
13

C NMR 

(CD2Cl2, -60 
o
C) data:  180.5 (N=CMe), 175.7 (N=CMe), 141.8 (CH2=CHOSiMePh2), 139.2 
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(Ar, Cipso), 138.4 (Ar, Cipso), 138.2 (Ar, Co), 138.0 (Ar, Co), 137.1 (Ar, Co), 137.0 (Ar, Co), 

124.6 (Ar, Cm), 124.3 (Ar, Cm), 124.2 (Ar, Cm), 124.0 (Ar, Cm), 62.5 (CH2=CHOSiMePh2), 

28.9 (CHMe2), 28.8 (CHMe2), 28.4 (CHMe2, 2C), 24.1 (CHMe2), 24.0 (CHMe2), 23.8 

(CHMe2), 23.7 (CHMe2), 23.3 (CHMe2), 23.1 (CHMe2), 22.7 (CHMe2), 22.5 (CHMe2), 21.5 

(N=CMe), 21.4 (N=CMe), 8.9 (PdMe), -1.1 (SiMePh2). 

3.5 [(-diimine)PdMe(CH2=CHOSiPh3)][SbF6] (3f[SbF6]). 
1
H NMR (CD2Cl2, -60 

°C)  7.12 (dd, J = 12, 4; 1H, Hint), 3.78 (d, J = 12, 1H, Htrans), 3.22 (d, J = 4, 1H, Hcis), 

2.97-2.65 (m, 4H, CHMe2), 2.37 (s, 3H, N=CMe), 2.22 (s, 3H, N=CMe), 1.29 (d, J = 7, 3H, 

CHMe2), 1.25 (d, J = 7, 6H, CHMe2), 1.11 (d, J = 7, 3H, CHMe2), 1.05 (d, J = 7, 3H, CHMe2), 

0.91 (d, J = 7, 3H, CHMe2), 0.84 (d, J = 7, 3H, CHMe2), 0.34 (d, J = 7, 3H, CHMe2), 0.23 (s, 

3H, PdMe); the -diimine and free and coordinated CH2=CHOSiPh3 aromatic resonances 

overlap and are not listed. Key 
13

C NMR (CD2Cl2, -60 
o
C) data: 180.7 (N=CMe), 175.9 

(N=CMe), 141.8 (CH2=CHOSiPh3), 139.2 (Ar, Cipso), 138.6 (Ar, Cipso), 138.2 (Ar, Co), 138.0 

(Ar, Co), 137.6 (Ar, Co), 137.0 (Ar, Co), 124.6 (Ar, Cm), 124.3 (Ar, Cm), 124.2 (Ar, Cm), 124.0 

(Ar, Cm), 62.8 (CH2=CHOSiPh3), 28.9 (CHMe2), 28.8 (CHMe2), 28.6 (CHMe2), 28.4 

(CHMe2), 24.0 (CHMe2), 23.9 (CHMe2), 23.7 (CHMe2), 23.3 (CHMe2), 23.2 (CHMe2), 22.7 

(CHMe2), 22.4 (CHMe2), 22.3 (CHMe2), 21.5 (N=CMe), 21.4 (N=CMe), 9.0 (PdMe). 

3.6 [(-diimine)PdMe(CH2=CHOPh)][SbF6] (3g[SbF6]). 
1
H NMR (CD2Cl2, -20 °C)

2
 

 7.51 (t, J = 8, 2H, Hmeta), 7.39-7.27 (m, 9H), 7.00 (dd, J = 12, 4; 1H, Hint), 3.77 (d, J = 12, 1H, 

Htrans), 3.35 (d, J = 4, 1H, Hcis), 2.99 (m, 2H, CHMe2), 2.88 (m, 1H, CHMe2), 2.82 (m, 1H, 

CHMe2), 2.41 (s, 3H, N=CMe), 2.35 (s, 3H, N=CMe), 1.35 (d, J = 7, 3H, CHMe2), 1.24 (d, J = 

7, 3H, CHMe2), 1.22 (d, J = 7, 3H, CHMe2), 1.20 (d, J = 7, 3H, CHMe2), 1.18 (d, J = 7, 3H, 
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CHMe2), 1.10 (d, J = 7, 3H, CHMe2), 1.08 (d, J = 7, 3H, CHMe2), 0.94 (d, J = 7, 3H, CHMe2), 

0.26 (s, 3H, PdMe). 

3.7 [(2,6-
i
Pr2-C6H3)N=CAnCAn=N(2,6-

i
Pr2-C6H3)][SbF6] (3h[SbF6]). A NMR tube 

was charged with [(2,6-
i
Pr2-C6H3)N=CAnCAn=N(2,6-

i
Pr2-C6H3)]PdMeCl (19.2 mg, 29.0 

μmol), AgSbF6 (10 mg, 29.1 μmol) and CH2=CHOSiPh3 (8.8 mg, 29.1 μmol), and CD2Cl2 (0.4 

mL) was added by vacuum transfer at –78 °C. The tube was shaken to dissolve and thoroughly 

mix the components, and placed in an NMR probe that had been pre-cooled to -60 °C. NMR 

spectra at -60 °C showed that 3h[SbF6] (95 %) had formed. 
1
H NMR (CD2Cl2, -60 °C): 

J = 8, An: Hp), 8.19 J = 8, An: Hp’), 7.65-7.33 (m, 23 H, An: Hm, Hm', 6 

Haryl, 15 Haryl from SiPh3), 7.32 (dd, J = 12, 4; 1H, Hint), J = 7, An: Ho), 6.39 J = 

7, An: Ho’), 4.00 (d, J = 12, 1H, Htrans), 3.59 (d, J = 4, 1H, Hcis), 3.29 (m, 1H, CHMe2), 3.01 

(m, 2H, CHMe2), 2.50 (m, 1H, CHMe2), 1.29 (d, J = 7, 3H, CHMe2), 1.27 (br, 3H, CHMe2), 

1.06 (br, 3H, CHMe2), 0.97 (d, J = 7, 3H, CHMe2), 0.81 (d, J = 7, 3H, CHMe2), 0.70 (d, 6H, 

CHMe2), 0.51 (s, 3H, PdMe), 0.48 (br, 3H, CHMe2). Key 
13

C NMR (CD2Cl2, -60 
o
C) data: 

175.4 (N=CMe), 171.2 (N=CMe), 141.7 (CH2=CHOSiPh3), 145.7, 139.0, 138.8, 138.5, 

138.0, 137.3, 137.2, 135.2, 133.6, 132.7, 131.5, 130.9, 129.5, 129.2, 129.1, 128.9, 128.5, 128.2, 

126.6, 126.1, 125.2, 125.0, 124.9, 124.8, 124.7 and 124.6 (An 4 quaternary C, Co, Co', Cm, Cm', 

Cp, Cp'; Ar, Ar' Cipso, Cipso', Co, Co', Co'', Co''', Cm, Cm', Cm'', Cm''', Cp, Cp'; SiPh Cipso, Co, Cm, Cp,) 

, 62.2 (CH2=CHOSiPh3), 29.4 (CHMe2), 29.2 (CHMe2), 29.0 (CHMe2), 28.9 (CHMe2), 24.7 

(CHMe2), 24.5 (CHMe2), 23.8 (CHMe2), 23.4 (CHMe2), 23.3 (CHMe2), 23.0 (CHMe2), 22.8 

(CHMe2), 22.4 (CHMe2), 13.4 (PdMe). 
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3.8 [{(4-Me-C6H5)N=CMeCMe=N(4-Me-C6H5)}PdMe(CH2=CHOSiPh3)][SbF6] (3i). 

A NMR tube was charged with (-diimine-Me)PdMeCl (19.2 mg, 29.0 μmol), AgSbF6 (10 mg, 

29.1 μmol) and CH2=CHOSiPh3 (8.8 mg, 29.1 μmol), and CD2Cl2 (0.4 mL) was added by 

vacuum transfer at –78 °C. The tube was shaken to dissolve and thoroughly mix the 

components. NMR spectra at -70 °C showed that two rotamers of 3i (95 %) had formed. 
1
H 

NMR (CD2Cl2, -70 °C)  7.59 (t, J = 7 Hz, 12H, Cm, Si-Ph), 7.55 (d, J = 7 Hz, 12H, Co, Si-Ph), 

7.44 (t, J = 7 Hz, 6H, Cp, Si-Ph), 7.35 (d, J = 4 Hz, 1H, Ar), 7.32 (d, J = 4 Hz, 1H, Ar), 7.26 (b, 

1H, Ar), 7.25 (d, 2H, Ar), 7.17 (d, J = 4 Hz, 1H, Ar), 6.94 (d, J = 4 Hz, 1H, Ar), 6.92 (d, J = 4 

Hz, 1H, Ar), 6.90 (d, 1H, Hint), 6.78 (d, J = 4 Hz, 1H, Ar), 6.76 (d, J = 4 Hz, 1H, Ar), 6.74 (d, J 

= 4 Hz, 1H, Ar), 6.67 (d, J = 4 Hz, 1H, Ar), 6.65 (d, J = 4 Hz, 1H, Ar), 6.64 (d, J = 4 Hz, 1H, 

Ar), 6.34 (d, 1H, Hint), 6.05 (d, J = 4 Hz, 1H, Ar), 5.62 (d, J = 4 Hz, 1H, Ar), 3.78 (d, J = 12, 1H, 

Htrans), 3.56 (b, 2H, Hcis), 3.49 (d, J = 12, 1H, Htrans), 2.37, 2.34, 2.32, 2.25, 2.24, 2.16, 2.04, 

1.91, 0.17 (s, 3H, Pd-Me), -0.18 (s, 3H, Pd-Me). 
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Figure 3.1. NOSEY NMR of 3d[SbF6] (CD2Cl2, -20 °C): expansion of the  8.0-0.0;8.0-0.0 

region.  
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Figure 3.2. NOSEY NMR of 3e[SbF6] (CD2Cl2, -20 °C): expansion of the  8.0-0.0;8.0-0.0 

region.  
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Figure 3.3. NOSEY NMR of 3f[SbF6] (CD2Cl2, -20 °C): expansion of the  8.0-0.0;8.0-0.0 

region.  

 

4. Competitive Binding Studies. 

4.1 Competitive binding of 2d-g and 2c to 1[SbF6] at -20 
o
C (eq 5). The procedure for 

2d is described here; an identical procedure was used for 2e-g. An NMR tube was charged with 

1[SbF6] (15.0 mg, 0.0179 mmol) and 2d (31.0 mg, 0.258 mmol). CD2Cl2 (0.4 mL) and 2c 

(0.034 mmol) were added by vacuum transfer at -196 °C. The tube was warmed to -78 °C, 

shaken and placed in an NMR probe that had been pre-cooled to -20 °C. The reaction was 

monitored periodically by 
1
H NMR at -20 °C until after 30 min, when the reaction quotient 

Q2e/2c = [3d][2c][3c]
-1

[2d]
-1

 reached a constant value. Additional 2d (0.14 mmol) was added by 
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vacuum transfer to change the 2c/2d ratio, and the tube was monitored by 
1
H NMR at -20 

o
C 

until Q2d/2c again reached a constant value. The process was repeated one more time and the 

average K2d/2c value is reported in Table 2 of the text. 

4.2 Competitive binding of ethylene and CH2=CHOR (2a-c, 2g) to 1[B(C6F5)4] at 

-60 
o
C (eq 4). The procedure for 2a is described here; an identical procedure was used for 2b, 

2c, 2f, 2g. An NMR tube was charged with (-diimine)PdMeCl (11.2 mg, 0.0199 mmol) and 

[Li(Et2O)2.8][B(C6F5)4] (17.5 mg, 0.0196 mmol). CD2Cl2 (0.4 mL) was added by vacuum 

transfer at -196 °C. The tube was warmed to 20 
o
C and shaken. Ethylene (0.062 mmol) and 2a 

(0.040 mmol) were added by vacuum transfer at -196 °C. The tube was warmed to -78 °C, 

shaken, and placed in an NMR probe that had been pre-cooled to -60 °C. The reaction was 

monitored periodically by 
1
H NMR at -60 °C until after 1 h, when the reaction quotient 

Q2a/ethylene = [3a][CH2=CH2][(-diimine)PdMe(CH2=CH2)
+
]

-1
[2a]

-1
 reached a constant value. 

Additional 2a (0.062 mmol) was added by vacuum transfer to change the ethylene/2a ratio, and 

the tube was monitored by 
1
H NMR at -60 

o
C until Q2a/ethylene reached a constant value again. 

5. Reaction of CH2=CHO
t
Bu (2a) with 1[B(C6F5)4]. 

5.1 Kinetics of insertion of 3a[B(C6F5)4]. The first-order rate constant for the 

consumption of 3a[B(C6F5)4], kinsert, 3a,  was measured by the disappearance of the PdMe 
1
H 

NMR resonance and the increase of the PdCH2CHMe resonance of 4a[B(C6F5)4] plus the 

PdCMe2 resonance of 5a[B(C6F5)4], both at 0 °C and at 20 °C. 
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Figure 5.1. First-order consumption of 3a[B(C6F5)4] at 0 °C. 
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Figure 5.2. First-order consumption of 3a[B(C6F5)4] at 0 °C based on the increase of the sum 

of 4a[B(C6F5)4] + 5a[B(C6F5)4]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 

 

[A]/[A]0 ln([A]/[A]0) Time(s) 

1 0 0 

0.947231 -0.05421 1500 

0.807385 -0.21395 6060 

0.730323 -0.31427 7980 

0.685211 -0.37803 9600 

0.262019 -1.33934 39180 

0.249934 -1.38656 41280 

0.199764 -1.61062 46560 

0.190482 -1.6582 49020 

0.081449 -2.50777 77460 

0.070989 -2.64523 80400 

0.047803 -3.04066 91800 

 

[B]∞-[B]/ 

[B]∞-[B]0 

ln[([B]∞-[B])/ 

([B]∞-[B]0)] Time(s) 

1 0 0 

0.9609 -0.03988 1500 

0.8141 -0.20567 6060 

0.7441 -0.29558 9600 

0.256 -1.36258 39180 
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Figure 5.3. First-order consumption of 3a[B(C6F5)4] at 20 °C. 
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Figure 5.4. First-order consumption of 3a[B(C6F5)4] at 20 °C based on the increase of the sum 

of  4a[B(C6F5)4] + 5a[B(C6F5)4]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 

 

[A]/[A]0 ln([A]/[A]0) Time(s) 

1 0 0 

0.6538 -0.42495 600 

0.4262 -0.85285 1320 

0.2985 -1.20899 1800 

0.1911 -1.65496 2400 

0.1115 -2.19373 3180 
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0.0313 -3.46414 4920 

 

[B]∞-[B]/ 

[B]∞-[B]0 

ln[([B]∞-[B]) 

/([B]∞-[B]0)] Time(s) 

1 0 0 

0.6694 -0.40137 600 

0.4007 -0.91454 1320 

0.2921 -1.23066 1800 

0.1932 -1.64403 2400 

0.113 -2.18037 3180 

0.0561 -2.88062 4200 

0.0336 -3.39323 4920 

 



S23 

5.2 Kinetics of the β-O
t
Bu elimination of 5a[B(C6F5)4] and 4a[B(C6F5)4]. The 

first-order rate constant for consumption of the total of 4a[B(C6F5)4] and 5a[B(C6F5)4], k-OtBu, 

obs, was measured by the disappearance of the PdCH2CHMe resonance of 4a[B(C6F5)4] and the 

PdCMe2 resonance of 5a[B(C6F5)4] and the increase of the Hint resonance of 6[B(C6F5)4] at 20 

°C. 
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Figure 5.5. First-order consumption of the sum of 4a[B(C6F5)4] + 5a[B(C6F5)4] at 20 °C. 
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Figure 5.6. First-order consumption of the sum of 4a[B(C6F5)4] + 5a[B(C6F5)4] at 20 °C based 

on the increase of 6[B(C6F5)4]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 
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-diimine and OEt 
1
H NMR resonances of 3b[B(C6F5)4], 4b[B(C6F5)4] and 5b[B(C6F5)4] 

overlap. Therefore only key NMR data are listed. Key Data for 4b[B(C6F5)4]: 
1
H NMR 

(CD2Cl2, 0 °C)  4.86 (sextet, J = 7, PdCH2CH(OEt)Me), 3.41 (q, J = 7, 2H, OCH2CH3), 2.20 

(s, 3H, N=CMe), 2.16 (s, 3H, N=CMe), 0.59 (t, J = 7, 3H,OCH2CH3), 0.37 (t, J = 7, 

PdCHH’CH(OEt)Me). The PdCHH’CH(OEt)Me and PdCH2CH(OEt)Me resonances are 

obscured by the -diimine resonances. Key Data for 5b[B(C6F5)4]: 
1
H NMR (CD2Cl2, 0 °C) 

3.56 (q, J = 7, 2H, OCH2CH3), 2.92 (septa, J = 7, 1H, CHMe2), 2.23 (s, 3H, N=CMe), 2.19 (s, 

3H, N=CMe), 1.41 (d, J = 7, 6H, CHMe2), 1.39 (d, J = 7, 6H, CHMe2), 1.29 (d, J = 7, 6H, 

CHMe2), 1.16 (d, J = 7, 6H, CHMe2), 0.60 (s, PdCMe2(OEt)) 0.55 (t, J = 7, 

PdCMe2(OCH2CH3)). The first-order rate constant for the consumption of 3b[B(C6F5)4] 

measured by the disappearance of the PdMe 
1
H NMR resonance is kinsert, 3c = 8.01(6) × 10

-5
 s

-1
 

at 0 °C and kinsert, 3c = ~  2.0 × 10
-3

 s
-1

  at 20 °C (ca. 83% consumption after 15 min). The 

first-order rate constant for consumption of the total of 4b[B(C6F5)4] and 5b[B(C6F5)4] 

measured by the disappearance of the PdCH2CHMe resonance of 4b[B(C6F5)4] and the 

PdCMe2 resonance of 5b[B(C6F5)4], or by the appearance of the Hint resonance of 6[B(C6F5)4] 

is k-OEt, obs = 9.12(1) × 10
-4

 s
-1

 at 20 °C. 
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Figure 6.1. First-order consumption of 3b[B(C6F5)4] at 0 °C. 
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Figure 6.2. First-order consumption of 3b[B(C6F5)4] at 0 °C based on the increase of the sum 

of 4b[B(C6F5)4] + 5b[B(C6F5)4] + 6[B(C6F5)4]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure 6.3. First-order consumption of the sum of 4b[B(C6F5)4] + 5b[B(C6F5)4] at 0 °C. 
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Figure 6.4. First-order consumption of the sum of 4b[B(C6F5)4] + 5b[B(C6F5)4] at 0 °C based 

on increase of 6[B(C6F5)4]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure 6.5. First-order consumption of the sum of 4b[B(C6F5)4] + 5b[B(C6F5)4] at 20 °C. 
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Figure 6.6. First-order consumption of the sum of 4b[B(C6F5)4] + 5b[B(C6F5)4] at 20 °C based 

on increase of 6[B(C6F5)4]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 
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6.2 Reaction of 1[B(C6F5)4] with CH2=CHOSiMe3 (2c). An NMR tube was charged 

with (-diimine)PdMeCl (14.0 mg, 0.0249 mmol) and [Li(Et2O)2.8][B(C6F5)4] (22.0 mg, 

0.0246 mmol) and CD2Cl2 (0.4 mL) were added by vacuum transfer at -196 °C. The tube was 

warmed to 20 °C, shaken vigorously. After 20min, 2c (0.0225 mmol) were added by vacuum 

transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously and monitored 

periodically by NMR. NMR analysis showed that after 10 min, 

[(-diimine)Pd{CMe2(OSiMe3)}][B(C6F5)4] (5c[B(C6F5)4]) had formed quantitatively. 
1
H 

NMR (CD2Cl2):  7.35 (s, 3H), 7.31 (s, 3H), 3.05 (sept, J = 7, 2H, CHMe2), 2.95 (sept, J = 7, 

2H, CHMe2), 2.22 (s, 3H, N=CMe), 2.17 (s, 3H, N=CMe), 1.44 (d, J = 7, 6H, CHMe2), 1.40 (d, 

J = 7, 6H, CHMe2), 1.27 (d, J = 7, 6H, CHMe2), 1.16 (d, J = 7, 6H, CHMe2), 0.54 (s, 6H, 

PdCMe2(OSiMe3)), -0.07 (s, 9H, OSiMe3); the aromatic reagion is simpler than expected due to 

accidental degeneracies. 
13

C{
1
H} NMR (CD2Cl2, -60 °C):  174.2 (N=CMe), 170.7 (N=CMe), 

143.2, 142.6, 136.5, 135.9, 127.6, 127.2, 124.1, 123.8, 84.5 (PdCMe2(OSiMe3)), 28.7, 28.4, 

25.4, 23.4, 23.2, 22.4, 22.2, 20.9, 18.9, -0.3 (OSiMe3). ESI-MS: 

(-diimine)Pd{CMe2(OSiMe3)}
+ 

calcd. m/z = 641.3, found 641.2. 5c[B(C6F5)4] converts to 

Me3SiOH and 6[B(C6F5)4].
4
 Me3SiOH was slowly converted to Me3SiOSiMe3 in CD2Cl2 at 

RT over 1 week. 

The first-order rate constant for consumption of 5c[B(C6F5)4] measured by the 

disappearance of the PdCMe2 resonance is k-OSiMe3, obs = 3.22(2) × 10
-5

 s
-1

 at 20 °C. Since K5c/4c 

> 20, the actual -OSiMe3 elimination rate constant k-OSiMe3 = k-OSiMe3, obs (K5c/4c + 1) > 7.35 × 

10
-4

 s
-1

. 
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Figure 6.7. First-order consumption of 5c[B(C6F5)4] at 20 °C. 
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Figure 6.8. First-order consumption of 5c[B(C6F5)4] at 20 °C based on the increase of 

6[B(C6F5)4]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 
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6.3 Reaction of 5c[B(C6F5)4] with MeCN. An NMR tube containing a CD2Cl2 solution 

of 5c[B(C6F5)4] (0.020 mmol) was frozen at -196 °C and MeCN (0.040 mmol) was added by 

vacuum transfer. The tube was warmed to -78 °C, agitated to mix the components, placed in an 

NMR probe that had been pre-cooled to -40 °C, and monitored by NMR. 
1
H NMR spectra 

showed that after 10 min, 36 % of 5c[B(C6F5)4] had been converted to [4c-MeCN][B(C6F5)4]. 

Therefore the tube was warmed to 0 
o
C for 10 min to facilitate the reaction of 5c[B(C6F5)4] with 

MeCN. The tube was cooled to -40 
o
C and 

1
H NMR spectra were recorded and showed that 90 

% of 5c[B(C6F5)4] had been converted to [4c-MeCN][B(C6F5)4]. This species decomposes 

within a few minutes at 20 
o
C. Key NMR data for [4c-MeCN][B(C6F5)4]: 

1
H NMR (CD2Cl2, 

-40 °C)  7.38-7.24 (m, 6H), 3.49 (m, 1H, PdCH2CHMe(OSiMe3)), 2.90 (m, 2H, CHMe2), 2.81 

(m, 2H, CHMe2), 2.22 (s, 3H, N=CMe), 2.21 (s, 3H, N=CMe), 1.70 (s, 3H, MeCN), 1.44 (m, 

1H, PdCHH’CHMe(OSiMe3)), 1.32 (d, J = 7, 12H, CHMe2), 1.25 (m, 1H, 

PdCHH’CHMe(OSiMe3)), 1.17 (d, J = 7, 3H, CHMe2), 1.16 (d, J = 7, 3H, CHMe2), 1.12 (3H, 

CHMe2), 1.10 (3H, CHMe2, partially obscured by Et2O resonance), 0.93 (d, J = 6, 3H, 

PdCH2CHMe(OSiMe3)), -0.13 (s, 9H, OSiMe3). Key 
1
H-

1
H COSY correlations /: (CD2Cl2, 

-40 °C) 3.49 (PdCH2CHMe(OSiMe3))/1.44 (PdCHH’CHMe(OSiMe3)); 3.49 

(PdCH2CHMe(OSiMe3))/1.25 (PdCHH’CHMe(OSiMe3)); 3.49 (PdCH2CHMe(OSiMe3))/0.93 

(PdCH2CHMe(OSiMe3)); 1.44 (PdCHH’CHMe(OSiMe3))/1.25 (PdCHH’CHMe(OSiMe3)). 

13
C{

1
H} NMR (CD2Cl2, -60 °C):  179.7 (N=CMe), 172.1 (N=CMe), 139.4, 139.1, 138.2, 

138.0, 137.2, 137.1, 128.6, 127.8, 124.4, 124.3, 123.9, 123.8, 121.6, 68.9 

(PdCH2CHMe(OSiMe3)), 37.9 (PdCH2CHMe(OSiMe3)), 28.7, 28.5, 25.6, 23.6, 23.4, 23.4, 

23.1, 23.0, 22.9, 22.8, 22.7, 22.5, 22.3, 22.0, 19.9, 2.2 (MeCN), -0.4 (OSiMe3). 
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   6.4 Reaction of 1[B(C6F5)4] with CH2=CHOSiMe2Ph (2d). 

An NMR tube was charged with (-diimine)PdMeCl (14.0 mg, 0.0249 mmol) and 

[Li(Et2O)2.8][B(C6F5)4] (22.0 mg, 0.0246 mmol) and CD2Cl2 (0.4 mL) were added by vacuum 

transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously. After 20min, 2d 

(0.0224 mmol) were added by syringe at -196 °C under nitrogen. The tube was warmed to 20 

°C, shaken vigorously and monitored periodically by NMR. NMR spectrum showed that 

5d[B(C6F5)4] was generated cleanly after 10min at RT. 5d[B(C6F5)4] converts to PhMe2SiOH 

and 6[B(C6F5)4].
5
 PhMe2SiOH was slowly converted to PhMe2SiOSiMe2Ph in CD2Cl2 at RT 

over 1 week. 

The first-order rate constant for consumption of of 5d measured by the disappearance of 

the PdCMe2 resonance is k-OSiMe2Ph, obs = 5.06(2) × 10
-5

 s
-1

 at 20 °C. The actual first-order rate 

constant k-OSiPh3 = k-OSiPh3, obs(K5d/4d + 1) > 1.8 × 10
-3

 s
-1

 (K5d/4d > 20). 
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Figure 6.9. First-order consumption of 5d[B(C6F5)4] at 20 °C. 
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Figure 6.10. First-order consumption of 5d[B(C6F5)4] at 20 °C based on the increase of 

6[B(C6F5)4]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 
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[Li(Et2O)2.8][B(C6F5)4] (22.0 mg, 0.0246 mmol) and CD2Cl2 (0.4 mL) were added by vacuum 

transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously. After 20min, 2e 

(0.0242 mmol) were added by syringe at -196 °C under nitrogen. The tube was warmed to 20 

°C, shaken vigorously and monitored periodically by NMR. NMR spectrum showed that 

5e[B(C6F5)4] was generated cleanly after 10min at RT. 5e[B(C6F5)4] converts to Ph2MeSiOH 

and 6[B(C6F5)4].
6
 Ph2MeSiOH does not react to generate Ph2MeSiOSiMePh2 in CD2Cl2 at RT 

over 2 weeks. 

The first-order rate constant for consumption of of 5e measured by the disappearance of 
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-4
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 at 20 °C. The actual first-order rate 

constant k-OSiPh3 = k-OSiPh3, obs(K5d/4d + 1) > 1.8 × 10
-3

 s
-1

 (K5d/4d > 20). 
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Figure 6.11. First-order consumption of 5e[B(C6F5)4] at 20 °C. 
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Figure 6.12. First-order consumption of 5e[B(C6F5)4] at 20 °C based on the increase of 

6[B(C6F5)4]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure 6.13. First-order consumption of 5e[B(C6F5)4] at 20 °C based on the increase of 

Ph2MeSiOH. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 
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0.0246 mmol) and CD2Cl2 (0.4 mL) were added by vacuum transfer at -196 °C. The tube was 

warmed to 20 °C, shaken vigorously. After 20min, 2f (0.0232 mmol) were added by syringe at 

-196 °C under nitrogen. The tube was warmed to 20 °C, shaken vigorously and monitored 

periodically by NMR. NMR analysis showed that after 10 min at 20 
o
C, 

[{(-diimine)PdMe}2(-Cl)]
+
 (14 %), free 2f (17 %), 

[(-diimine)Pd{CMe2(OSiPh3)}][B(C6F5)4] (5f, 64 %) and 6 (2 %) were present. After 20 min 

the free 2f was completely consumed, and a mixture of [{(-diimine)PdMe}2(-Cl)]
+
 (6 %), 5f 

(65 %) and 6 (11 %) was present. The resonances of the elimination product Ph3SiOH 
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2 weeks.
7
 ESI-MS: (-diimine)Pd{CMe2(OSiPh3)}

+ 
calcd. m/z = 827.4, found 827.2. Key 

NMR Data for 5d: 
1
H NMR (CD2Cl2)

8
  7.45 (d, J = 8, Hortho of OSiPh3), 7.31 (m, OSiPh3), 

7.28 (m, OSiPh3), 3.06 (m, 2H, CHMe2), 2.96 (m, 2H, CHMe2), 2.25 (s, 3H, N=CMe), 2.11 (s, 

3H, N=CMe), 1.35 (d, J = 7, 6H, CHMe2), 1.19 (d, J = 7, 6H, CHMe2), 1.16 (d, J = 7, 6H, 

CHMe2), 1.13 (d, J = 7, 6H, CHMe2), 0.30 (s, 6H, PdCMe2(OSiPh3)). 
13

C{
1
H} NMR (CD2Cl2, 

-40 
o
C):  175.0 (N=CMe), 172.1 (N=CMe), 142.9, 142.4, 137.1, 136.6, 134.8, 131.4, 128.3, 

127.9, 127.7, 124.4, 124.1, 87.2 (PdCMe2(OSiPh3)), 28.9, 28.6, 26.1, 23.8, 23.5, 22.9, 22.7, 

21.6, 19.6. The Cipso signal of OSiPh3 was obscured. 

The first-order rate constant for consumption of of 5f measured by the disappearance of 

the PdCMe2 resonance is k-OSiPh3, obs = 1.071(5) × 10
-4

 s
-1

 at 20 °C. The actual first-order rate 

constant k-OSiPh3 = k-OSiPh3, obs(K5f/4f + 1) > 1.8 × 10
-3

 s
-1

 (K5f/4f > 20). 
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Figure 6.14. First-order consumption of 5f[B(C6F5)4] at 20 °C. 
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Figure 6.15. First-order consumption of 5f[B(C6F5)4] at 20 °C based on the increase of 

6[B(C6F5)4]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 

 

6.7 Reaction of 5f[B(C6F5)4] with MeCN. An NMR tube containing a CD2Cl2 solution 

of 5f[B(C6F5)4] (0.020 mmol) was frozen at -196 °C and MeCN (0.030 mmol) was added by 

vacuum transfer. The tube was warmed to -78 °C, agitated to mix the components, placed in an 

NMR probe that had been pre-cooled to -60 °C, and monitored by NMR. 
1
H NMR spectra 

showed that after 5 min, complex 5f[B(C6F5)4] had been converted cleanly to 

[4f-MeCN][B(C6F5)4]. 
1
H NMR (CD2Cl2, -60 °C):  7.58 (t, J = 8, 3H, Hpara of OSiPh3), 7.43 

(d, J = 7, 6H, Hortho of OSiPh3), 3.66 (q, J = 6, 1H, PdCH2CHMe(OSiPh3)), 2.92 (sept, J = 7, 
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MeCN), 1.40 (m, 1H, PdCHH’CHMe(OSiPh3)), 1.31 (d, J = 7, 3H, CHMe2), 1.23 (d, J = 7, 3H, 

CHMe2), 1.15 (d, J = 7, 3H, CHMe2), 1.14 (d, J = 7, 3H, CHMe2), 1.12 (d, 6H, CHMe2, partially 

obscured by Et2O resonance), 1.05 (d, J = 6, 3H, CHMe2), 1.04 (d, J = 6, 3H, CHMe2), 0.99 (d, 

J = 6, 3H, PdCH2CHMe(OSiPh3)), 0.83 (m, 1H, PdCHH’CHMe(OSiPh3)). 
13
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(CD2Cl2, -60 °C):  179.6 (N=CMe), 172.3 (N=CMe), 139.2, 139.1, 138.2, 137.8, 137.1, 137.0, 

135.0, 134.6, 134.3, 129.8, 127.9, 127.7, 127.5, 124.4, 124.3, 123.9, 123.7, 121.0 (CH3CN), 

71.5 (PdCH2CHMe(OSiPh3)), 38.9 (PdCH2CHMe(OSiPh3)), 28.8, 28.7, 28.6, 28.5, 25.1, 23.6, 

23.3, 23.12, 23.08, 23.0, 22.8 (2C), 22.6, 22.0, 19.9, 1.1 (MeCN). 

6.8 Reaction of 1[B(C6F5)4] with CH2=CHOPh (2g). An NMR tube was charged with 

(-diimine)PdMeCl (11.1 mg, 0.0198 mmol) and [Li(Et2O)2.8][B(C6F5)4] (18.4 mg, 0.0206 

mmol). CD2Cl2 (0.4 mL) and 2g (0.021 mmol) were added by vacuum transfer at -196 °C. The 

tube was warmed to 20 °C, shaken vigorously, and monitored periodically by NMR. NMR 

analysis showed that after 10 min, 6 and phenol had formed quantitatively.  

7. Reaction of 1[SbF6] with 2a-g. 

7.1 Reaction of 1[SbF6] with CH2=CHO
t
Bu (2a). An NMR tube was charged with 

1[SbF6] (14.9 mg, 0.0178 mmol) and 2a (0.0325 mmol). CD2Cl2 was added by vacuum transfer 

at -196 
o
C.

 1
H NMR spectrum at -60 

o
C confirmed the formation of 3a[SbF6]. The tube was 

kept at 0 °C for 10 min. All the volatiles were evacuated and CD2Cl2 (0.4 mL) was added by 

vacuum transfer at -196 °C. The tube was warmed to 0 
o
C and monitored by 

1
H NMR 

periodically. Complex 3a[SbF6] was converted to 4a[SbF6] and 5a[SbF6]. The NMR 

resonances of 4a[SbF6] and 5a[SbF6] is very similar to 4a[B(C6F5)4] and  5a[B(C6F5)4]. The 

first-order rate constant for the consumption of 3a[SbF6] measured by the disappearance of the 

PdMe 
1
H NMR resonance is kinsert, 3c = 3.29(2) × 10

-5
 s

-1
 at 0 °C. After 3a[SbF6] is fully 

consumed, the tube was warmed to 20 
o
C and monitored by 

1
H NMR periodically. NMR 

analysis showed a mixture of 4a[SbF6] (66%), 5a[SbF6] (22%) and 6[SbF6] (12%) was present 

after 5min. The first-order rate constant for the consumption of 3a[SbF6] measured by the 
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disappearance of the PdMe 
1
H NMR resonance is kinsert, 3c = 3.29 (2) × 10

-5
 s

-1
 at 0 °C and kinsert, 

3c = 6.33 (5) × 10
-4

 s
-1

 at 20 °C. The first-order rate constant for consumption of the total of 

4a[SbF6] and 5a[SbF6] measured by the disappearance of the PdCH2CHMe resonance of 

4a[SbF6] and the PdCMe2 resonance of 5a[SbF6] is k-OtBu, obs =  1.50(2)  × 10
-5

 s
-1

 at 20 °C. 
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Figure 7.1. First-order consumption of 3a[SbF6] at 0 °C. 
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Figure 7.2. First-order consumption of 3a[SbF6] at 0 °C based on increase of the sum of 

4a[SbF6] + 5a[SbF6]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure 7.3. First-order consumption of 3a[SbF6] at 20 °C. 
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Figure 7.4. First-order consumption of 3a[SbF6] at 20 °C based on the increase of the sum of 

4a[SbF6] + 5a[SbF6] + 6[SbF6]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure7.5. First-order consumption of the sum of 4a[SbF6] + 5a[SbF6] at 20 °C. 
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Figure 7.6. First-order consumption of the sum of 4a[SbF6] + 5a[SbF6] at 20 °C based on 

increase of 6[SbF6]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 

 

7.2 Reaction of 1[SbF6] with CH2=CHOEt (2b). An NMR tube was charged with 

1[SbF6] (14.9 mg, 0.0178 mmol) and 2b (0.0325 mmol). CD2Cl2 was added by vacuum transfer 

at -196 
o
C. A 

1
H NMR spectrum at -60 

o
C confirmed the formation of 3b[SbF6]. The tube was 

kept at 0 °C for 10 min. All the volatiles were evacuated and CD2Cl2 (0.4 mL) was added by 

vacuum transfer at -196 °C. The tube was warmed to 0 
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C and monitored by 

1
H NMR 

periodically. Complex 3b[SbF6] was converted to 4b[SbF6] and 5b[SbF6]. The NMR 
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C and monitored by 

1
H NMR periodically. NMR 
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after 5min. The first-order rate constant for consumption of the total of 4a[SbF6] and 5a[SbF6] 

measured by the disappearance of the PdCH2CHMe resonance of 4b[SbF6] and the PdCMe2 

resonance of 5b[SbF6] is k-OtBu, obs =  1.200(8) × 10
-3

 s
-1

 at 20 °C. The first-order rate constant 

for the consumption of 3b[SbF6] estimated by the disappearance of the PdMe 
1
H NMR 

resonance is kinsert, 3c = ~ 2.7 × 10
-3

 s
-1

 at 20 °C (ca. 56% consumption after 5min). 
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Figure 7.7. First-order consumption of 3b[SbF6] at 0 °C. 
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Figure 7.8. First-order consumption of 3b[SbF6] at 0 °C based on increase of the sum of 

4b[SbF6] + 5b[SbF6] + 6[SbF6]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure 7.9. First-order consumption of the sum of 4b[SbF6] + 5b[SbF6] at 0 °C. B = 

ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure 7.10. First-order consumption of the sum of 4b[SbF6] + 5b[SbF6] at 0 °C based on 

increase of 6[SbF6]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure 7.11. First-order consumption of the sum of 4b[SbF6] + 5b[SbF6] at 20 °C. 
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Figure 7.12. First-order consumption of the sum of 4b[SbF6] + 5b[SbF6] at 20 °C based on 

increase of 6[SbF6]. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 

 

  7.3 Simulation of the concentration data for the reaction of 1[SbF6] with 2b. 

The first-order rate constant for the consumption of 3b[SbF6] measured by the 

disappearance of the PdMe 
1
H NMR resonance is kinsert, 3b = 8.41(6) × 10

-5
 s

-1
 at 0 °C. The 

first-order rate constant for consumption of the total of 4b[SbF6] and 5b[SbF6] measured by the 

disappearance of the PdCH2CHMe resonance of 4b[SbF6] and the PdCMe2 resonance of 

5b[SbF6] is k-OtBu, obs =  2.65(3) × 10
-5

 s
-1

 at 0 °C. By using these two rate constants, 

simulation
9
 was performed to demonstrate the change in concentrations of 3b[SbF6], 4b[SbF6], 

5b[SbF6] and 6[SbF6] over time. The simulated data agree very well with the experimental 

data. Similarly, the comparison between the simulated data and the experimental data was 

carried out for the B(C6F5)4 anion, which also shows good agreement. 

Based on the simulation results, it is concluded that the rate constants determined from 

the experimental data are very reliable. The comparison of the kinsert, 3b between SbF6 anion 
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and B(C6F5)4 anion both at 0 °C and at 20 °C showed that the anion only has minimal affect 

on the insertion rate (Table 2, 3). The similar comparison of the kinsert, 3a gave the same 

conclusion. 
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Figure 7.13. The experimental and simulated concentration vs time plot for SbF6 anion. 

Series 1-3 are the simulated concentration of 3b, 4b+5b and 6 over time, by using kinsert,3 = 

8.41 ×10
-5 

s
-1

, and kβ-OR, obs = 2.65 × 10
-5 

s
-1

. Series 4-6 are the experimental concentration of 3b, 

4b+5b and 6 over time. 
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Figure 7.14. The experimental and simulated concentration vs time plot for B(C6F5)4 anion. 

Series 1-3 are the simulated concentration of 3b, 4b+5b and 6 over time, by using kinsert,3 = 

8.01 ×10
-5 

s
-1

, and kβ-OR, obs = 1.94 × 10
-5 

s
-1

. Series 4-6 are the experimental concentration of 3b, 

4b+5b and 6 over time. 

 

   7.4 Reaction of 1[SbF6] with CH2=CHOSiMe3 (2c). An NMR tube was charged with 

1[SbF6] (14.9 mg, 0.0178 mmol) and 2c (0.027 mmol). CD2Cl2 was added by vacuum transfer 

at -196 
o
C. A 

1
H NMR spectrum at -60 

o
C confirmed the formation of 3c[SbF6]. The tube was 

warmed to 0 
o
C and monitored by 

1
H NMR periodically. Complex 3c[SbF6] was converted to 

5c[SbF6]. The NMR resonances of 5c[SbF6] is very similar to 5c[B(C6F5)4]. The first-order rate 

constant for the consumption of 3c[SbF6] measured by the disappearance of the PdMe 
1
H NMR 

resonance is kinsert, 3c = 1.645(7) × 10
-4

 s
-1

 at 0 °C. After 3c[SbF6] is fully consumed, the tube 

was warmed to 20 
o
C and monitored by 

1
H NMR periodically. Complex 5c[SbF6] was 

converted to 6[SbF6]. The first-order rate constant for consumption of 5c[SbF6] measured by 

the disappearance of the PdCMe2 resonance is k-OSiMe3, obs = 1.11(2) × 10
-4

 s
-1

 at 20 °C. 
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Figure 7.15. First-order consumption of 3c[SbF6] at 0 °C. 
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Figure 7.16. First-order consumption of 3c[SbF6] at 0 °C based on increase of 4c[SbF6]. B = 

ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure 7.17. First-order consumption of 5c[SbF6] at 20 °C. 
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Figure 7.18. First-order consumption of 5c[SbF6] at 20 °C based on increase of 6[SbF6]. B = 

ln[([B]∞-[B])/([B]∞-[B]0)]. 
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at –78 °C. The tube was shaken to dissolve and thoroughly mix the components. A 
1
H NMR 

spectrum at -60 
o
C confirmed the formation of 3d[SbF6]. The tube was warmed to 0 

o
C and 

monitored by 
1
H NMR periodically. Complex 3d[SbF6] was converted to 5d[SbF6]. Key NMR 

Data for 5d[SbF6]: 
1
H NMR (CD2Cl2)  3.05 (m, 4H, CHMe2), 2.26 (s, 3H, N=CMe), 2.21 (s, 

3H, N=CMe), 1.46 (d, J = 7, 6H, CHMe2), 1.38 (d, J = 7, 6H, CHMe2), 1.30 (d, J = 7, 6H, 

CHMe2), 1.18 (d, J = 7, 6H, CHMe2), 0.38 (s, 6H, PdCMe2(OSiMe2Ph)), 0.19(s, 6H, SiMe2). 

The first-order rate constant for the consumption of 3d[SbF6] measured by the disappearance 

of the PdMe 
1
H NMR resonance is kinsert, 3d = 3.18(5) × 10

-4
 s

-1
 at 0 °C. After 3d[SbF6] is fully 

consumed, the tube was warmed to 20 
o
C and monitored by 

1
H NMR periodically. Complex 

5d[SbF6] was converted to 6[SbF6]. The first-order rate constant for consumption of 5d[SbF6] 

measured by the disappearance of the PdCMe2 resonance is k-OSiMe2Ph, obs = 1.56(3) × 10
-4

 s
-1

 at 

20 °C. 
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Figure 7.19. First-order consumption of 3d[SbF6] at 0 °C. 
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Figure 7.20. First-order consumption of 3d[SbF6] at 0 °C based on increase of 4d[SbF6]. B = 

ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure 7.21. First-order consumption of 5d[SbF6] at 20 °C. 
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Figure 7.22. First-order consumption of 5d[SbF6] at 20 °C based on the increase of 6[SbF6]. B 

= ln[([B]∞-[B])/([B]∞-[B]0)]. 

 

   7.6 Reaction of 1[SbF6] with CH2=CHOSiMePh2 (2e). A NMR tube was charged with 

(-diimine)PdMeCl (16.3 mg, 29.0 μmol), AgSbF6 (10 mg, 29.1 μmol) and 

CH2=CHOSiMePh2 (6.9 mg, 29.1 μmol), and CD2Cl2 (0.4 mL) was added by vacuum transfer 

at –78 °C. The tube was shaken to dissolve and thoroughly mix the components. A 
1
H NMR 

spectrum at -60 
o
C confirmed the formation of 3e[SbF6]. The tube was warmed to 0 

o
C and 

monitored by 
1
H NMR periodically. Complex 3e[SbF6] was converted to 5e[SbF6]. Key NMR 

Data for 5e[SbF6]: 
1
H NMR (CD2Cl2)  3.06 (m, 4H, CHMe2), 2.25 (s, 3H, N=CMe), 2.18 (s, 

3H, N=CMe), 1.37 (d, J = 7, 6H, CHMe2), 1.30 (d, J = 7, 6H, CHMe2), 1.25 (d, J = 7, 6H, 

CHMe2), 1.16 (d, J = 7, 6H, CHMe2), 0.57 (s, 3H, SiMe), 0.34 (s, 6H, PdCMe2(OSiMePh2)). 

The first-order rate constant for the consumption of 3e[SbF6] measured by the disappearance of 

the PdMe 
1
H NMR resonance is kinsert, 3d = 5.22(7) × 10

-4
 s

-1
 at 0 °C. After 3e[SbF6] is fully 

consumed, the tube was warmed to 20 
o
C and monitored by 

1
H NMR periodically. Complex 
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5e[SbF6] was converted to 6[SbF6]. The first-order rate constant for consumption of 5e[SbF6] 

measured by the disappearance of the PdCMe2 resonance is k-OSiMePh2, obs = 2.46(4) × 10
-4

 s
-1

 at 

20 °C. 
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Figure 7.23. First-order consumption of 3e[SbF6] at 0 °C. 
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Figure 7.24. First-order consumption of 3e[SbF6] at 0 °C based on increase of 4e. B = 

ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure 7.25. First-order consumption of 5e[SbF6] at 20 °C.  
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Figure 7.26. First-order consumption of 5e[SbF6] at 20 °C based on the increase of 6[SbF6]. B 

= ln[([B]∞-[B])/([B]∞-[B]0)]. 

 

   7.7 Reaction of 1[SbF6] with CH2=CHOSiPh3 (2f). A NMR tube was charged with 

(-diimine)PdMeCl (16.3 mg, 29.0 μmol), AgSbF6 (10 mg, 29.1 μmol) and CH2=CHOSiPh3 

(8.8 mg, 29.1 μmol), and CD2Cl2 (0.4 mL) was added by vacuum transfer at –78 °C. The tube 

was shaken to dissolve and thoroughly mix the components. A 
1
H NMR spectrum at -60 

o
C 

confirmed the formation of 3f[SbF6]. The tube was warmed to 0 
o
C and monitored by 

1
H NMR 

periodically. Complex 3f[SbF6] was converted to 5f[SbF6]. The NMR resonances of 5f[SbF6] 

is very similar to 5f[B(C6F5)4]. The first-order rate constant for the consumption of 3f[SbF6] 

measured by the disappearance of the Htrans 
1
H NMR resonance is kinsert, 3f = 8.06(6) × 10

-4
 s

-1
 at 

0 °C. After 3f[SbF6] is fully consumed, the tube was warmed to 20 
o
C and monitored by 

1
H 

NMR periodically. Complex 5f[SbF6] was converted to 6[SbF6]. The first-order rate constant 

for consumption of 5f[SbF6] measured by the disappearance of the PdCMe2 resonance is 

k-OSiMePh2, obs = 3.78(1) × 10
-4

 s
-1

 at 20 °C. 
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Figure 7.27. First-order consumption of 3f[SbF6] at 0 °C. 
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Figure 7.28. First-order consumption of 3f[SbF6] at 0 °C based on increase of 4. B = 

ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure 7.29. First-order consumption of 5f[SbF6] at 20 °C. 
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Figure 7.30. First-order consumption of 5f[SbF6] at 20 °C based on increase of 6[SbF6]. B = 

ln[([B]∞-[B])/([B]∞-[B]0)]. 
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was charged with 1[SbF6] (14.6 mg, 0.0176 mmol) and 1g (0.043 mmol). CD2Cl2 was added by 

vacuum transfer at -196 
o
C. The tube was warmed to 0 

o
C and monitored by 

1
H NMR 
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periodically. Complex 3g[SbF6] was cleanly converted to 6[SbF6]. No intermediates were 

detected. The first-order rate constant for the consumption of 3g[SbF6] measured by the 

disappearance of the Htrans 
1
H NMR resonance is kinsert, 3e = 1.50(4) × 10

-3
 s

-1
 at 0 °C. 
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Figure 7.31. First-order consumption of 3g[SbF6] at 0 °C. 
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Figure 7.32. First-order consumption of 3g[SbF6] at 0 °C based on the increase of 6[SbF6]. B = 

ln[([B]∞-[B])/([B]∞-[B]0)]. 
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  7.9 Construction of the energy diagram for competitive binding of vinyl ethers and 

insertion of 3a-g (Figure 1 in manuscript). 

 

Pd
CH3

OR

Pd
CH3

OR

OSiMe3 Pd
CH3

OR

OSiMe3

3a-g

K2/ethylene K2/2c

3c

+ +

-

(eq 1)
-

 
 

  The competitive binding of ethylene and CH2=CHOR (2a-c) (eq 1) was quantified by 

measuring K2/ethylene = [3][CH2=CH2][(-diimine)PdMe(CH2=CH2)
+
]

-1
[2]

-1
. The K2a/2c was 

determined according to equation i-iii. K2b/2c was determined in an analogous manners and the 

results are shown in Tables 2 and 3. 

 

K2a/ethylene = [3a][CH2=CH2][(-diimine)PdMe(CH2=CH2)
+
]

-1
[2a]

-1   
(i) 

K2c/ethylene = [3c][CH2=CH2][(-diimine)PdMe(CH2=CH2)
+
]

-1
[2c]

-1
   (ii) 

K2a/2c = [3a][2c][3c]
-1

[2a]
-1 

= K2a/ethylene/K2c/ethylene       (iii) 

 

ΔG for (-diimine)PdMe(CH2=CHOR)
+
 (3a-g) versus 3c was determined by equation 

(iv).  

ΔG = -RTlnK               (iv) 

The free energy barrier for the insertion of 3a-g (ΔG

) was calculated by Erying equation 

(v). The results are compared in Figure 1. 

ΔG

 = -RTln(kinsert,3h/kBT)            (v) 
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7.10 Insertion of 

[{(2,6-
i
Pr2-C6H3)N=CAnCAn=N(2,6-

i
Pr2-C6H3)}PdMe(CH2=CHOSiPh3)][SbF6] (3h) and 

β-OSiPh3 elimination of 5h. A NMR tube was charged with 

{(2,6-
i
Pr2-C6H3)N=C(An)-C(An)=N(2,6-

i
Pr2-C6H3)}PdMeCl (19.2 mg, 29.0 μmol), AgSbF6 

(10 mg, 29.1 μmol) and CH2=CHOSiPh3 (8.8 mg, 29.1 μmol), and CD2Cl2 (0.4 mL) was added 

by vacuum transfer at –78 °C. The tube was shaken to dissolve and thoroughly mix the 

components. NMR spectra at 23 °C showed that 3h[SbF6] (90 %) had formed. Key NMR Data 

for 5d: 
1
H NMR (CD2Cl2, 23 °C)  dJ = 8, An: Hp), 8.16 dJ = 8, An: Hp’), 

7.58-7.25 (m, 23 H, An: Hm, Hm', 6 Haryl, 15 Haryl from SiPh3), dJ = 8, An: Ho), 3.35 

(m, 2H, CHMe2), 3.16 (m, 2H, CHMe2), 1.32 (d, J = 7, 6H, CHMe2), 1.14 (d, J = 7, 6H, 

CHMe2), 0.98 (d, J = 7, 6H, CHMe2), 0.88 (d, J = 7, 6H, CHMe2), 0.47 (s, 6H, 

PdCMe2(OSiPh3)). 
13

C NMR (CD2Cl2, -20 
o
C) data: 171.8 (N=CMe), 168.8 (N=CMe), 141.7 

(CH2=CHOSiPh3), 144.9, 143.3, 142.9, 138.0, 137.3, 135.1, 135.0, 133.4, 132.9, 131.8, 131.4, 

129.8, 129.5, 128.8, 128.6, 128.1, 126.3, 126.1, 125.6, 125.5, 125.3 and 124.8 (An 4 quaternary 

C, Co, Co', Cm, Cm', Cp, Cp'; Ar, Ar' Cipso, Cipso', Co, Co', Cm, Cm', Cp, Cp'; SiPh Cipso, Co, Cm, Cp,) 

, 87.9 (PdCMe2(OSiPh3)), 29.5 (CHMe2), 29.2 (CHMe2), 26.4, 24.7, 23.4, 23.2 and 23.1 (4 

CHMe2 and PdCMe2(OSiPh3)).  

  The first-order rate constant for the consumption of 

[{(2,6-
i
Pr2-C6H3)N=CAnCAn=N(2,6-

i
Pr2-C6H3)}PdMe(CH2=CHOSiPh3)][SbF6] measured by 

the disappearance of the Htrans 
1
H NMR resonance is kinsert,3h = 1.98(2) × 10

-4
 s

-1
 at 0 °C. After 

[{(2,6-
i
Pr2-C6H3)N=CAnCAn=N(2,6-

i
Pr2-C6H3)}PdMe(CH2=CHOSiPh3)][SbF6] is fully 

consumed, the tube was warmed to 20 
o
C and monitored by 

1
H NMR periodically. Complex 



S62 

[{(2,6-
i
Pr2-C6H3)N=CAnCAn=N(2,6-

i
Pr2-C6H3)}PdCMe2(OSiPh3)][SbF6] was converted to 

6[SbF6]. The first-order rate constant for consumption of 

[{(2,6-
i
Pr2-C6H3)N=CAnCAn=N(2,6-

i
Pr2-C6H3)}PdCMe2(OSiPh3)][SbF6] (5h) measured by 

the disappearance of the PdCMe2 resonance is k-OSiPh3, obs = 1.37(1) × 10
-4

 s
-1

 at 20 °C. 

 

-2000 0 2000 4000 6000 8000 10000 12000 14000

-2.5

-2.0

-1.5

-1.0

-0.5

0.0
y = -1.98(2)E-4x + 0.0434

R = 0.999

ln
([

A
]/

[A
] 0

)

time (sec)

 

Figure 7.33. First-order consumption of 3h at 0 °C. 
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Figure 7.34. First-order consumption of 3h at 0 °C based on increase of insertion product. B = 

ln[([B]∞-[B])/([B]∞-[B]0)]. 
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Figure 7.35. First-order consumption of 

[{(2,6-
i
Pr2-C6H3)N=CAnCAn=N(2,6-

i
Pr2-C6H3)}PdCMe2(OSiPh3)][SbF6][SbF6] at 20 °C. 
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Figure 7.36. First-order consumption of 

[{(2,6-
i
Pr2-C6H3)N=CAnCAn=N(2,6-

i
Pr2-C6H3)}PdCMe2(OSiPh3)][SbF6][SbF6] at 20 °C 

based on increase of the allyl product. B = ln[([B]∞-[B])/([B]∞-[B]0)]. 

 

   7.11 Insertion of 

[{(4-Me-C6H5)N=CMeCMe=N(4-Me-C6H5)}PdMe(CH2=CHOSiPh3)][SbF6] (3i). The 

first-order rate constant for the consumption of 3i measured by the disappearance of the Htrans 

1
H NMR resonance is kinsert, 3i = 1.76(4) × 10

-4
 s

-1
 at 0 °C. 
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Figure 7.37. First-order consumption of 3i at 0 °C. 
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8. X-Ray Crystallography. 

   8.1 [(-diimine)Pd(η
3
-C3H5)][B(C6F5)4](6[B(C6F5)4]). Single crystals of 6[B(C6F5)4] 

were obtained by slow diffusion of hexanes into the concentrated CH2Cl2 solution at room 

temperature. The molecular structure of 6[B(C6F5)4] was determined by X-ray diffraction and 

is shown in Figure 8.1 and the crystallographic data are summarized in Table 8.1. Data were 

collected on a Bruker Smart Apex diffractometer using Mo Kα radiation (0.71073 Å). Direct 

methods were used to locate The Pd atom as well as many C atoms from the E-map. Repeated 

difference Fourier maps allowed recognition of all expected non-H atoms. Following 

anisotropic refinement of all non-hydrogen atoms, ideal H atom positions were calculated. 

Final refinement was anisotropic for Pd, N, B F and C and isotropic-riding for H atoms. 

Positional disorder was apparent for C29, C30 and C31. C30 was spit into two atoms, C30A 

and C30B each with occupancies of 0.5. C30A and C30B were refined as isotropic atoms while 

the displacement parameters for C29 and C31 showed elongation due to the positional 

disorder. No other anomalous bond lengths or thermal parameters were noted. All ORTEP 

diagrams have been drawn with 50% probability ellipsoids. 
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Figure 8.1. Molecular structure of 6[B(C6F5)4]. Hydrogen atoms and the anion are omitted for 

clarity. 

 

Table 8.1.  Summary of X-Ray Diffraction Data for 6[B(C6F5)4]. 

  

formula C31H45N2Pd + C24BF20 

formula weight 1226.10 (including solvent) 

crystal system Monoclinic 

space group P21/c 

a (Å) 15.922(3) 

b (Å) 20.076(4) 

c (Å) 19.176(3) 

 o
 121.573(10) 

V (Å
3
) 5222.3(16) 

Z 4 

T (K) 100 

crystal color, habit yellow, fragment 

GOF on F
2
 1.018 

R indices [I > 2σ(I)]
a
 R1 = 0.0435, wR2 = 0.0972 

R indices (all data)
a
 R1 = 0.0664, wR2 = 0.1042 

a
R1 = Σ||Fo| - |Fc||/Σ|Fo|; wR2 = [Σ[w(Fo

2
 - Fc

2
)
2
]/ Σ[w(Fo

2
)
2
]]

1/2
, where w = q[σ

2
(Fo

2
) + (aP)

2 
+ 

bP]
–1 

 

9. DFT Calculations. 

9.1 DFT studies of the structure of 4a and 5a. DFT studies at the B3LYP level using 

the 6-31G* (for C, H, N, O) and Lanl2DZ (for Pd) basis sets provide additional evidence for the 

O-chelated structures in 4a and 5a.
10

 The optimized structures of 4a and 5a are shown in 

Figure 9.1. The calculated Pd-O distances are 2.19 Å (4a) and 2.15 Å (5a), which are typical 

for Pd(II)-OR2 distances.
11

 DFT studies show that the energy difference between 4a and 5a is 
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small (E4a – E5a = 0.2 ± 1.0 kcal/mol), which is consistent with the fact that both isomers are 

observed. 

Pd
Pd

O O

4a cation 5a cation  

Figure 9.1. Optimized structures of the 4a and 5a cations. Hydrogens are omitted. 

 

   9.2 DFT studies of the structure of 4c and 5c. 

 

Pd

O

Si

 

Figure 9.2. Optimized structure of the (-diimine)Pd{CH2CH(OSiMe3)CH3})
+
 (4c) cation. 
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Pd
O

Si

 

Figure 9.3. Optimized structure of the (-diimine)Pd{CMe2(OSiMe3)})
+
 (5c) cation. 

 

10. NMR Spectra for Cationic Polymers and Kinetics Studies.  

   10. 1 Spectra of -[CH2CH(O
t
Bu)]n- homopolymer. 

 

Figure 10-1a. 
1
H NMR of -[CH2CH(O

t
Bu)]n- homopolymer (CDCl3): full spectrum. 

 

7 6 5 4 3 2 1 ppm
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Figure 10-1b. 
1
H NMR of -[CH2CH(O

t
Bu)]n- homopolymer (CDCl3): vertical expansion. 

 

 

Figure 10-1c. 
1
H NMR of -[CH2CH(O

t
Bu)]n- homopolymer (CDCl3): expansion of the  

6.0-3.0 region. 

 

3.54.04.55.05.5 ppm

7 6 5 4 3 2 1 ppm



S70 

    

Figure 10-1d. COSY NMR of -[CH2CH(O
t
Bu)]n- homopolymer (CDCl3): expansion of the  

6.0-0.7; 6.0-0.7 region. 

 

 

Figure 10-1e. 
13

C NMR of -[CH2CH(O
t
Bu)]n- homopolymer (CDCl3): full spectrum. 
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Figure 10-1f. 
13

C NMR of -[CH2CH(O
t
Bu)]n- homopolymer (CDCl3): expansion of the  

75-65 region. The sharp signal at  70.6 is from HO
t
Bu. 

 

 

Figure 10-1g. 
13

C NMR of -[CH2CH(O
t
Bu)]n- homopolymer (CDCl3): expansion of the  

50-40 region. The sharp signal at  31.0 is from HO
t
Bu. 

 

 

Figure 10-1h. 
13

C NMR of -[CH2CH(O
t
Bu)]n- homopolymer (CDCl3): expansion of the  

35-25 region. 

 

   10.2 Spectra of -[CH2CH(OSiMe3)]n- homopolymer and attempted polymerization 

of CH2=CHOSiPh3 and CH2=CHOPh. 

 

Figure 10-2a. 
1
H NMR of -[CH2CH(OSiMe3)]n- homopolymer (CDCl3): full spectrum. 
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Figure 10-2b. 
1
H NMR of -[CH2CH(OSiMe3)]n- homopolymer (CDCl3): vertical expansion. 

 

 

 

 

 

Figure 10-2c. 
1
H NMR of -[CH2CH(OSiMe3)]n- homopolymer (CDCl3): expansion of the  

4.3-3.4 region. 

  

Figure 10-2d. 
1
H NMR of -[CH2CH(OSiMe3)]n- homopolymer (CDCl3): expansion of the  

1.8-0.5 region. 
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Figure 10-2e. 
1
H NMR of -[CH2CH(OSiMe3)]n- homopolymer (CDCl3): expansion of the  

0.3 - -0.1 region. 

 

  

Figure 10-2f. 
13

C NMR of -[CH2CH(OSiMe3)]n- homopolymer (CDCl3): full spectrum. 

 

Figure 10-2g. 
13

C NMR of -[CH2CH(OSiMe3)]n- (CDCl3): expansion of the  75-60 region. 
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Figure 10-2h. 
13

C NMR of -[CH2CH(OSiMe3)]n- homopolymer (CDCl3): expansion of the  

50-40 region. 

 

 

Figure 10-2i. 
13

C NMR of -[CH2CH(OSiMe3)]n- homopolymer (CDCl3): expansion of the  5 

- -5 region. 
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   10.3 Selected 
1
H NMR spectra for CH2=CHO

t
Bu case: 

 

Figure 10-3a. Selected spectra for the insertion of 

[(-diimine)PdMe(CH2=CHO
t
Bu)][B(C6F5)4] (3a) to produce 

[(-diimine)Pd{CH2CHMe(O
t
Bu)}][B(C6F5)4] (4b) and 

[(-diimine)Pd{CMe2(O
t
Bu)}][B(C6F5)4] (5b) at 0 °C: full spectra. The bottom spectrum is the 

is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion 

and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 5.1 

and Figure 5.2. 

 

(NN)Pd
OR

H
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Figure 10-3b. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHO
t
Bu)][B(C6F5)4] (3a) at 0 °C: expansion of  0.8-0.1. The peak 

at 0.35 is [{(-diimine)PdMe}2(-Cl)][B(C6F5)4]. The bottom spectrum is the is the starting 

point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top 

spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 5.1 and Figure 

5.2. 
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Figure 10-3c. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CH2CHMe(O
t
Bu)}][B(C6F5)4] (4b) and 

[(-diimine)Pd{CMe2(O
t
Bu)}][B(C6F5)4] (5b) at 20 °C: full spectra. The bottom spectrum is 

the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion 

and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 5.5 

and Figure 5.6. 
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Figure 10-3d. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CH2CHMe(O
t
Bu)}][B(C6F5)4] (4b) and 

[(-diimine)Pd{CMe2(O
t
Bu)}][B(C6F5)4] (5b) at 20 °C: expansion of  0.8-0.1. The peak at 

ca. 0.4 is [{(-diimine)PdMe}2(-Cl)][B(C6F5)4]. The bottom spectrum is the is the starting 

point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top 

spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 5.5 and Figure 

5.6. 
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Figure 10-3e. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHO
t
Bu)][SbF6] (3a) at 0 °C: full spectra. The bottom spectrum is 

the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion 

and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.1 

and Figure 7.2. 
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Figure 10-3f. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHO
t
Bu)][SbF6] (3a) at 0 °C: expansion of  0.9-0.1. The bottom 

spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% 

completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see 

Figure 7.1 and Figure 7.2. 
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Figure 10-3g. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CH2CHMe(O
t
Bu)}][SbF6] (4a) and [(-diimine)Pd{CMe2(O

t
Bu)}][SbF6] 

(5a) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the 

middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 

90% completion. For kinetics analysis see Figure 7.5 and Figure 7.6. 
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Figure 10-3h. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CH2CHMe(O
t
Bu)}][SbF6] (4a) and [(-diimine)Pd{CMe2(O

t
Bu)}][SbF6] 

(5a) at 20 °C: expansion of  0.9-0.1. The bottom spectrum is the is the starting point of the 

reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum 

corresponds to ca. 90% completion. For kinetics analysis see Figure 7.5 and Figure 7.6. 
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   10.4 Selected 
1
H NMR spectra for CH2=CHOEt case: 

 

Figure 10-4a. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHOEt)][B(C6F5)4] (3b) at 0 °C: full spectra. The bottom spectrum is 

the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion 

and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.1 

and Figure 6.2. 

(NN)Pd
OR

H

(NN)Pd



S84 

 

Figure 10-4b. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHOEt)][B(C6F5)4] (3b) at 0 °C: expansion of  0.8-0.1. The peak at 

0.35 is [{(-diimine)PdMe}2(-Cl)][B(C6F5)4]. The bottom spectrum is the is the starting point 

of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum 

corresponds to ca. 90% completion. For kinetics analysis see Figure 6.1 and Figure 6.2. 
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Figure 10-4c. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CH2CHMe(OEt)}][B(C6F5)4] (4b) and 

[(-diimine)Pd{CMe2(OEt)}][B(C6F5)4] (5b) at 20 °C: full spectra. The bottom spectrum is the 

is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion 

and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.5 

and Figure 6.6. 
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Figure 10-4d. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CH2CHMe(OEt)}][B(C6F5)4] (4b) and 

[(-diimine)Pd{CMe2(OEt)}][B(C6F5)4] (5b) at 20 °C: expansion of  0.8-0.1. The peak at 

0.42 is [{(-diimine)PdMe}2(-Cl)][B(C6F5)4]. The bottom spectrum is the is the starting point 

of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum 

corresponds to ca. 90% completion. For kinetics analysis see Figure 6.5 and Figure 6.6. 
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Figure 10-4e. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHOEt)][SbF6] (3b) at 0 °C: full spectra. The bottom spectrum is the 

is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion 

and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.7 

and Figure 7.8. 
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Figure 10-4f. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHOEt)][SbF6] (3b) at 0 °C: expansion of  0.8-0.1. The bottom 

spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% 

completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see 

Figure 7.7 and Figure 7.8. 
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Figure 10-4g. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CH2CHMe(OEt)}][SbF6] (4b) and [(-diimine)Pd{CMe2(OEt)}][SbF6] (5b) 

at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle 

spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% 

completion. For kinetics analysis see Figure 7.11 and Figure 7.12. 
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Figure 10-4h. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CH2CHMe(OEt)}][SbF6] (4b) and [(-diimine)Pd{CMe2(OEt)}][SbF6] (5b) 

at 20 °C: expansion of  0.8-0.1. The bottom spectrum is the is the starting point of the reaction, 

the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to 

ca. 90% completion. For kinetics analysis see Figure 7.11 and Figure 7.12. 
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   10. 5 Selected 
1
H NMR spectra for CH2=CHOSiMe3 case: 

 

Figure 10-5a. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHOSiMe3)][SbF6] (3c) at 0 °C: expansion of  0.8-0.1. The bottom 

spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% 

completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see 

Figure 6.15 and Figure 6.16. 
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Figure 10-5b. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHOSiMe3)][SbF6] (3c) at 0 °C: expansion of  0.8 - -0.2. The 

bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to 

ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics 

analysis see Figure 6.15 and Figure 6.16. 
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Figure 10-5c. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiMe3)}][SbF6] (5c) at 20 °C: full spectra. The bottom spectrum is the 

is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion 

and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.17 

and Figure 6.18. 
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Figure 10-5d. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiMe3)}][SbF6] (5c) at 20 °C: expansion of  0.8 - -0.2. The bottom 

spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% 

completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see 

Figure 6.17 and Figure 6.18. 
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Figure 10-5e.. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiMe3)}][B(C6F5)4] (5c) at 20 °C: full spectra. The bottom spectrum 

is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 

50% completion and the second to the top spectrum corresponds to ca. 90% completion. The 

top spectrum shows the conversion of Me3SiOH to Me3SiOSiMe3. For kinetics analysis see 

Figure 6.7 and Figure 6.8. 
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Figure 10-5f. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiMe3)}][B(C6F5)4] (5c) at 20 °C: expansion of  0.8 - -0.2. The 

bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum 

corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% 

completion. The top spectrum shows the conversion of Me3SiOH to Me3SiOSiMe3. For 

kinetics analysis see Figure 6.7 and Figure 6.8. 
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   10.6 Selected 
1
H NMR spectra for CH2=CHSiMe2Ph case. 

 

Figure 10-6a. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHOSiMe2Ph)][SbF6] (3d) at 0 °C: full spectra. The bottom spectrum 

is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% 

completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see 

Figure 6.19 and Figure 6.20. 
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Figure 10-6b. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHOSiMe2Ph)][SbF6] (3d) at 0 °C: expansion of  0.8-0.1. The 

bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to 

ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics 

analysis see Figure 6.19 and Figure 6.20. 
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Figure 10-6c. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiMe2Ph)}][SbF6] (5d) at 20 °C: full spectra. The bottom spectrum is 

the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 

50% completion and the second to the top spectrum corresponds to ca. 90% completion. The 

top spectrum shows the conversion of PhMe2SiOH to PhMe2SiOSiMe2Ph. For kinetics 

analysis see Figure 6.21 and Figure 6.22. 
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Figure 10-6d. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiMe2Ph)}][SbF6] (5d) at 20 °C: expansion of  0.8-0.1. The bottom 

spectrum is the is the starting point of the reaction, the second to the bottom spectrum 

corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% 

completion. The top spectrum shows the conversion of PhMe2SiOH to PhMe2SiOSiMe2Ph. 

For kinetics analysis see Figure 6.21 and Figure 6.22. 
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Figure 10-6e. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiMe2Ph)}][B(C6F5)4] (5d) at 20 °C: full spectra. The bottom 

spectrum is the is the starting point of the reaction, the second to the bottom spectrum 

corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% 

completion. The top spectrum shows the conversion of PhMe2SiOH to PhMe2SiOSiMe2Ph. 

For kinetics analysis see Figure 6.9 and Figure 6.10. 
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Figure 10-6f. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiMe2Ph)}][B(C6F5)4] (5d) at 20 °C: expansion of  0.8-0.1. The 

bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum 

corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% 

completion. The top spectrum shows the conversion of PhMe2SiOH to PhMe2SiOSiMe2Ph. 

For kinetics analysis see Figure 6.9 and Figure 6.10. 
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   10.7 Selected 
1
H NMR spectra for CH2=CHSiMe2Ph case. 

 

Figure 10-7a. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHOSiMePh2)][SbF6] (3e) at 0 °C: full spectra. The bottom spectrum 

is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% 

completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see 

Figure 6.23 and Figure 6.24. 
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Figure 10-7b. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHOSiMePh2)][SbF6] (3e) at 0 °C: expansion of  0.8-0.1. The 

bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to 

ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics 

analysis see Figure 6.23 and Figure 6.24. 
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Figure 10-7c. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiMePh2)}][SbF6] (5e) at 20 °C: full spectra. The bottom spectrum is 

the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion 

and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.25 

and Figure 6.26. 
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Figure 10-7d. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiMePh2)}][SbF6] (5e) at 20 °C: expansion of  0.8-0.1. The bottom 

spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% 

completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see 

Figure 6.25 and Figure 6.26. 
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Figure 10-7e. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiMePh2)}][B(C6F5)4] (5e) at 20 °C: full spectra. The bottom 

spectrum is the is the starting point of the reaction, the second to the bottom spectrum 

corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% 

completion. The top spectrum shows Ph2MeSiOH does not convert to Ph2MeSiOSiMePh2. For 

kinetics analysis see Figure 6.11, Figure 6.12 and Figure 6.13. 
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Figure 10-7f. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiMePh2)}][B(C6F5)4] (5e) at 20 °C: expansion of  0.8-0.1. The 

bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum 

corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% 

completion. The top spectrum shows Ph2MeSiOH does not convert to Ph2MeSiOSiMePh2. For 

kinetics analysis see Figure 6.11, Figure 6.12 and Figure 6.13. 
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   10.8 Selected 
1
H NMR spectra for CH2=CHSiPh3 case: 

 

Figure 10-8a. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHOSiPh3)][SbF6] (3f) at 0 °C: full spectra. The bottom spectrum is 

the starting point of the reaction at -60 °C, the middle spectrum corresponds to ca. 50% 

completion at 0 °C and the top spectrum corresponds to ca. 90% completion at 0 °C. For 

kinetics analysis see Figure 6.27 and Figure 6.28. 
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Figure 10-8b. Selected spectra for the first-order consumption of 

[(-diimine)PdMe(CH2=CHOSiPh3)][SbF6] (3f) at 0 °C: expansion of  0.8-0.1. The bottom 

spectrum is the starting point of the reaction at -60 °C, the middle spectrum corresponds to ca. 

50% completion at 0 °C and the top spectrum corresponds to ca. 90% completion at 0 °C. For 

kinetics analysis see Figure 6.27 and Figure 6.28. 
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Figure 10-8c. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiPh3)}][SbF6] (5f) at 20 °C: full spectra.  The bottom spectrum is 

the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion 

and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.29 

and Figure 6.30. 
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Figure 10-8d. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiPh3)}][SbF6] (5f) at 20 °C: expansion of  0.8-0.1. The bottom 

spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% 

completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see 

Figure 6.29 and Figure 6.30. 
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Figure 10-8e. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiPh3)}][B(C6F5)4] (5f) at 20 °C: full spectra. The bottom spectrum is 

the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion 

and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.14 

and Figure 6.15. 
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Figure 10-8f. Selected spectra for the first-order consumption of 

[(-diimine)Pd{CMe2(OSiPh3)}][B(C6F5)4] (5f) at 20 °C: expansion of  0.8-0.1. The bottom 

spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% 

completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see 

Figure 6.14 and Figure 6.15. 
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