Supporting Information for:

Cationic Polymerization and Insertion Chemistry in the Reactions of Vinyl Ethers with $(\alpha\text{-diimine})PdMe^+Species$

Changle Chen, Shuji Luo and Richard F. Jordan*
Department of Chemistry, The University of Chicago
5735 South Ellis Avenue, Chicago, Illinois, 60637

E-mail: <u>rfjordan@uchicago.edu</u>

Contents

1. Materials and Methods	S4
1.1 NMR characterization of some known compounds.	S4
1.2 Derivation of eq 7 of the manuscript and estimation of limits for $k_{\beta-OR}$ for 5c-f	S6
1.3 Estimation of limits for $k_{\beta\text{-OR}}$ for 5c-f based on the steady state approximation for 4 c	c-f S7
1.4 Methods for kinetic studies.	S7
2. Cationic Polymerization of 2a,c and Characterization of Poly(vinyl ether)	S8
2.1 Cationic polymerization of CH ₂ =CHO ^t Bu (2a) by [Li(Et ₂ O) _{2.8}][B(C ₆ F ₅) ₄]	S8
2.2 Cationic polymerization of CH ₂ =CHO ^t Bu (2a) by [Ph ₃ C][B(C ₆ F ₅) ₄]	S9
2.3 Polymerization of CH ₂ =CHOSiMe ₃ (2c) by 1[B(C ₆ F ₅) ₄]	S9
2.4 Attempted polymerization of CH ₂ =CHOSiPh ₃ (2f) by 1 [B(C ₆ F ₅) ₄]	S9
2.5 Attempted polymerization of CH ₂ =CHOPh (2g) by 1 [B(C ₆ F ₅) ₄]	S10
2.6 Cationic polymerization of CH ₂ =CHOSiMe ₃ (2c) by [Li(Et ₂ O) _{2.8}][B(C ₆ F ₅) ₄]	S10
2.7 Cationic polymerization of CH ₂ =CHOSiMe ₃ (2c) by [Ph ₃ C][B(C ₆ F ₅) ₄]	S10
2.8 Key NMR data for -[CH ₂ CH(OSiMe ₃)] _n	S11
3. Generation of [(α-diimine)PdMe(CH ₂ =CHOR)][SbF ₆] (3b-g[SbF ₆]) Complexes	s from S11

3.1 Generation of [(α -diimine)PdMe(CH ₂ =CHOEt)][SbF ₆] (3b [SbF ₆])	S11
3.2 [(α-diimine)PdMe(CH ₂ =CHOSiMe ₃)][SbF ₆] (3c [SbF ₆])	S12
3.3 $[(\alpha\text{-diimine})PdMe(CH_2=CHOSiMe_2Ph)][SbF_6]$ (3d[SbF_6]).	S13
3.4 [(α-diimine)PdMe(CH ₂ =CHOSiMePh ₂)][SbF ₆] (3e [SbF ₆])	S13
3.5 $[(\alpha\text{-diimine})PdMe(CH_2=CHOSiPh_3)][SbF_6]$ (3f[SbF ₆]).	S14
3.6 [(α-diimine)PdMe(CH ₂ =CHOPh)][SbF ₆] (3g [SbF ₆])	S14
$3.7 [(2,6^{-i}Pr_2-C_6H_3)N=CAnCAn=N(2,6^{-i}Pr_2-C_6H_3)][SbF_6] (\mathbf{3h}[SbF_6]).$	S15
$3.8 \qquad [\{(4\text{-Me-}C_6H_5)N\text{=}CMeCMe\text{=}N(4\text{-Me-}C_6H_5)\}PdMe(CH_2\text{=}CHOSiPh_3)][SbF_6]\\ (3\mathbf{i}[SbF_6]).$	(3i) S16
4. Competitive Binding Studies	S19
4.1 Competitive binding of 2d-g and 2c to 1 [SbF ₆] at -20 °C (eq 5)	S19
4.2 Competitive binding of ethylene and CH ₂ =CHOR (2a-c , 2g) to 1 [B(C ₆ F ₅) ₄] at -60 °C	
5. Reaction of CH ₂ =CHO ^t Bu (2a) with 1[B(C ₆ F ₅) ₄].	S20
5.1 Kinetics of insertion of $\mathbf{3a}[B(C_6F_5)_4]$	S20
5.2 Kinetics of the β -O ^t Bu elimination of $\mathbf{5a}[B(C_6F_5)_4]$ and $\mathbf{4a}[B(C_6F_5)_4]$	S23
6. Reaction of 1[B(C ₆ F ₅) ₄] with 2b-g.	S24
6.1 Reaction of $1[B(C_6F_5)_4]$ with CH_2 =CHOEt ($\mathbf{2b}$).	S24
6.2 Reaction of $1[B(C_6F_5)_4]$ with CH_2 = $CHOSiMe_3$ ($\mathbf{2c}$).	S29
6.3 Reaction of 5c [B(C ₆ F ₅) ₄] with MeCN.	S31
6.4 Reaction of $1[B(C_6F_5)_4]$ with CH_2 = $CHOSiMe_2Ph$ (2d).	S32
6.5 Reaction of 1 [B(C ₆ F ₅) ₄] with CH ₂ =CHOSiMePh ₂ (2e)	S33
6.6 Reaction of $1[B(C_6F_5)_4]$ with CH_2 = $CHOSiPh_3$ (2f).	S35
6.7 Reaction of $\mathbf{5f}[B(C_6F_5)_4]$ with MeCN.	S37
6.8 Reaction of $1[B(C_6F_5)_4]$ with CH_2 =CHOPh ($\mathbf{2g}$)	S38
7. Reaction of 1[SbF ₆] with 2a-g.	S38
7.1 Reaction of 1 [SbF ₆] with CH ₂ =CHO ^t Bu (2a).	S38
7.2 Reaction of 1[SbF ₆] with CH ₂ =CHOEt (2b)	S42

7.3 Simulation of the concentration data for the reaction of $1[SbF_6]$ with $2b$	S46
7.4 Reaction of 1[SbF ₆] with CH ₂ =CHOSiMe ₃ (2c).	S48
7.5 Reaction of 1 [SbF ₆] with CH ₂ =CHOSiMe ₂ Ph (2d)	S50
7.6 Reaction of 1 [SbF ₆] with CH ₂ =CHOSiMePh ₂ (2e).	S53
7.7 Reaction of 1 [SbF ₆] with CH ₂ =CHOSiPh ₃ (2f)	S56
7.8 Insertion of [(α-diimine)PdMe(CH ₂ =CHOPh)][SbF ₆] (3g [SbF ₆])	S58
7.9 Construction of the energy diagram for competitive binding of vinyl ethers and in 3a-g (Figure 1 in manuscript).	
7.10 Insertion $ [\{(2,6^{-i}Pr_2-C_6H_3)N=C(An)-C(An)=N(2,6^{-i}Pr_2-C_6H_3)\}PdMe(CH_2=CHOSiPh_3)][SbF_6B-OSiPh_3 elimination of $\bf 5h]$	
7.11 Insertion $ [\{(4-\text{Me-C}_6\text{H}_5)\text{N=CMeCMe=N}(4-\text{Me-C}_6\text{H}_5)\}\text{PdMe}(\text{CH}_2=\text{CHOSiPh}_3)][\text{SbF}_6] \ \textbf{(3i)} $	of S64
8. X-Ray Crystallography.	S65
8.1 $[(\alpha\text{-diimine})Pd(\eta^3-C_3H_5)][B(C_6F_5)_4](6[B(C_6F_5)_4]).$	S65
9. DFT Calculations.	S66
9.1 DFT studies of the structure of 4a and 5a	S66
9.2 DFT studies of the structure of 4c and 5c .	S67
10. NMR Spectra for Cationic Polymers and Kinetics Studies.	S68
10.1 Spectra of -[CH ₂ CH(O ^t Bu)] _n - homopolymer.	S68
10.2 Spectra of -[CH ₂ CH(OSiMe ₃)] _n - homopolymer and attempted polymeri CH ₂ =CHOSiPh ₃ and CH ₂ =CHOPh.	
10.3 Selected ¹ H NMR spectra for CH ₂ =CHO ^t Bu case:	S75
10.4 Selected ¹ H NMR spectra for CH ₂ =CHOEt case:	S83
10.5 Selected ¹ H NMR spectra for CH ₂ =CHOSiMe ₃ case:	S91
10.6 Selected ¹ H NMR spectra for CH ₂ =CHSiMe ₂ Ph case	S97
10.7 Selected ¹ H NMR spectra for CH ₂ =CHSiMe ₂ Ph case	S103
10.8 Selected ¹ H NMR spectra for CH ₂ =CHSiPh ₃ case:	S109
11 References	S115

1. Materials and Methods

1.1 NMR characterization of some known compounds.

Data for (α -diimine)PdMeCl: ¹H NMR (CD₂Cl₂, 20 °C) δ 7.34-7.11 (m, 6H), 3.07 (sept, J = 7, 2H, CHMe₂), 3.01 (sept, J = 7, 2H, CHMe₂), 2.04 (s, 3H, N=CMe), 2.03 (s, 3H, N=CMe), 1.40 (d, J = 7, 6H, CHMe₂), 1.36 (d, J = 7, 6H, CHMe₂), 1.19 (d, J = 7, 6H, CHMe₂), 1.17 (d, J = 7, 6H, CHMe₂), 0.37 (s, 3H, PdMe).

Data for $[(\alpha\text{-diimine})\text{PdMe}(\text{OEt}_2)][\text{SbF}_6]$: ¹H NMR (CD₃CN, 20 °C) δ 7.37-7.34 (m, 6H), 3.04 (sept, J = 7, 2H, CHMe₂), 2.99 (sept, J = 7, 2H, CHMe₂), 2.22 (s, 3H, N=CMe), 2.21 (s, 3H, N=CMe), 1.36 (d, J = 7, 6H, CHMe₂), 1.29 (d, J = 7, 6H, CHMe₂), 1.25 (d, J = 7, 6H, CHMe₂), 1.21 (d, J = 7, 6H, CHMe₂), 0.31 (s, 3H, PdMe). ¹³C{¹H} NMR (CD₃CN, 20 °C): δ 183.0 (N=CMe), 175.0 (N=CMe), 141.5, 141.3, 139.7, 138.9, 129.4, 128.6, 125.2, 124.9, 29.4, 29.1, 24.1, 23.8, 23.7, 23.2, 21.9, 20.3, 4.7 (PdMe). ¹H NMR (CD₂Cl₂, -20 °C) δ 7.31-7.21 (m, 6H), 3.00 (sept, J = 7, 2H, CHMe₂), 2.93 (sept, J = 7, 2H, CHMe₂), 2.03 (b, 6H, N=CMe), 1.34 (d, J = 7, 6H, CHMe₂), 1.30 (d, J = 7, 6H, CHMe₂), 1.13 (d, J = 7, 12H, CHMe₂), 0.26 (s, 3H, PdMe).

Data for (tmeda)Pd(OPh)₂: 1 H NMR (CD₂Cl₂, 20 ${}^{\circ}$ C) δ 7.12 (d, J = 8, 4H, H_{ortho}), 6.96 (t, J = 7, 4H, H_{meta}), 6.43 (t, J = 7, 2H, H_{para}), 2.58 (s, 12H, NMe₂), 2.55 (s, 4H, -CH₂-). 13 C{ 1 H} NMR (CD₂Cl₂, 20 ${}^{\circ}$ C) δ 168.3 (C_{ipso}), 127.9, 118.8, 113.7, 62.3 (-CH₂-), 50.6 (NMe₂).

Data for KOPh: ¹H NMR (THF- d_8 , 20 °C) δ 6.81 (t, J = 8, 2H, H_{meta}), 6.28 (d, J = 8, 2H, H_{ortho}), 6.03 (t, J = 7, 1H, H_{para}).

Data for CH₂=CHO^tBu: ¹H NMR (CD₂Cl₂, 20 °C) δ 6.48 (dd, J= 14, 6; 1H, H_{int}), 4.30 (d, J= 14, 1H, H_{trans}), 3.97 (d, J= 6, 1H, H_{cis}), 1.26 (s, 9H, OC Me_3). ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ 147.1 (CH₂=CH), 90.4 (CH₂=CH), 76.4 (OCMe₃), 28.3 (OC Me_3).

Data for CH₂=CHOEt: ¹H NMR data (CD₂Cl₂, 20 °C): δ 6.46 (dd, 1H, H_{int}), 4.15 (d, 1H, H_{trans}), 3.96 (d, 1H, H_{cis}), 3.73 (q, 2H, OC*H*₂CH₃), 1.16 (t, 1H, OCH₂C*H*₃). ¹³C{1H} NMR (CD₂Cl₂, 20 °C): δ 152.4 (CH₂=CH), 86.5.4 (*C*H₂=CH), 64.2 (O*C*H₂CH₃), 14.9 (OCH₂CH₃).

Data for CH₂=CHOSiMe₃: 1 H NMR (CD₂Cl₂, 20 ${}^{\circ}$ C): $\delta 6.41$ (dd, J = 13, 6; 1H, H_{int}), 4.38 (d, J = 13, 1H, H_{trans}), 4.11 (d, J = 6, 1H, H_{cis}), 0.19 (s, 9H, OSi*Me*₃). 13 C{1H} NMR (CD₂Cl₂, 20 ${}^{\circ}$ C): δ 146.4 (CH₂=CH), 94.6 (*C*H₂=CH), -0.45 (OSi*Me*₃).

Data for CH₂=CHOSiMe₂Ph: ¹H NMR (CD₂Cl₂, 20 °C): δ 7.68 (d, J = 8, 6H, H_{ortho}), 7.48 (t, J = 7, 3H, H_{para}), 7.45 (t, J = 7, 6H, H_{meta}), 6.49 (dd, J = 14, 6; 1H, H_{int}), 4.72 (d, J = 14, 1H, H_{trans}), 4.21 (d, J = 6, 1H, H_{cis}) 0.53 (s, 6H, SiCH₃). ¹³C NMR (CD₂Cl₂, 20 °C): δ 146.6 (=CH), 137.3 (C_{ipso}), 134.1, 130.6, 128.6, 95.5 (=CH₂), -1.4 (SiCH₃).

Data for CH₂=CHOSiMePh₂: ¹H NMR (CD₂Cl₂, 20 °C): δ 7.55 (d, J = 8, 6H, H_{ortho}), 7.37 (t, J = 7, 3H, H_{para}), 7.33 (t, J = 7, 6H, H_{meta}), 6.63 (dd, J = 14, 6 Hz, 1 H, =CH), 4.69 (dd, J = 14, 1 Hz, 1 H, =CH₂), 4,32 (dd, J = 6, 1 Hz, 1 H, =CH₂), 0.87 (s, 3 H, SiCH₃). ¹³C NMR (CD₂Cl₂, 20 °C): δ 146.7 (=CH), 135.6 (C_{ipso}), 135.0, 130.9, 128.7, 96.0 (=CH₂), -2.6 (SiCH₃).

Data for CH₂=CHOSiPh₃: ¹H NMR (CD₂Cl₂) δ 7.67 (d, J = 8, 6H, H_{ortho}), 7.49 (t, J = 7, 3H, H_{para}), 7.43 (t, J = 7, 6H, H_{meta}), 6.65 (dd, J = 14, 6; 1H, H_{int}), 4.65 (d, J = 14, 1H, H_{trans}), 4.22 (d, J = 6, 1H, H_{cis}). ¹³C NMR (CD₂Cl₂) δ 146.6 (=CH), 135.9, 133.5 (C_{ipso}), 131.0, 128.6, 96.1 (CH₂=). GC-MS: m/z = 302.

Data for CH₂=CHOPh: ¹H NMR (CD₂Cl₂): δ 7.34 (t, J = 7, 2H, H_{meta}), 7.08 (t, J = 7, 1H, H_{para}), 7.00 (d, J = 8, 2H, H_{ortho}), 6.67 (dd, J = 14, 6; 1H, H_{int}), 4.75 (d, J = 15, 1H, H_{trans}), 4.43 (d, J = 6, 1H, H_{cis}). GC-MS: m/z = 120.

1.2 Derivation of eq 7 of the manuscript and estimation of limits for $k_{\beta\text{-OR}}$ for 5c-f.

$$K_{5/4} = [5]/[4]$$

$$[5] = K_{5/4} \cdot [4]$$

$$[4] + [5] = (K_{5/4} + 1)[4]$$

$$d([6])/dt = k_{\beta-OR,obs} ([4] + [5])$$

==>
$$d([6])/dt = k_{\beta-OR,obs} (K_{5/4} + 1)[4]$$
 (i)

$$d([\mathbf{6}])/dt = k_{\beta-OR}[\mathbf{4}]$$
 (ii)

from eq i and eq ii ==> $k_{\beta-OR,obs} (K_{5/4} + 1)[4] = k_{\beta-OR}[4]$

==>
$$k_{\beta-OR} = k_{\beta-OR,obs} (K_{5/4} + 1)$$
 (7)

Estimation of limits for $k_{\beta-OR}$ for **5c-f** based on pre-equilibrium assumption:

since $K_{5c/4c} > 19$, from eq 7

$$==> k_{\beta-OR} > 20 k_{\beta-OR,obs}$$

1.3 Estimation of limits for $k_{\beta\text{-OR}}$ for 5c-f based on the steady state approximation for 4c-f.

$$d([4])/dt = k_{5 \text{ to } 4}[5] - k_{4 \text{ to } 5}[4] - k_{\beta-OR}[4] = 0$$

$$[4] = k_{5 \text{ to } 4}[5]/(k_{4 \text{ to } 5} + k_{\beta-OR})$$
 (iii)

$$d([6])/dt = k_{\beta-OR,obs}[5]$$
 (iv)

$$d([\mathbf{6}])/dt = k_{\beta-OR}[\mathbf{4}] \tag{v}$$

from (iv) and (v): $k_{\beta-OR,obs}[5] = k_{\beta-OR}[4]$

$$==> [4] = (k_{β-OR,obs}[5])/k_{β-OR}$$
 (vi)

from (iii) and (vi): $k_{5 \text{ to 4}}[5]/(k_{4 \text{ to 5}} + k_{\beta-OR}) = (k_{\beta-OR,obs}[5])/k_{\beta-OR}$

$$==> k_{\beta-OR} = k_{\beta-OR,obs} k_{4 \text{ to 5}} / (k_{5 \text{ to 4}} - k_{\beta-OR,obs})$$

 $k_{\beta-OR} > k_{\beta-OR,obs} k_{4 \text{ to } 5}/k_{5 \text{ to } 4}$

$$k_{\beta-\mathrm{OR}} > k_{\beta-\mathrm{OR,obs}} K_{5/4}$$

$$k_{\text{B-OR}} > 19 \ k_{\text{B-OR,obs}}$$
 (8)

1.4 Methods for kinetic studies. For all cases, the kinetics of both the decrease of the reactants and the increase of the products were measured, and found to be in good agreement.

The kinetics of the decrease of the reactants was analyzed according to the following equations:

$$\operatorname{Ln}([A]/[A]_0) = kt$$

 $[A]/[A]_0 = I_{normalized}/I_{0, normalized}$

 $I_{normalized} = I*/I_{std}$

 $I_{0, normalized} = I_0/I_{std}$

I* is the intensity of the peak of interest, for example, the PdMe resonance for insertion studies and the PdC Me_2 resonance for β-OR elimination studies. In some cases the integration of the OC H_2 CH $_3$ resonance of OE $_2$ was used as I_{std} . If peaks from other species overlapped

with the OCH_2CH_3 resonance we used the whole aromatic region as I_{std} . For the reaction of $\mathbf{1}[SbF_6]$ with $\mathbf{2f}$, we analyzed the results by using both OCH_2CH_3 resonance from OEt_2 and the whole aromatic region as I_{std} , which gave the same results.

The kinetics of the increase of the products was analyzed according to the following equations:

$$\begin{split} &Ln[([B]_{\infty}\text{-}[B])/([B]_{\infty}\text{-}[B]_{0})] = kt \\ &([B]_{\infty}\text{-}[B])/([B]_{\infty}\text{-}[B]_{0}) = (I_{\infty,\,normalized}\text{-}I^{*})/(I_{\infty,\,normalized}\text{-}I_{0,\,normalized}) \\ &I_{normalized} = I^{*}/I_{std} \\ &I_{0,\,normalized} = I_{0}/I_{std} \end{split}$$

I* is the intensity of the peak of interest, for example, the PdC Me_2 and PdCH₂CH(OEt)Me resonances for insertion studies and the Pd(η^3 -CH₂CHCH₂) resonance for β-OR elimination studies. Specifically, for the case of CH₂=CHOEt and CH₂=CHOPh, in which the β-OR elimination rate is comparable with the insertion rate, we used the sum of PdC Me_2 , PdCH₂CH(OEt)Me and Pd(η^3 -CH₂CHCH₂) resonances as the I* for insertion kinetics. Kinetic data and plots are shown in Sections 5, 6 and 7; representative NMR spectra from kinetic studies are shown in Section 10.

2. Cationic Polymerization of 2a,c and Characterization of Poly(vinyl ether).

2.1 Cationic polymerization of CH₂=CHO^tBu (2a) by [Li(Et₂O)_{2.8}][B(C₆F₅)₄]. An NMR tube was charged with [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (22.7 mg, 0.0254 mmol). CD₂Cl₂ (0.4 mL) was added by vacuum transfer at -196 °C. The tube was warmed to 20 °C and shaken. 2a (1.25 mmol) was added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously, and monitored periodically by NMR. ¹H NMR spectra showed that 2a was

quantitatively converted to polymer after 20 h. 2,6-di-tert-butylpyridine significantly retards the polymerization of **2a** by $[\text{Li}(\text{Et}_2\text{O})_{2.8}][B(\text{C}_6\text{F}_5)_4]$.

- **2.2 Cationic polymerization of CH**₂=**CHO**^t**Bu** (**2a**) by [**Ph**₃**C**][**B**(**C**₆**F**₅)₄]. An NMR tube was charged with [**Ph**₃**C**][**B**(**C**₆**F**₅)₄] (24.5 mg, 0.0266 mmol). CDCl₃ (0.4 mL) was added by vacuum transfer at -196 °C. The tube was warmed to 20 °C and shaken. **2a** (1.25 mmol) was added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously, and monitored periodically by NMR. ¹H NMR spectra showed that **2a** was quantitatively converted to polymer after 20 h.
 - 2.3 Polymerization of CH_2 =CHOSiMe₃ (2c) by 1[B(C₆F₅)₄]. A Schlenk flask was charged with (α -diimine)PdMeCl (11.4 mg, 0.0203 mmol) and [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (17.6 mg, 0.0197 mmol). CH_2Cl_2 (1 mL) was added by syringe. The mixture was stirred vigorously at 20 °C for 10 min. A solution of 2c (400 mg, 3.33 mmol) in CH_2Cl_2 (9 mL) was added by cannula. The mixture became dark within 10 min, indicating the formation of Pd⁰. After 20 h, the volatiles were removed under vacuum, affording dark oil. NMR analysis showed that the oil contained poly(trimethylsilyl vinyl ether) (-[CH₂CH(OSiMe₃)]_n-), free α -diimine and other unidentified species. Approximately 7 % of 2c was converted to polymer. 2,6-di-tert-butylpyridine does not significantly affect the polymerization of 2c by 1[B(C₆F₅)₄].
 - 2.4 Attempted polymerization of CH_2 = $CHOSiPh_3$ by $1[B(C_6F_5)_4]$. An NMR tube was charged with (α -diimine)PdMeCl (5.5 mg, 0.010 mmol), [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (8.3 mg, 0.0093 mmol) and CH_2 = $CHOSiPh_3$ (176 mg, 0.582 mmol). CD_2Cl_2 (0.4 mL) was added

by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken and monitored by ¹H NMR periodically. NMR spectra showed that no polymer had formed after 20 h.

2.5 Attempted polymerization of CH_2 =CHOPh by $1[B(C_6F_5)_4]$. An NMR tube was charged with (α -diimine)PdMeCl (8.4 mg, 0.015 mmol), [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (13.4 mg, 0.0150 mmol) and CH_2 =CHOPh (33 mg, 0.27 mmol). CD_2Cl_2 (0.4 mL) was added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken, and monitored by 1H NMR periodically. NMR spectra showed that no polymer had formed after 20 h.

2.6 Cationic polymerization of CH_2 =CHOSiMe₃ (2c) by [Li(Et₂O)_{2.8}][B(C₆F₅)₄]. A Schlenk flask was charged with [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (17.8 mg, 0.0199 mmol). A solution of 2c (320 mg, 2.67 mmol) in CH_2Cl_2 (10 mL) was added by cannula and the mixture was stirred vigorously at 20 °C. After 20 h, the volatiles were removed under vacuum. The nonvolatile oily residue was dried under vacuum to yield a white oil (120 mg), which was identified as poly(trimethylsilyl vinyl ether) (-[$CH_2CH(OSiMe_3)$]_n-) by NMR.

2.7 Cationic polymerization of CH₂=CHOSiMe₃ (2c) by [Ph₃C][B(C₆F₅)₄]. A flask was charged with [Ph₃C][B(C₆F₅)₄] (24.4 mg, 0.0265 mmol) and cooled to -196 °C. Chlorobenzene (1.2 mL) was added by vacuum transfer. The mixture was warmed to 23 °C. A Schlenk tube was charged with chlorobenzene or toluene (1.2 mL) and cooled to -196 °C. 2c (1.50 mL, 1.17 g, 375 equiv) was added by vacuum transfer. The Schlenk tube was warmed to -40 °C with a dry ice/acetonitrile bath. The catalyst solution (at 23 °C) was transferred by cannula to the Schlenk tube. The mixture was stirred for 2 h at -40 °C and then quenched with methanol (1 mL) pre-cooled to -40 °C. Immediate gellation occurred upon the addition of

methanol. The mixture was transferred to a flask containing methanol (75 mL) and the mixture was stirred for 7.5 h. The white solid precipitate was collected by filtration, washed with methanol, dried under vacuum, and identified as poly(vinyl alcohol). For reaction in chlorobenzene: yield 339 mg (76%), M_n 4000. For reaction in toluene: yield 429 mg (97 %), M_n 7000.

2.8 Key NMR data for -[CH₂CH(OSiMe₃)]_n-. ¹H NMR (CDCl₃): δ 9.72 (m, -CH₂CH(OSiMe₃)CH₂C(=O)H), 5.52 (-CH₂CH(OSiMe₃)CH=CHCH₂-), 5.42 (-CH₂CH(OSiMe₃)CH=CHCH₂-), 3.84 (br, -CH₂CH(OSiMe₃)-), 1.57 (br, -CH₂CH(OSiMe₃)-), 0.10 (br, -CH₂CH(OSiMe₃)-). ¹³C{¹H} NMR (CDCl₃): δ 70.8 (br, -CH₂CH(OSiMe₃)-), 69.4 (br, -CH₂CH(OSiMe₃)-), 65.7 (br, -CH₂CH(OSiMe₃)-), 65.4 (br, -CH₂CH(OSiMe₃)-), 46.6 (br, -CH₂CH(OSiMe₃)-), 1.0 (br, -CH₂CH(OSiMe₃)-).

3. Generation of $[(\alpha\text{-diimine})PdMe(CH_2=CHOR)][SbF_6]$ (3b-g[SbF₆]) Complexes from 1[SbF₆].

The adducts $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOEt})][\text{SbF}_6]$ (3b[SbF₆]), $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOSiMe}_3)][\text{SbF}_6]$ (3c[SbF₆]), $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOSiMe}_2\text{Ph})][\text{SbF}_6]$ (3d[SbF₆]), $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOSiMePh}_2)][\text{SbF}_6]$ (3e[SbF₆]), $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOSiPh}_3)][\text{SbF}_6]$ (3f[SbF₆]) and $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOPh})][\text{SbF}_6]$ (3g[SbF₆]) were generated using the procedure described for 3a[SbF₆] on similar scales and with similar yields.

3.1 Generation of [(α -diimine)PdMe(CH₂=CHOEt)][SbF₆] (3b[SbF₆]). An NMR tube was charged with 1[SbF₆] (13.0 mg, 0.0157 mmol) and CD₂Cl₂ (0.4 mL) was added by vacuum transfer at -196 °C. **2b** (0.0173 mmol) was added by vacuum transfer at -196 °C. The

tube was warmed to -78 °C, shaken to dissolve and thoroughly mix the components, and placed in an NMR probe that had been pre-cooled to -20 °C. NMR spectra at -60 °C showed that $3b[SbF_6]$ (95 %) had formed. 1H NMR (CD₂Cl₂, -20 °C): δ 7.37-7.32 (m, 6H), 6.76 (dd, J = 13, 4; 1H, H_{int}), 4.04 (dq, J = 17, 8, 2H, OCH₂CH₃), 3.26 (d, J = 13, 1H, H_{trans}), 3.11 (d, J = 4, 1H, H_{cis}), 3.00 (sept, J = 7, 1H, CHMe₂), 2.85 (sept, J = 7, 1H, CHMe₂), 2.81 (sept, J = 7, 1H, CHMe₂), 2.73 (sept, J = 7, 1H, CHMe₂), 2.33 (s, 3H, N=CMe), 2.25 (s, 3H, N=CMe), 1.41 (d, J = 7, 3H, CHMe₂), 1.37 (d, J = 7, 3H, CHMe₂), 1.32 (d, J = 7, 3H, CHMe₂), 1.29 (d, J = 7, 3H, CHMe₂), 1.28 (d, J = 7, 3H, CHMe₂), 1.19 (t, J = 7, 3H, OCH₂CH₃), 1.15 (d, J = 7, 3H, CHMe₂), 1.13 (d, J = 7, 3H, CHMe₂), 1.08 (free Et₂O and CHMe₂), 0.18 (s, 3H, PdMe). 13 C{ 1 H} NMR (CD₂Cl₂, -20 °C): δ 179.8 (N=CMe), 175.7 (N=CMe), 148.4 (CH₂=CHOEt), 139.8, 139.4, 138.3, 138.2, 138.1, 137.4, 128.65, 128.60, 125.2, 125.0, 124.7, 124.5, 71.8 (OCH₂CH₃), 56.7 (CH₂=CHOEt), 29.3, 29.2, 29.0, 28.9, 24.6 (2C), 23.9, 23.8, 23.5, 23.4, 23.3, 23.0, 22.0, 21.7, 15.4 (OCH₂CH₃), 14.9 (PdMe).

3.2 [(α -diimine)PdMe(CH₂=CHOSiMe₃)][SbF₆] (3c[SbF₆]). ¹H NMR (CD₂Cl₂, -60 °C): δ 7.38-7.25 (m, 6H), 6.91 (dd, J = 12, 4; 1H, H_{int}), 3.36 (d, J = 12, 1H, H_{trans}), 3.14 (d, J = 4, 1H, H_{cis}), 2.87-2.78 (m, 4H, CHMe₂), 2.32 (s, 3H, N=CMe), 2.24 (s, 3H, N=CMe), 1.36 (d, J = 7, 3H, CHMe₂), 1.33 (d, J = 7, 3H, CHMe₂), 1.28 (d, J = 7, 3H, CHMe₂), 1.23 (d, J = 7, 3H, CHMe₂), 1.18 (d, J = 7, 3H, CHMe₂), 1.15 (d, J = 7, 3H, CHMe₂), 1.12 (d, J = 7, 3H, CHMe₂), 1.06 (d, J = 7, 3H, CHMe₂), 0.25 (s, 9H, OSiMe₃), 0.15 (s, PdMe). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 179.8 (N=CMe), 175.4 (N=CMe), 143.1 (CH₂=CHOSiMe₃), 139.2, 138.7, 138.0, 137.7, 137.5, 137.0, 128.1 (2C), 124.6, 124.5, 124.1, 124.0, 60.6 (CH₂=CHOSiMe₃), 28.70, 28.68,

28.31, 28.27, 24.3, 24.0, 23.8, 23.6, 23.4, 23.3, 22.7, 22.6, 21.5, 21.4, 15.6 (PdMe), -1.0 (OSiMe₃).

3.3 [(α-diimine)PdMe(CH₂=CHOSiMe₂Ph)][SbF₆] (3d[SbF₆]). ¹H NMR (CD₂Cl₂, -60 °C): δ 6.83 (dd, *J* = 12, 3; 1H, H_{inl}), 3.50 (d, *J* = 12, 1H, H_{trans}), 3.18 (d, *J* = 3, 1H, H_{cis}), 2.91 (m, 1H, CHMe₂), 2.83 (m, 1H, CHMe₂), 2.78 (m, 1H, CHMe₂), 2.56 (m, 1H, CHMe₂), 2.34 (s, 3H, N=CMe), 2.22 (s, 3H, N=CMe), 1.29 (m, 6H, CHMe₂), 1.23 (m, 6H, CHMe₂), 1.12 (d, *J* = 7, 3H, CHMe₂), 1.03 (m, 6H, CHMe₂), 0.91 (d, *J* = 7, 3H, CHMe₂), 0.53 (s, 3H, SiCH₃), 0.44 (s, 3H, SiCH₃), 0.20 (s, 3H, PdMe); the α-diimine and free and coordinated CH₂=CHOSiMePh₂ aromatic resonances overlap and are not listed. Key ¹³C NMR (CD₂Cl₂, -60 °C) data: δ180.2 (N=CMe), 175.6 (N=CMe), 142.6 (CH₂=CHOSiMePh₂), 139.2 (Ar, C_{ipso}), 138.5 (Ar, C_{ipso}), 138.1 (Ar, C_o), 138.0 (Ar, C_o), 137.4 (Ar, C_o), 137.1 (Ar, C_o), 124.6 (Ar, C_m), 124.4 (Ar, C_m), 124.2 (Ar, C_m), 124.0 (Ar, C_m), 61.6 (CH₂=CHOSiMePh₂), 28.8 (CHMe₂), 28.7 (CHMe₂), 28.3 (CHMe₂, 2C), 24.2 (CHMe₂), 23.9 (CHMe₂), 23.8 (CHMe₂), 23.6 (CHMe₂), 23.4 (CHMe₂), 23.3 (CHMe₂), 22.9 (CHMe₂), 22.6 (CHMe₂), 21.5 (N=CMe), 21.4 (N=CMe), 9.0 (PdMe), -2.0 (SiMe), -2.3 (SiMe).

3.4 [(α -diimine)PdMe(CH₂=CHOSiMePh₂)][SbF₆] (3e[SbF₆]). ¹H NMR (CD₂Cl₂, -60 °C): δ 6.89 (dd, J = 12, 3; 1H, H_{int}), 3.67 (d, J = 12, 1H, H_{trans}), 3.18 (d, J = 3, 1H, H_{cis}), 3.03-2.30 (m, 4H, CHMe₂), 2.37 (s, 3H, N=CMe), 2.22 (s, 3H, N=CMe), 1.28-1.21 (m, 12H, CHMe₂), 1.17 (d, J = 7, 3H, CHMe₂), 1.12 (d, J = 7, 3H, CHMe₂), 1.02 (d, J = 7, 3H, CHMe₂), 0.97 (d, J = 7, 3H, CHMe₂), 0.70 (s, 3H, SiCH₃), 0.26 (s, 3H, PdMe); the α -diimine and free and coordinated CH₂=CHOSiMePh₂ aromatic resonances overlap and are not listed. Key ¹³C NMR (CD₂Cl₂, -60 °C) data: δ 180.5 (N=CMe), 175.7 (N=CMe), 141.8 (CH₂=CHOSiMePh₂), 139.2

(Ar, C_{ipso}), 138.4 (Ar, C_{ipso}), 138.2 (Ar, C_o), 138.0 (Ar, C_o), 137.1 (Ar, C_o), 137.0 (Ar, C_o), 124.6 (Ar, C_m), 124.3 (Ar, C_m), 124.2 (Ar, C_m), 124.0 (Ar, C_m), 62.5 (CH₂=CHOSiMePh₂), 28.9 (CHMe₂), 28.8 (CHMe₂), 28.4 (CHMe₂, 2C), 24.1 (CHMe₂), 24.0 (CHMe₂), 23.8 (CHMe₂), 23.7 (CHMe₂), 23.3 (CHMe₂), 23.1 (CHMe₂), 22.7 (CHMe₂), 22.5 (CHMe₂), 21.5 (N=CMe), 21.4 (N=CMe), 8.9 (PdMe), -1.1 (SiMePh₂).

3.5 [(α-diimine)PdMe(CH₂=CHOSiPh₃)][SbF₆] (3f[SbF₆]). ¹H NMR (CD₂Cl₂, -60 °C) δ 7.12 (dd, *J* = 12, 4; 1H, H_{int}), 3.78 (d, *J* = 12, 1H, H_{trans}), 3.22 (d, *J* = 4, 1H, H_{cis}), 2.97-2.65 (m, 4H, CHMe₂), 2.37 (s, 3H, N=CMe), 2.22 (s, 3H, N=CMe), 1.29 (d, *J* = 7, 3H, CHMe₂), 1.25 (d, *J* = 7, 6H, CHMe₂), 1.11 (d, *J* = 7, 3H, CHMe₂), 1.05 (d, *J* = 7, 3H, CHMe₂), 0.91 (d, *J* = 7, 3H, CHMe₂), 0.84 (d, *J* = 7, 3H, CHMe₂), 0.34 (d, *J* = 7, 3H, CHMe₂), 0.23 (s, 3H, PdMe); the α-diimine and free and coordinated CH₂=CHOSiPh₃ aromatic resonances overlap and are not listed. Key ¹³C NMR (CD₂Cl₂, -60 °C) data: δ 180.7 (N=CMe), 175.9 (N=CMe), 141.8 (CH₂=CHOSiPh₃), 139.2 (Ar, C_{ipso}), 138.6 (Ar, C_{ipso}), 138.2 (Ar, C_o), 138.0 (Ar, C_o), 137.6 (Ar, C_o), 137.0 (Ar, C_o), 124.6 (Ar, C_m), 124.3 (Ar, C_m), 124.2 (Ar, C_m), 124.0 (Ar, C_m), 62.8 (CH₂=CHOSiPh₃), 28.9 (CHMe₂), 28.8 (CHMe₂), 28.6 (CHMe₂), 28.4 (CHMe₂), 24.0 (CHMe₂), 23.9 (CHMe₂), 23.7 (CHMe₂), 23.3 (CHMe₂), 23.2 (CHMe₂), 22.7 (CHMe₂), 22.4 (CHMe₂), 22.3 (CHMe₂), 21.5 (N=CMe), 21.4 (N=CMe), 9.0 (PdMe).

3.6 [(α -diimine)PdMe(CH₂=CHOPh)][SbF₆] (3g[SbF₆]). ¹H NMR (CD₂Cl₂, -20 °C)² δ 7.51 (t, J = 8, 2H, H_{meta}), 7.39-7.27 (m, 9H), 7.00 (dd, J = 12, 4; 1H, H_{int}), 3.77 (d, J = 12, 1H, H_{trans}), 3.35 (d, J = 4, 1H, H_{cis}), 2.99 (m, 2H, CHMe₂), 2.88 (m, 1H, CHMe₂), 2.82 (m, 1H, CHMe₂), 2.41 (s, 3H, N=CMe), 2.35 (s, 3H, N=CMe), 1.35 (d, J = 7, 3H, CHMe₂), 1.24 (d, J = 7, 3H, CHMe₂), 1.22 (d, J = 7, 3H, CHMe₂), 1.20 (d, J = 7, 3H, CHMe₂), 1.18 (d, J = 7, 3H,

 $CHMe_2$), 1.10 (d, J = 7, 3H, $CHMe_2$), 1.08 (d, J = 7, 3H, $CHMe_2$), 0.94 (d, J = 7, 3H, $CHMe_2$), 0.26 (s, 3H, PdMe).

3.7 $[(2,6^{-i}Pr_2-C_6H_3)N=CAnCAn=N(2,6^{-i}Pr_2-C_6H_3)][SbF_6]$ (3h[SbF₆]). A NMR tube was charged with $[(2,6^{-1}Pr_2-C_6H_3)N=CAnCAn=N(2,6^{-1}Pr_2-C_6H_3)]PdMeCl$ (19.2 mg, 29.0 μmol), AgSbF₆ (10 mg, 29.1 μmol) and CH₂=CHOSiPh₃ (8.8 mg, 29.1 μmol), and CD₂Cl₂ (0.4 mL) was added by vacuum transfer at -78 °C. The tube was shaken to dissolve and thoroughly mix the components, and placed in an NMR probe that had been pre-cooled to -60 °C. NMR spectra at -60 °C showed that **3h**[SbF₆] (95 %) had formed. ¹H NMR (CD₂Cl₂, -60 °C): δ 8.24 (δ , J = 8, 1H, An: H_p), 8.19 (δ , J = 8, 1H, An: H_p), 7.65-7.33 (m, 23 H, An: H_m, H_m, 6 H_{arvl} , 15 H_{arvl} from SiPh₃), 7.32 (dd, J = 12, 4; 1H, H_{int}), 6.49 (δ , J = 7, 1H, An: H_o), 6.39 (δ , J = 7) 7, 1H, An: H_{o} , 4.00 (d, J = 12, 1H, H_{trans}), 3.59 (d, J = 4, 1H, H_{cis}), 3.29 (m, 1H, $CHMe_2$), 3.01 $(m, 2H, CHMe_2), 2.50 (m, 1H, CHMe_2), 1.29 (d, J = 7, 3H, CHMe_2), 1.27 (br, 3H, CHMe_2),$ 1.06 (br, 3H, CH Me_2), 0.97 (d, J = 7, 3H, CH Me_2), 0.81 (d, J = 7, 3H, CH Me_2), 0.70 (d, 6H, CHMe₂), 0.51 (s, 3H, PdMe), 0.48 (br, 3H, CHMe₂). Key ¹³C NMR (CD₂Cl₂, -60 °C) data: δ 175.4 (N=CMe), 171.2 (N=CMe), 141.7 (CH₂=CHOSiPh₃), 145.7, 139.0, 138.8, 138.5, 138.0, 137.3, 137.2, 135.2, 133.6, 132.7, 131.5, 130.9, 129.5, 129.2, 129.1, 128.9, 128.5, 128.2, 126.6, 126.1, 125.2, 125.0, 124.9, 124.8, 124.7 and 124.6 (An 4 quaternary C, Co, Co', Cm, Cm', $C_p, C_p'; Ar, Ar' C_{ipso}, C_{ipso}, C_o, C_o', C_o'', C_o''', C_m, C_m', C_m'', C_m'', C_p, C_p'; SiPh C_{ipso}, C_o, C_m, C_p,$, 62.2 (CH₂=CHOSiPh₃), 29.4 (CHMe₂), 29.2 (CHMe₂), 29.0 (CHMe₂), 28.9 (CHMe₂), 24.7 (CHMe₂), 24.5 (CHMe₂), 23.8 (CHMe₂), 23.4 (CHMe₂), 23.3 (CHMe₂), 23.0 (CHMe₂), 22.8 (CHMe₂), 22.4 (CHMe₂), 13.4 (PdMe).

3.8 [{(4-Me-C₆H₅)N=CMeCMe=N(4-Me-C₆H₅)}PdMe(CH₂=CHOSiPh₃)][SbF₆] (3i). A NMR tube was charged with (α -diimine-Me)PdMeCl (19.2 mg, 29.0 µmol), AgSbF₆ (10 mg, 29.1 µmol) and CH₂=CHOSiPh₃ (8.8 mg, 29.1 µmol), and CD₂Cl₂ (0.4 mL) was added by vacuum transfer at -78 °C. The tube was shaken to dissolve and thoroughly mix the components. NMR spectra at -70 °C showed that two rotamers of 3i (95 %) had formed. ¹H NMR (CD₂Cl₂, -70 °C) δ 7.59 (t, J = 7 Hz, 12H, C_m, Si-Ph), 7.55 (d, J = 7 Hz, 12H, C_o, Si-Ph), 7.44 (t, J = 7 Hz, 6H, C_p, Si-Ph), 7.35 (d, J = 4 Hz, 1H, Ar), 7.32 (d, J = 4 Hz, 1H, Ar), 7.26 (b, 1H, Ar), 7.25 (d, 2H, Ar), 7.17 (d, J = 4 Hz, 1H, Ar), 6.94 (d, J = 4 Hz, 1H, Ar), 6.92 (d, J = 4 Hz, 1H, Ar), 6.90 (d, 1H, H_{int}), 6.78 (d, J = 4 Hz, 1H, Ar), 6.76 (d, J = 4 Hz, 1H, Ar), 6.74 (d, J = 4 Hz, 1H, Ar), 6.67 (d, J = 4 Hz, 1H, Ar), 6.64 (d, J = 4 Hz, 1H, Ar), 6.34 (d, 1H, H_{int}), 6.05 (d, J = 4 Hz, 1H, Ar), 5.62 (d, J = 4 Hz, 1H, Ar), 3.78 (d, J = 12, 1H, H_{trans}), 3.56 (b, 2H, H_{cis}), 3.49 (d, J = 12, 1H, H_{trans}), 2.37, 2.34, 2.32, 2.25, 2.24, 2.16, 2.04, 1.91, 0.17 (s, 3H, Pd-Me), -0.18 (s, 3H, Pd-Me).

Figure 3.1. NOSEY NMR of $3d[SbF_6]$ (CD₂Cl₂, -20 °C): expansion of the δ 8.0-0.0;8.0-0.0 region.

Figure 3.2. NOSEY NMR of $3e[SbF_6]$ (CD₂Cl₂, -20 °C): expansion of the δ 8.0-0.0;8.0-0.0 region.

Figure 3.3. NOSEY NMR of **3f**[SbF₆] (CD₂Cl₂, -20 °C): expansion of the δ 8.0-0.0;8.0-0.0 region.

4. Competitive Binding Studies.

4.1 Competitive binding of 2d-g and 2c to 1[SbF₆] at -20 °C (eq 5). The procedure for **2d** is described here; an identical procedure was used for **2e-g**. An NMR tube was charged with **1**[SbF₆] (15.0 mg, 0.0179 mmol) and **2d** (31.0 mg, 0.258 mmol). CD_2Cl_2 (0.4 mL) and **2c** (0.034 mmol) were added by vacuum transfer at -196 °C. The tube was warmed to -78 °C, shaken and placed in an NMR probe that had been pre-cooled to -20 °C. The reaction was monitored periodically by ¹H NMR at -20 °C until after 30 min, when the reaction quotient $Q_{2e/2c} = [3d][2c][3c]^{-1}[2d]^{-1}$ reached a constant value. Additional **2d** (0.14 mmol) was added by

vacuum transfer to change the 2c/2d ratio, and the tube was monitored by ¹H NMR at -20 °C until $Q_{2d/2c}$ again reached a constant value. The process was repeated one more time and the average $K_{2d/2c}$ value is reported in Table 2 of the text.

4.2 Competitive binding of ethylene and CH₂=CHOR (2a-c, 2g) to 1[B(C₆F₅)₄] at -60 °C (eq 4). The procedure for 2a is described here; an identical procedure was used for 2b, 2c, 2f, 2g. An NMR tube was charged with (α-diimine)PdMeCl (11.2 mg, 0.0199 mmol) and [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (17.5 mg, 0.0196 mmol). CD₂Cl₂ (0.4 mL) was added by vacuum transfer at -196 °C. The tube was warmed to 20 °C and shaken. Ethylene (0.062 mmol) and 2a (0.040 mmol) were added by vacuum transfer at -196 °C. The tube was warmed to -78 °C, shaken, and placed in an NMR probe that had been pre-cooled to -60 °C. The reaction was monitored periodically by ¹H NMR at -60 °C until after 1 h, when the reaction quotient $Q_{2a/ethylene} = [3a][CH₂=CH₂][(α-diimine)PdMe(CH₂=CH₂)⁺]⁻¹[2a]⁻¹ reached a constant value. Additional 2a (0.062 mmol) was added by vacuum transfer to change the ethylene/2a ratio, and the tube was monitored by ¹H NMR at -60 °C until <math>Q_{2a/ethylene}$ reached a constant value again.

5. Reaction of $CH_2=CHO^tBu$ (2a) with $1[B(C_6F_5)_4]$.

5.1 Kinetics of insertion of 3a[B(C₆F₅)₄]. The first-order rate constant for the consumption of 3a[B(C₆F₅)₄], $k_{\text{insert, 3a}}$, was measured by the disappearance of the Pd Me^{-1} H NMR resonance and the increase of the PdCH₂CHMe resonance of 4a[B(C₆F₅)₄] plus the PdC Me_2 resonance of 5a[B(C₆F₅)₄], both at 0 °C and at 20 °C.

Figure 5.1. First-order consumption of $3a[B(C_6F_5)_4]$ at 0 °C.

Figure 5.2. First-order consumption of $\mathbf{3a}[B(C_6F_5)_4]$ at 0 °C based on the increase of the sum of $\mathbf{4a}[B(C_6F_5)_4] + \mathbf{5a}[B(C_6F_5)_4]$. $B = \ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 5.3. First-order consumption of $3a[B(C_6F_5)_4]$ at 20 °C.

Figure 5.4. First-order consumption of $\mathbf{3a}[B(C_6F_5)_4]$ at 20 °C based on the increase of the sum of $\mathbf{4a}[B(C_6F_5)_4] + \mathbf{5a}[B(C_6F_5)_4]$. $B = \ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

5.2 Kinetics of the β -O^tBu elimination of $5a[B(C_6F_5)_4]$ and $4a[B(C_6F_5)_4]$. The first-order rate constant for consumption of the total of $4a[B(C_6F_5)_4]$ and $5a[B(C_6F_5)_4]$, k_{β -OtBu, obs, was measured by the disappearance of the PdCH₂CHMe resonance of $4a[B(C_6F_5)_4]$ and the PdCMe₂ resonance of $5a[B(C_6F_5)_4]$ and the increase of the H_{int} resonance of $6[B(C_6F_5)_4]$ at 20 °C.

Figure 5.5. First-order consumption of the sum of $4a[B(C_6F_5)_4] + 5a[B(C_6F_5)_4]$ at 20 °C.

Figure 5.6. First-order consumption of the sum of $4a[B(C_6F_5)_4] + 5a[B(C_6F_5)_4]$ at 20 °C based on the increase of $\mathbf{6}[B(C_6F_5)_4]$. $B = \ln[([B]_{\infty} - [B])/([B]_{\infty} - [B]_0)]$.

6. Reaction of $1[B(C_6F_5)_4]$ with 2b-g.

6.1 Reaction of 1[B(C₆F₅)₄] with CH₂=CHOEt (2b). An NMR tube was charged with $(\alpha\text{-diimine})$ PdMeCl (14.0 mg, 0.0249 mmol) and $[\text{Li}(Et_2O)_{2.8}][B(C_6F_5)_4]$ (22.0 mg, 0.0246 mmol) and CH₂Cl₂ (0.4 mL) were added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously. After 20min, **2b** (0.0325 mmol) were added by vacuum transfer at -196 °C. The tube was kept at 0 °C for 10 min. All the volatiles were evacuated and CD₂Cl₂ (0.4 mL) was added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously and monitored periodically by NMR. NMR analysis showed that after 10 min, a mixture of $[\{(\alpha\text{-diimine})\text{PdMe}\}_2(\mu\text{-Cl})]^+$ (8 %), $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOEt})][B(C_6F_5)_4]$ $(3b[B(C_6F_5)_4], 27 \%), [(\alpha-diimine)Pd\{CH_2CH(OEt)Me\}][B(C_6F_5)_4] (4b[B(C_6F_5)_4], 18 \%),$ $[(\alpha\text{-diimine})Pd\{CMe_2(OEt)\}][B(C_6F_5)_4]$ (**5b** $[B(C_6F_5)_4]$, 35 %), **6** $[B(C_6F_5)_4]$ (12 %) and C₂H₅OH (12 %) was present. After 1 h, 6 and C₂H₅OH³ had formed quantitatively. The S24

 α -diimine and OEt ¹H NMR resonances of **3b**[B(C₆F₅)₄], **4b**[B(C₆F₅)₄] and **5b**[B(C₆F₅)₄] overlap. Therefore only key NMR data are listed. Key Data for $4b[B(C_6F_5)_4]$: ¹H NMR $(CD_2Cl_2, 0 \, ^{\circ}C) \, \delta \, 4.86 \, (\text{sextet}, J = 7, \, PdCH_2CH(OEt)Me), \, 3.41 \, (q, J = 7, \, 2H, \, OCH_2CH_3), \, 2.20$ (s, 3H, N=CMe), 2.16 (s, 3H, N=CMe), 0.59 (t, J = 7, 3H,OCH₂CH₃), 0.37 (t, J = 7, PdCHH'CH(OEt)Me). The PdCHH'CH(OEt)Me and PdCH₂CH(OEt)Me resonances are obscured by the α -dimine resonances. **Key Data for 5b**[B(C₆F₅)₄]: ¹H NMR (CD₂Cl₂, 0 °C) $\delta 3.56$ (q, J = 7, 2H, OC H_2 CH₃), 2.92 (septa, J = 7, 1H, CHMe₂), 2.23 (s, 3H, N=CMe), 2.19 (s, 3H, N=CMe), 1.41 (d, J = 7, 6H, CHMe₂), 1.39 (d, J = 7, 6H, CHMe₂), 1.29 (d, J = 7, 6H, $CHMe_2$), 1.16 (d, J = 7, 6H, $CHMe_2$), 0.60 (s, $PdCMe_2(OEt)$) 0.55 (t, J = 7, PdCMe₂(OCH₂CH₃)). The first-order rate constant for the consumption of $3b[B(C_6F_5)_4]$ measured by the disappearance of the PdMe ¹H NMR resonance is $k_{insert, 3c} = 8.01(6) \times 10^{-5} \text{ s}^{-1}$ at 0 °C and $k_{\text{insert, 3c}} = \sim 2.0 \times 10^{-3} \text{ s}^{-1}$ at 20 °C (ca. 83% consumption after 15 min). The first-order rate constant for consumption of the total of $\mathbf{4b}[B(C_6F_5)_4]$ and $\mathbf{5b}[B(C_6F_5)_4]$ measured by the disappearance of the $PdCH_2CHMe$ resonance of $\textbf{4b}[B(C_6F_5)_4]$ and the PdC Me_2 resonance of $\mathbf{5b}[B(C_6F_5)_4]$, or by the appearance of the H_{int} resonance of $\mathbf{6}[B(C_6F_5)_4]$ is $k_{\text{B-OEt, obs}} = 9.12(1) \times 10^{-4} \text{ s}^{-1}$ at 20 °C.

Figure 6.1. First-order consumption of **3b**[B(C_6F_5)₄] at 0 °C.

Figure 6.2. First-order consumption of ${\bf 3b}[B(C_6F_5)_4]$ at 0 °C based on the increase of the sum of ${\bf 4b}[B(C_6F_5)_4] + {\bf 5b}[B(C_6F_5)_4] + {\bf 6}[B(C_6F_5)_4]$. $B = \ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 6.3. First-order consumption of the sum of $\mathbf{4b}[B(C_6F_5)_4] + \mathbf{5b}[B(C_6F_5)_4]$ at $0 \, ^{\circ}C$.

Figure 6.4. First-order consumption of the sum of $\mathbf{4b}[B(C_6F_5)_4] + \mathbf{5b}[B(C_6F_5)_4]$ at 0 °C based on increase of $\mathbf{6}[B(C_6F_5)_4]$. $B = \ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 6.5. First-order consumption of the sum of $\mathbf{4b}[B(C_6F_5)_4] + \mathbf{5b}[B(C_6F_5)_4]$ at 20 °C.

Figure 6.6. First-order consumption of the sum of $\mathbf{4b}[B(C_6F_5)_4] + \mathbf{5b}[B(C_6F_5)_4]$ at 20 °C based on increase of $\mathbf{6}[B(C_6F_5)_4]$. $B = \ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

6.2 Reaction of 1[B(C₆F₅)₄] with CH₂=CHOSiMe₃ (2c). An NMR tube was charged with $(\alpha\text{-diimine})$ PdMeCl (14.0 mg, 0.0249 mmol) and $[\text{Li}(\text{Et}_2\text{O})_{2.8}][B(\text{C}_6\text{F}_5)_4]$ (22.0 mg, 0.0246 mmol) and CD₂Cl₂ (0.4 mL) were added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously. After 20min, 2c (0.0225 mmol) were added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously and monitored periodically NMR. **NMR** analysis showed 10 by that after min, $[(\alpha\text{-diimine})Pd\{CMe_2(OSiMe_3)\}][B(C_6F_5)_4]$ (**5c** $[B(C_6F_5)_4]$) had formed quantitatively. ¹**H NMR** (CD₂Cl₂): δ 7.35 (s, 3H), 7.31 (s, 3H), 3.05 (sept, J = 7, 2H, CHMe₂), 2.95 (sept, J = 7, 2H, CHMe₂), 2.22 (s, 3H, N=CMe), 2.17 (s, 3H, N=CMe), 1.44 (d, J = 7, 6H, CHMe₂), 1.40 (d, J = 7, 6H, CH Me_2), 1.27 (d, J = 7, 6H, CH Me_2), 1.16 (d, J = 7, 6H, CH Me_2), 0.54 (s, 6H, $PdCMe_2(OSiMe_3)$, -0.07 (s, 9H, $OSiMe_3$); the aromatic reagion is simpler than expected due to accidental degeneracies. $^{13}C{^1H}$ NMR (CD₂Cl₂, -60 °C): δ 174.2 (N=CMe), 170.7 (N=CMe), 143.2, 142.6, 136.5, 135.9, 127.6, 127.2, 124.1, 123.8, 84.5 (PdCMe₂(OSiMe₃)), 28.7, 28.4, 25.4, 23.2, 22.4, 22.2, 20.9, -0.3 $(OSiMe_3)$. ESI-MS: 23.4, 18.9, $(\alpha$ -diimine)Pd{CMe₂(OSiMe₃)}⁺ calcd. m/z = 641.3, found 641.2. **5c**[B(C₆F₅)₄] converts to Me₃SiOH and 6[B(C₆F₅)₄]. Me₃SiOH was slowly converted to Me₃SiOSiMe₃ in CD₂Cl₂ at RT over 1 week.

The first-order rate constant for consumption of $\mathbf{5c}[B(C_6F_5)_4]$ measured by the disappearance of the PdC Me_2 resonance is $k_{\beta\text{-OSiMe3, obs}} = 3.22(2) \times 10^{-5} \text{ s}^{-1}$ at 20 °C. Since $K_{\mathbf{5c/4c}} > 20$, the actual β -OSiMe₃ elimination rate constant $k_{\beta\text{-OSiMe3, obs}} = k_{\beta\text{-OSiMe3, obs}} (K_{\mathbf{5c/4c}} + 1) > 7.35 \times 10^{-4} \text{ s}^{-1}$.

Figure 6.7. First-order consumption of $\mathbf{5c}[B(C_6F_5)_4]$ at 20 °C.

Figure 6.8. First-order consumption of $\mathbf{5c}[B(C_6F_5)_4]$ at 20 °C based on the increase of $\mathbf{6}[B(C_6F_5)_4]$. $B = \ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

6.3 Reaction of 5c[B(C₆F₅)₄] with MeCN. An NMR tube containing a CD₂Cl₂ solution of $5c[B(C_6F_5)_4]$ (0.020 mmol) was frozen at -196 °C and MeCN (0.040 mmol) was added by vacuum transfer. The tube was warmed to -78 °C, agitated to mix the components, placed in an NMR probe that had been pre-cooled to -40 °C, and monitored by NMR. ¹H NMR spectra showed that after 10 min, 36 % of $\mathbf{5c}[B(C_6F_5)_4]$ had been converted to $[\mathbf{4c\text{-}MeCN}][B(C_6F_5)_4]$. Therefore the tube was warmed to 0 °C for 10 min to facilitate the reaction of $5c[B(C_6F_5)_4]$ with MeCN. The tube was cooled to -40 °C and ¹H NMR spectra were recorded and showed that 90 % of $5c[B(C_6F_5)_4]$ had been converted to $[4c\text{-MeCN}][B(C_6F_5)_4]$. This species decomposes within a few minutes at 20 °C. Key NMR data for [4c-MeCN][B(C₆F₅)₄]: ¹H NMR (CD₂Cl₂, -40 °C) δ 7.38-7.24 (m, 6H), 3.49 (m, 1H, PdCH₂CHMe(OSiMe₃)), 2.90 (m, 2H, CHMe₂), 2.81 (m, 2H, CHMe₂), 2.22 (s, 3H, N=CMe), 2.21 (s, 3H, N=CMe), 1.70 (s, 3H, MeCN), 1.44 (m, 1H, PdCHH'CHMe(OSiMe₃)), 1.32 (d, J = 7, 12H, $CHMe_2$), 1.25 (m, 1H, $PdCHH'CHMe(OSiMe_3)$, 1.17 (d, J = 7, 3H, $CHMe_2$), 1.16 (d, J = 7, 3H, $CHMe_2$), 1.12 (3H, CHMe₂), 1.10 (3H, CHMe₂, partially obscured by Et₂O resonance), 0.93 (d, J = 6, 3H, PdCH₂CHMe(OSiMe₃)), -0.13 (s, 9H, OSiMe₃). Key 1 H- 1 H COSY correlations δ/δ : (CD₂Cl₂, (PdCH₂CHMe(OSiMe₃))/1.44 -40 °C) 3.49 (PdC*H*H'CHMe(OSiMe₃)); 3.49 (PdCH₂CHMe(OSiMe₃))/1.25 (PdCHH'CHMe(OSiMe₃)); 3.49 (PdCH₂CHMe(OSiMe₃))/0.93 (PdCH₂CHMe(OSiMe₃)); 1.44 (PdCHH'CHMe(OSiMe₃))/1.25 (PdCHH'CHMe(OSiMe₃)). ¹³C{¹H} NMR (CD₂Cl₂, -60 °C): δ 179.7 (N=CMe), 172.1 (N=CMe), 139.4, 139.1, 138.2, 138.0, 137.1, 128.6, 127.8, 124.4, 124.3, 123.9, 123.8, 121.6, 68.9 137.2, (PdCH₂CHMe(OSiMe₃)), 37.9 (PdCH₂CHMe(OSiMe₃)), 28.7, 28.5, 25.6, 23.6, 23.4, 23.4, 23.1, 23.0, 22.9, 22.8, 22.7, 22.5, 22.3, 22.0, 19.9, 2.2 (MeCN), -0.4 (OSiMe₃).

6.4 Reaction of 1[B(C₆F₅)₄] with CH₂=CHOSiMe₂Ph (2d).

An NMR tube was charged with (α -diimine)PdMeCl (14.0 mg, 0.0249 mmol) and [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (22.0 mg, 0.0246 mmol) and CD₂Cl₂ (0.4 mL) were added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously. After 20min, **2d** (0.0224 mmol) were added by syringe at -196 °C under nitrogen. The tube was warmed to 20 °C, shaken vigorously and monitored periodically by NMR. NMR spectrum showed that $\mathbf{5d}[B(C_6F_5)_4]$ was generated cleanly after 10min at RT. $\mathbf{5d}[B(C_6F_5)_4]$ converts to PhMe₂SiOH and $\mathbf{6}[B(C_6F_5)_4]$.⁵ PhMe₂SiOH was slowly converted to PhMe₂SiOSiMe₂Ph in CD₂Cl₂ at RT over 1 week.

The first-order rate constant for consumption of of **5d** measured by the disappearance of the PdC Me_2 resonance is $k_{\beta\text{-OSiMe2Ph, obs}} = 5.06(2) \times 10^{-5} \text{ s}^{-1}$ at 20 °C. The actual first-order rate constant $k_{\beta\text{-OSiPh3}} = k_{\beta\text{-OSiPh3, obs}}(K_{5d/4d} + 1) > 1.8 \times 10^{-3} \text{ s}^{-1} (K_{5d/4d} > 20)$.

Figure 6.9. First-order consumption of $5d[B(C_6F_5)_4]$ at 20 °C.

Figure 6.10. First-order consumption of $\mathbf{5d}[B(C_6F_5)_4]$ at 20 °C based on the increase of $\mathbf{6}[B(C_6F_5)_4]$. $B = \ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

6.5 Reaction of 1[B(C₆F₅)₄] with CH₂=CHOSiMePh₂ (2e).

An NMR tube was charged with (α -diimine)PdMeCl (14.0 mg, 0.0249 mmol) and [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (22.0 mg, 0.0246 mmol) and CD₂Cl₂ (0.4 mL) were added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously. After 20min, **2e** (0.0242 mmol) were added by syringe at -196 °C under nitrogen. The tube was warmed to 20 °C, shaken vigorously and monitored periodically by NMR. NMR spectrum showed that $\mathbf{5e}[B(C_6F_5)_4]$ was generated cleanly after 10min at RT. $\mathbf{5e}[B(C_6F_5)_4]$ converts to Ph₂MeSiOH and $\mathbf{6}[B(C_6F_5)_4]$. Ph₂MeSiOH does not react to generate Ph₂MeSiOSiMePh₂ in CD₂Cl₂ at RT over 2 weeks.

The first-order rate constant for consumption of of **5e** measured by the disappearance of the PdC Me_2 resonance is $k_{\beta\text{-OSiMePh2}, \text{ obs}} = 1.34(1) \times 10^{-4} \text{ s}^{-1}$ at 20 °C. The actual first-order rate constant $k_{\beta\text{-OSiPh3}} = k_{\beta\text{-OSiPh3}, \text{ obs}}(K_{5d/4d} + 1) > 1.8 \times 10^{-3} \text{ s}^{-1} (K_{5d/4d} > 20)$.

Figure 6.11. First-order consumption of $\mathbf{5e}[B(C_6F_5)_4]$ at 20 °C.

Figure 6.12. First-order consumption of $\mathbf{5e}[B(C_6F_5)_4]$ at 20 °C based on the increase of $\mathbf{6}[B(C_6F_5)_4]$. $B = \ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 6.13. First-order consumption of $\mathbf{5e}[B(C_6F_5)_4]$ at 20 °C based on the increase of Ph₂MeSiOH. $B = \ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

6.6 Reaction of 1[B(C₆F₅)₄] with CH₂=CHOSiPh₃ (2f). An NMR tube was charged with $(\alpha\text{-diimine})PdMeC1$ (14.0 mg, 0.0249 mmol) and $[Li(Et_2O)_{2.8}][B(C_6F_5)_4]$ (22.0 mg, 0.0246 mmol) and CD₂Cl₂ (0.4 mL) were added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously. After 20min, 2f (0.0232 mmol) were added by syringe at -196 °C under nitrogen. The tube was warmed to 20 °C, shaken vigorously and monitored °C, periodically by NMR. NMR analysis showed that after 10 2f $[\{(\alpha\text{-diimine})PdMe\}_2(\mu\text{-Cl})]^+$ (14 %), free (17 %), $[(\alpha\text{-diimine})Pd\{CMe_2(OSiPh_3)\}][B(C_6F_5)_4]$ (5f, 64 %) and 6 (2 %) were present. After 20 min the free **2f** was completely consumed, and a mixture of $[\{(\alpha\text{-diimine})\text{PdMe}\}_2(\mu\text{-Cl})]^+$ (6 %), **5f** (65 %) and 6 (11 %) was present. The resonances of the elimination product Ph₃SiOH overlaped with other resonances. But Ph₃SiOH was isolated by hexanes wash after the elimination, and it does not react to generate Ph₃SiOSiPh₃ in CD₂Cl₂ at room temperature over

2 weeks.⁷ **ESI-MS**: $(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiPh}_3)\}^+ \text{ calcd. } m/z = 827.4, \text{ found } 827.2. \text{ Key}$ **NMR Data for 5d**: ¹**H NMR** $(\text{CD}_2\text{Cl}_2)^8 \delta 7.45$ (d, J = 8, H_{ortho} of $\text{OSi}Ph_3$), 7.31 (m, $\text{OSi}Ph_3$), 7.28 (m, $\text{OSi}Ph_3$), 3.06 (m, 2H, $\text{C}H\text{Me}_2$), 2.96 (m, 2H, $\text{C}H\text{Me}_2$), 2.25 (s, 3H, N=CMe), 2.11 (s, 3H, N=CMe), 1.35 (d, J = 7, 6H, $\text{C}HMe_2$), 1.19 (d, J = 7, 6H, $\text{C}HMe_2$), 1.16 (d, J = 7, 6H, $\text{C}HMe_2$), 1.13 (d, J = 7, 6H, $\text{C}HMe_2$), 0.30 (s, 6H, $\text{Pd}\text{C}Me_2(\text{OSiPh}_3)$). ¹³**C**{¹**H**} **NMR** (CD₂Cl₂, -40 °C): δ 175.0 (N=CMe), 172.1 (N=CMe), 142.9, 142.4, 137.1, 136.6, 134.8, 131.4, 128.3, 127.9, 127.7, 124.4, 124.1, 87.2 (PdCMe₂(OSiPh₃)), 28.9, 28.6, 26.1, 23.8, 23.5, 22.9, 22.7, 21.6, 19.6. The C_{ipso} signal of OSi Ph_3 was obscured.

The first-order rate constant for consumption of of **5f** measured by the disappearance of the PdC Me_2 resonance is $k_{\beta\text{-OSiPh3, obs}} = 1.071(5) \times 10^{-4} \text{ s}^{-1}$ at 20 °C. The actual first-order rate constant $k_{\beta\text{-OSiPh3, obs}}(K_{5f/4f} + 1) > 1.8 \times 10^{-3} \text{ s}^{-1} (K_{5f/4f} > 20)$.

Figure 6.14. First-order consumption of **5f**[B(C_6F_5)₄] at 20 °C.

Figure 6.15. First-order consumption of $\mathbf{5f}[B(C_6F_5)_4]$ at 20 °C based on the increase of $\mathbf{6}[B(C_6F_5)_4]$. $B = \ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

6.7 Reaction of 5f[B(C₆F₅)₄] with MeCN. An NMR tube containing a CD₂Cl₂ solution of **5f**[B(C₆F₅)₄] (0.020 mmol) was frozen at -196 °C and MeCN (0.030 mmol) was added by vacuum transfer. The tube was warmed to -78 °C, agitated to mix the components, placed in an NMR probe that had been pre-cooled to -60 °C, and monitored by NMR. ¹H NMR spectra showed that after 5 min, complex **5f**[B(C₆F₅)₄] had been converted cleanly to **[4f-MeCN]**[B(C₆F₅)₄]. ¹H NMR (CD₂Cl₂, -60 °C): δ 7.58 (t, J = 8, 3H, H_{para} of OSiPh₃), 7.43 (d, J = 7, 6H, H_{ortho} of OSiPh₃), 3.66 (q, J = 6, 1H, PdCH₂CHMe(OSiPh₃)), 2.92 (sept, J = 7, 1H, CHMe₂), 2.75 (m, 3H, CHMe₂), 2.23 (s, 3H, N=CMe), 2.21 (s, 3H, N=CMe), 1.99 (br s, MeCN), 1.40 (m, 1H, PdCHH'CHMe(OSiPh₃)), 1.31 (d, J = 7, 3H, CHMe₂), 1.23 (d, J = 7, 3H, CHMe₂), 1.15 (d, J = 7, 3H, CHMe₂), 1.14 (d, J = 7, 3H, CHMe₂), 1.12 (d, 6H, CHMe₂, partially obscured by Et₂O resonance), 1.05 (d, J = 6, 3H, CHMe₂), 1.04 (d, J = 6, 3H, CHMe₂), 0.99 (d, J = 6, 3H, PdCH₂CHMe(OSiPh₃)), 0.83 (m, 1H, PdCHH'CHMe(OSiPh₃)). ¹³C{¹H} NMR

(CD₂Cl₂, -60 °C): δ 179.6 (N=CMe), 172.3 (N=CMe), 139.2, 139.1, 138.2, 137.8, 137.1, 137.0, 135.0, 134.6, 134.3, 129.8, 127.9, 127.7, 127.5, 124.4, 124.3, 123.9, 123.7, 121.0 (CH₃CN), 71.5 (PdCH₂CHMe(OSiPh₃)), 38.9 (PdCH₂CHMe(OSiPh₃)), 28.8, 28.7, 28.6, 28.5, 25.1, 23.6, 23.3, 23.12, 23.08, 23.0, 22.8 (2C), 22.6, 22.0, 19.9, 1.1 (*Me*CN).

6.8 Reaction of 1[B(C₆F₅)₄] with CH₂=CHOPh (2g). An NMR tube was charged with $(\alpha\text{-diimine})$ PdMeCl (11.1 mg, 0.0198 mmol) and [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (18.4 mg, 0.0206 mmol). CD₂Cl₂ (0.4 mL) and 2g (0.021 mmol) were added by vacuum transfer at -196 °C. The tube was warmed to 20 °C, shaken vigorously, and monitored periodically by NMR. NMR analysis showed that after 10 min, 6 and phenol had formed quantitatively.

7. Reaction of $1[SbF_6]$ with 2a-g.

7.1 Reaction of 1[SbF₆] with CH₂=CHO⁶Bu (2a). An NMR tube was charged with 1[SbF₆] (14.9 mg, 0.0178 mmol) and 2a (0.0325 mmol). CD₂Cl₂ was added by vacuum transfer at -196 °C. ¹H NMR spectrum at -60 °C confirmed the formation of 3a[SbF₆]. The tube was kept at 0 °C for 10 min. All the volatiles were evacuated and CD₂Cl₂ (0.4 mL) was added by vacuum transfer at -196 °C. The tube was warmed to 0 °C and monitored by ¹H NMR periodically. Complex 3a[SbF₆] was converted to 4a[SbF₆] and 5a[SbF₆]. The NMR resonances of 4a[SbF₆] and 5a[SbF₆] is very similar to 4a[B(C₆F₅)₄] and 5a[B(C₆F₅)₄]. The first-order rate constant for the consumption of 3a[SbF₆] measured by the disappearance of the PdMe ¹H NMR resonance is $k_{insert, 3c} = 3.29(2) \times 10^{-5} \text{ s}^{-1}$ at 0 °C. After 3a[SbF₆] is fully consumed, the tube was warmed to 20 °C and monitored by ¹H NMR periodically. NMR analysis showed a mixture of 4a[SbF₆] (66%), 5a[SbF₆] (22%) and 6[SbF₆] (12%) was present after 5min. The first-order rate constant for the consumption of 3a[SbF₆] measured by the

disappearance of the PdMe ¹H NMR resonance is $k_{\text{insert, 3c}} = 3.29 (2) \times 10^{-5} \text{ s}^{-1}$ at 0 °C and $k_{\text{insert, 3c}} = 6.33 (5) \times 10^{-4} \text{ s}^{-1}$ at 20 °C. The first-order rate constant for consumption of the total of $\mathbf{4a}[\text{SbF}_6]$ and $\mathbf{5a}[\text{SbF}_6]$ measured by the disappearance of the PdCH₂CHMe resonance of $\mathbf{4a}[\text{SbF}_6]$ and the PdCMe₂ resonance of $\mathbf{5a}[\text{SbF}_6]$ is $k_{\beta\text{-OtBu, obs}} = 1.50(2) \times 10^{-5} \text{ s}^{-1}$ at 20 °C.

Figure 7.1. First-order consumption of $3a[SbF_6]$ at 0 °C.

Figure 7.2. First-order consumption of $3a[SbF_6]$ at 0 °C based on increase of the sum of $4a[SbF_6] + 5a[SbF_6]$. $B = ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 7.3. First-order consumption of $3a[SbF_6]$ at 20 °C.

Figure 7.4. First-order consumption of $3a[SbF_6]$ at 20 °C based on the increase of the sum of $4a[SbF_6] + 5a[SbF_6] + 6[SbF_6]$. $B = ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 7.5. First-order consumption of the sum of $4a[SbF_6] + 5a[SbF_6]$ at 20 °C.

Figure 7.6. First-order consumption of the sum of 4a[SbF₆] + 5a[SbF₆] at 20 °C based on increase of **6**[SbF₆]. $B = ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

7.2 Reaction of 1[SbF₆] with CH₂=CHOEt (2b). An NMR tube was charged with **1**[SbF₆] (14.9 mg, 0.0178 mmol) and **2b** (0.0325 mmol). CD₂Cl₂ was added by vacuum transfer at -196 °C. A ¹H NMR spectrum at -60 °C confirmed the formation of **3b**[SbF₆]. The tube was kept at 0 °C for 10 min. All the volatiles were evacuated and CD₂Cl₂ (0.4 mL) was added by vacuum transfer at -196 °C. The tube was warmed to 0 °C and monitored by ¹H NMR periodically. Complex 3b[SbF₆] was converted to 4b[SbF₆] and 5b[SbF₆]. The NMR resonances of $4b[SbF_6]$ and $5b[SbF_6]$ is very similar to $4b[B(C_6F_5)_4]$ and $5b[B(C_6F_5)_4]$. The first-order rate constant for the consumption of 3b[SbF₆] measured by the disappearance of the PdMe ¹H NMR resonance is $k_{\text{insert. }3c} = 8.41(6) \times 10^{-5} \text{ s}^{-1}$ at 0 °C. After **3b**[SbF₆] is fully consumed, the tube was warmed to 20 °C and monitored by ¹H NMR periodically. NMR analysis showed a mixture of **4b**[SbF₆] (13%), **5b**[SbF₆] (27%) and **6**[SbF₆] (60%) was present after 5min. The first-order rate constant for consumption of the total of $\bf 4a[SbF_6]$ and $\bf 5a[SbF_6]$ measured by the disappearance of the PdCH₂CHMe resonance of $\bf 4b[SbF_6]$ and the PdCMe₂ resonance of $\bf 5b[SbF_6]$ is $k_{\beta-OtBu,\,obs}=1.200(8)\times 10^{-3}~\rm s^{-1}$ at 20 °C. The first-order rate constant for the consumption of $\bf 3b[SbF_6]$ estimated by the disappearance of the PdMe ¹H NMR resonance is $k_{insert,\,3c}=\sim 2.7\times 10^{-3}~\rm s^{-1}$ at 20 °C (ca. 56% consumption after 5min).

Figure 7.7. First-order consumption of $3b[SbF_6]$ at 0 °C.

Figure 7.8. First-order consumption of $3b[SbF_6]$ at 0 °C based on increase of the sum of $4b[SbF_6] + 5b[SbF_6] + 6[SbF_6]$. $B = \ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 7.9. First-order consumption of the sum of $\mathbf{4b}[SbF_6] + \mathbf{5b}[SbF_6]$ at 0 °C. B = $\ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 7.10. First-order consumption of the sum of $\mathbf{4b}[SbF_6] + \mathbf{5b}[SbF_6]$ at 0 °C based on increase of $\mathbf{6}[SbF_6]$. B = $\ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 7.11. First-order consumption of the sum of $4b[SbF_6] + 5b[SbF_6]$ at 20 °C.

Figure 7.12. First-order consumption of the sum of $\mathbf{4b}[SbF_6] + \mathbf{5b}[SbF_6]$ at 20 °C based on increase of $\mathbf{6}[SbF_6]$. B = $\ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

7.3 Simulation of the concentration data for the reaction of 1[SbF₆] with 2b.

The first-order rate constant for the consumption of $3\mathbf{b}[\mathrm{SbF}_6]$ measured by the disappearance of the Pd Me^{-1} H NMR resonance is $k_{\mathrm{insert}, 3\mathbf{b}} = 8.41(6) \times 10^{-5} \, \mathrm{s}^{-1}$ at 0 °C. The first-order rate constant for consumption of the total of $4\mathbf{b}[\mathrm{SbF}_6]$ and $5\mathbf{b}[\mathrm{SbF}_6]$ measured by the disappearance of the PdCH₂CHMe resonance of $4\mathbf{b}[\mathrm{SbF}_6]$ and the PdC Me_2 resonance of $5\mathbf{b}[\mathrm{SbF}_6]$ is $k_{\beta-\mathrm{OtBu}, \mathrm{obs}} = 2.65(3) \times 10^{-5} \, \mathrm{s}^{-1}$ at 0 °C. By using these two rate constants, simulation⁹ was performed to demonstrate the change in concentrations of $3\mathbf{b}[\mathrm{SbF}_6]$, $4\mathbf{b}[\mathrm{SbF}_6]$, $5\mathbf{b}[\mathrm{SbF}_6]$ and $6[\mathrm{SbF}_6]$ over time. The simulated data agree very well with the experimental data. Similarly, the comparison between the simulated data and the experimental data was carried out for the $\mathrm{B}(\mathrm{C}_6\mathrm{F}_5)_4$ anion, which also shows good agreement.

Based on the simulation results, it is concluded that the rate constants determined from the experimental data are very reliable. The comparison of the $k_{\text{insert}, 3b}$ between SbF₆ anion

and $B(C_6F_5)_4$ anion both at 0 °C and at 20 °C showed that the anion only has minimal affect on the insertion rate (Table 2, 3). The similar comparison of the $k_{insert, 3a}$ gave the same conclusion.

Figure 7.13. The experimental and simulated concentration vs time plot for SbF₆ anion. Series 1-3 are the simulated concentration of **3b**, **4b**+**5b** and **6** over time, by using $k_{insert,3} = 8.41 \times 10^{-5} \,\mathrm{s}^{-1}$, and $k_{\beta-OR, \, obs} = 2.65 \times 10^{-5} \,\mathrm{s}^{-1}$. Series 4-6 are the experimental concentration of **3b**, **4b**+**5b** and **6** over time.

Figure 7.14. The experimental and simulated concentration vs time plot for B(C₆F₅)₄ anion. Series 1-3 are the simulated concentration of **3b**, **4b**+**5b** and **6** over time, by using $k_{insert,3} = 8.01 \times 10^{-5} \, \text{s}^{-1}$, and $k_{\beta-OR, \, obs} = 1.94 \times 10^{-5} \, \text{s}^{-1}$. Series 4-6 are the experimental concentration of **3b**, **4b**+**5b** and **6** over time.

7.4 Reaction of 1[SbF₆] with CH₂=CHOSiMe₃ (2c). An NMR tube was charged with 1[SbF₆] (14.9 mg, 0.0178 mmol) and 2c (0.027 mmol). CD₂Cl₂ was added by vacuum transfer at -196 °C. A ¹H NMR spectrum at -60 °C confirmed the formation of 3c[SbF₆]. The tube was warmed to 0 °C and monitored by ¹H NMR periodically. Complex 3c[SbF₆] was converted to 5c[SbF₆]. The NMR resonances of 5c[SbF₆] is very similar to 5c[B(C₆F₅)₄]. The first-order rate constant for the consumption of 3c[SbF₆] measured by the disappearance of the PdMe ¹H NMR resonance is $k_{\text{insert}, 3c} = 1.645(7) \times 10^{-4} \text{ s}^{-1}$ at 0 °C. After 3c[SbF₆] is fully consumed, the tube was warmed to 20 °C and monitored by ¹H NMR periodically. Complex 5c[SbF₆] was converted to 6[SbF₆]. The first-order rate constant for consumption of 5c[SbF₆] measured by the disappearance of the PdCMe₂ resonance is $k_{\text{B-OSiMe3, obs}} = 1.11(2) \times 10^{-4} \text{ s}^{-1}$ at 20 °C.

Figure 7.15. First-order consumption of $3c[SbF_6]$ at 0 °C.

Figure 7.16. First-order consumption of $3c[SbF_6]$ at 0 °C based on increase of $4c[SbF_6]$. B = $ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 7.17. First-order consumption of $5c[SbF_6]$ at 20 °C.

Figure 7.18. First-order consumption of $\mathbf{5c}[SbF_6]$ at 20 °C based on increase of $\mathbf{6}[SbF_6]$. B = $\ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

7.5 Reaction of 1[SbF₆] with CH₂=CHOSiMe₂Ph (2d). A NMR tube was charged with (α -diimine)PdMeCl (16.3 mg, 29.0 μ mol), AgSbF₆ (10 mg, 29.1 μ mol) and CH₂=CHOSiMe₂Ph (5.2 mg, 29.2 μ mol), and CD₂Cl₂ (0.4 mL) was added by vacuum transfer S50

at -78 °C. The tube was shaken to dissolve and thoroughly mix the components. A 1 H NMR spectrum at -60 °C confirmed the formation of $3d[SbF_{6}]$. The tube was warmed to 0 °C and monitored by 1 H NMR periodically. Complex $3d[SbF_{6}]$ was converted to $5d[SbF_{6}]$. Key NMR Data for $5d[SbF_{6}]$: 1 H NMR (CD₂Cl₂) δ 3.05 (m, 4H, CHMe₂), 2.26 (s, 3H, N=CMe), 2.21 (s, 3H, N=CMe), 1.46 (d, J=7, 6H, CHMe₂), 1.38 (d, J=7, 6H, CHMe₂), 1.30 (d, J=7, 6H, CHMe₂), 1.18 (d, J=7, 6H, CHMe₂), 0.38 (s, 6H, PdCMe₂(OSiMe₂Ph)), 0.19(s, 6H, SiMe₂). The first-order rate constant for the consumption of $3d[SbF_{6}]$ measured by the disappearance of the PdMe 1 H NMR resonance is $k_{insert, 3d} = 3.18(5) \times 10^{-4} \text{ s}^{-1}$ at 0 °C. After $3d[SbF_{6}]$ is fully consumed, the tube was warmed to 20 °C and monitored by 1 H NMR periodically. Complex $5d[SbF_{6}]$ was converted to $6[SbF_{6}]$. The first-order rate constant for consumption of $5d[SbF_{6}]$ measured by the disappearance of the PdCMe₂ resonance is $k_{\beta-OSiMe2Ph, obs} = 1.56(3) \times 10^{-4} \text{ s}^{-1}$ at 20 °C.

Figure 7.19. First-order consumption of $3d[SbF_6]$ at 0 °C.

Figure 7.20. First-order consumption of $3d[SbF_6]$ at 0 °C based on increase of $4d[SbF_6]$. B = $ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 7.21. First-order consumption of $5d[SbF_6]$ at 20 °C.

Figure 7.22. First-order consumption of $5d[SbF_6]$ at 20 °C based on the increase of $6[SbF_6]$. B = $ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

7.6 Reaction of 1[SbF₆] with CH₂=CHOSiMePh₂ (2e). A NMR tube was charged with $(\alpha\text{-diimine})$ PdMeCl (16.3 mg, 29.0 µmol), AgSbF₆ (10 mg, 29.1 µmol) and CH₂=CHOSiMePh₂ (6.9 mg, 29.1 µmol), and CD₂Cl₂ (0.4 mL) was added by vacuum transfer at -78 °C. The tube was shaken to dissolve and thoroughly mix the components. A ¹H NMR spectrum at -60 °C confirmed the formation of $3e[SbF_6]$. The tube was warmed to 0 °C and monitored by ¹H NMR periodically. Complex $3e[SbF_6]$ was converted to $5e[SbF_6]$. Key NMR Data for $5e[SbF_6]$: ¹H NMR (CD₂Cl₂) δ 3.06 (m, 4H, CHMe₂), 2.25 (s, 3H, N=CMe), 2.18 (s, 3H, N=CMe), 1.37 (d, J=7, 6H, CHMe₂), 1.30 (d, J=7, 6H, CHMe₂), 1.25 (d, J=7, 6H, CHMe₂), 1.16 (d, J=7, 6H, CHMe₂), 0.57 (s, 3H, SiMe), 0.34 (s, 6H, PdCMe₂(OSiMePh₂)). The first-order rate constant for the consumption of $3e[SbF_6]$ measured by the disappearance of the PdMe ¹H NMR resonance is $k_{insert, 3d} = 5.22(7) \times 10^{-4}$ s⁻¹ at 0 °C. After $3e[SbF_6]$ is fully consumed, the tube was warmed to 20 °C and monitored by ¹H NMR periodically. Complex

5e[SbF₆] was converted to **6**[SbF₆]. The first-order rate constant for consumption of **5e**[SbF₆] measured by the disappearance of the PdC Me_2 resonance is $k_{\beta\text{-OSiMePh2}, \text{ obs}} = 2.46(4) \times 10^{-4} \text{ s}^{-1}$ at 20 °C.

Figure 7.23. First-order consumption of **3e**[SbF₆] at 0 °C.

Figure 7.24. First-order consumption of $3e[SbF_6]$ at 0 °C based on increase of 4e. B = $ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 7.25. First-order consumption of $5e[SbF_6]$ at 20 °C.

	$ln[([B]_{\infty}-[B])/$	$[B]_{\infty}$ - $[B]/$
Time(s)	$([B]_{\infty}\text{-}[B]_0)]$	$[B]_{\infty}$ - $[B]_0$
0	0	1
600	-0.1161	0.89039
1500	-0.35266	0.702817
2700	-0.60775	0.544577
5100	-1.08215	0.338865
9300	-2.10723	0.121575

Figure 7.26. First-order consumption of $\mathbf{5e}[SbF_6]$ at 20 °C based on the increase of $\mathbf{6}[SbF_6]$. B = $\ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

7.7 Reaction of 1[SbF₆] with CH₂=CHOSiPh₃ (2f). A NMR tube was charged with $(\alpha$ -diimine)PdMeCl (16.3 mg, 29.0 µmol), AgSbF₆ (10 mg, 29.1 µmol) and CH₂=CHOSiPh₃ (8.8 mg, 29.1 µmol), and CD₂Cl₂ (0.4 mL) was added by vacuum transfer at -78 °C. The tube was shaken to dissolve and thoroughly mix the components. A ¹H NMR spectrum at -60 °C confirmed the formation of 3f[SbF₆]. The tube was warmed to 0 °C and monitored by ¹H NMR periodically. Complex 3f[SbF₆] was converted to 5f[SbF₆]. The NMR resonances of 5f[SbF₆] is very similar to 5f[B(C₆F₅)₄]. The first-order rate constant for the consumption of 3f[SbF₆] measured by the disappearance of the H_{trans} ¹H NMR resonance is $k_{insert, 3f} = 8.06(6) \times 10^{-4} \text{ s}^{-1}$ at 0 °C. After 3f[SbF₆] is fully consumed, the tube was warmed to 20 °C and monitored by ¹H NMR periodically. Complex 5f[SbF₆] was converted to 6[SbF₆]. The first-order rate constant for consumption of 5f[SbF₆] measured by the disappearance of the PdC Me_2 resonance is k_{β -OSiMePh₂, obs = 3.78(1) × 10⁻⁴ s⁻¹ at 20 °C.

Figure 7.27. First-order consumption of $3f[SbF_6]$ at 0 °C.

Figure 7.28. First-order consumption of $3f[SbF_6]$ at 0 °C based on increase of 4. B = $ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

Figure 7.29. First-order consumption of $\mathbf{5f}[SbF_6]$ at 20 °C.

Figure 7.30. First-order consumption of **5f**[SbF₆] at 20 °C based on increase of **6**[SbF₆]. B = $ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_{0})].$

7.8 Insertion of [(α -diimine)PdMe(CH₂=CHOPh)][SbF₆] (3g[SbF₆]). An NMR tube was charged with 1[SbF₆] (14.6 mg, 0.0176 mmol) and 1g (0.043 mmol). CD₂Cl₂ was added by vacuum transfer at -196 °C. The tube was warmed to 0 °C and monitored by ¹H NMR S58

periodically. Complex $3g[SbF_6]$ was cleanly converted to $6[SbF_6]$. No intermediates were detected. The first-order rate constant for the consumption of $3g[SbF_6]$ measured by the disappearance of the H_{trans} ¹H NMR resonance is $k_{insert, 3e} = 1.50(4) \times 10^{-3}$ s⁻¹ at 0 °C.

Figure 7.31. First-order consumption of $3g[SbF_6]$ at 0 °C.

Figure 7.32. First-order consumption of $3g[SbF_6]$ at 0 °C based on the increase of $6[SbF_6]$. B = $ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)]$.

7.9 Construction of the energy diagram for competitive binding of vinyl ethers and insertion of 3a-g (Figure 1 in manuscript).

The competitive binding of ethylene and CH_2 =CHOR (**2a-c**) (eq 1) was quantified by measuring $K_{2/\text{ethylene}} = [3][CH_2$ = $CH_2][(\alpha\text{-diimine})PdMe(CH_2$ = $CH_2)^+]^{-1}[2]^{-1}$. The $K_{2\mathbf{a}/2\mathbf{c}}$ was determined according to equation i-iii. $K_{2\mathbf{b}/2\mathbf{c}}$ was determined in an analogous manners and the results are shown in Tables 2 and 3.

$$K_{2a/\text{ethylene}} = [3a][CH_2 = CH_2][(\alpha - \text{diimine})PdMe(CH_2 = CH_2)^{+}]^{-1}[2a]^{-1}$$
 (i)

$$K_{2c/\text{ethylene}} = [3c][CH_2 = CH_2][(\alpha - \text{diimine})PdMe(CH_2 = CH_2)^{+}]^{-1}[2c]^{-1}$$
 (ii)

$$K_{2a/2c} = [3a][2c][3c]^{-1}[2a]^{-1} = K_{2a/ethylene}/K_{2c/ethylene}$$
 (iii)

 ΔG for (α -diimine)PdMe(CH₂=CHOR)⁺ (**3a-g**) versus **3c** was determined by equation (iv).

$$\Delta G = -RT \ln K \tag{iv}$$

The free energy barrier for the insertion of $\mathbf{3a}$ - \mathbf{g} (ΔG^{\neq}) was calculated by Erying equation (v). The results are compared in Figure 1.

$$\Delta G^{\neq} = -RT \ln(k_{\text{insert},3} h/k_{\text{B}}T) \tag{v}$$

7.10 Insertion of

[{(2,6-iPr₂-C₆H₃)N=CAnCAn=N(2,6-iPr₂-C₆H₃)}PdMe(CH₂=CHOSiPh₃)][SbF₆] (3h) and **β-OSiPh**₃ elimination of 5h. **NMR** tube charged with was $\{(2,6^{-i}Pr_2-C_6H_3)N=C(An)-C(An)=N(2,6^{-i}Pr_2-C_6H_3)\}PdMeCl\ (19.2\ mg,\ 29.0\ \mu mol),\ AgSbF_6\}$ (10 mg, 29.1 μmol) and CH₂=CHOSiPh₃ (8.8 mg, 29.1 μmol), and CD₂Cl₂ (0.4 mL) was added by vacuum transfer at -78 °C. The tube was shaken to dissolve and thoroughly mix the components. NMR spectra at 23 °C showed that 3h[SbF₆] (90 %) had formed. Key NMR Data for **5d**: ¹H NMR (CD₂Cl₂, 23 °C) δ 8.20 (d, J = 8, 1H, An: H_p), 8.16 (d, J = 8, 1H, An: H_p·), 7.58-7.25 (m, 23 H, An: H_m , $H_{m'}$, 6 H_{arvl} , 15 H_{arvl} from SiPh₃), 6.58 (d, J = 8, 2H, An: H_o), 3.35 (m, 2H, CHMe₂), 3.16 (m, 2H, CHMe₂), 1.32 (d, J = 7, 6H, CHMe₂), 1.14 (d, J = 7, 6H, $CHMe_2$), 0.98 (d, J = 7, 6H, $CHMe_2$), 0.88 (d, J = 7, 6H, $CHMe_2$), 0.47 (s, 6H, PdCMe₂(OSiPh₃)). ¹³C NMR (CD₂Cl₂, -20 °C) data: δ171.8 (N=CMe), 168.8 (N=CMe), 141.7 (CH₂=CHOSiPh₃), 144.9, 143.3, 142.9, 138.0, 137.3, 135.1, 135.0, 133.4, 132.9, 131.8, 131.4, 129.8, 129.5, 128.8, 128.6, 128.1, 126.3, 126.1, 125.6, 125.5, 125.3 and 124.8 (An 4 quaternary $C, C_o, C_o', C_m, C_m', C_p, C_p'; Ar, Ar' C_{ipso}, C_{ipso}', C_o, C_o', C_m, C_m', C_p, C_p'; SiPh C_{ipso}, C_o, C_m, C_p,$, 87.9 (PdCMe₂(OSiPh₃)), 29.5 (CHMe₂), 29.2 (CHMe₂), 26.4, 24.7, 23.4, 23.2 and 23.1 (4) $CHMe_2$ and $PdCMe_2(OSiPh_3)$).

The first-order rate constant for the consumption of $[\{(2,6^{-i}Pr_2-C_6H_3)N=CAnCAn=N(2,6^{-i}Pr_2-C_6H_3)\}PdMe(CH_2=CHOSiPh_3)][SbF_6] \ measured by the disappearance of the H_{trans} 1H NMR resonance is $k_{insert,3h}=1.98(2)\times10^{-4}$ s$^{-1}$ at 0 $^{\circ}C$. After <math display="block"> [\{(2,6^{-i}Pr_2-C_6H_3)N=CAnCAn=N(2,6^{-i}Pr_2-C_6H_3)\}PdMe(CH_2=CHOSiPh_3)][SbF_6] \ is fully consumed, the tube was warmed to 20 $^{\circ}C$ and monitored by ^{1}H NMR periodically. Complex$

[{(2,6-ⁱPr₂-C₆H₃)N=CAnCAn=N(2,6-ⁱPr₂-C₆H₃)}PdCMe₂(OSiPh₃)][SbF₆] was converted to **6**[SbF₆]. The first-order rate constant for consumption of [{(2,6-ⁱPr₂-C₆H₃)N=CAnCAn=N(2,6-ⁱPr₂-C₆H₃)}PdCMe₂(OSiPh₃)][SbF₆] (**5h**) measured by the disappearance of the PdC Me_2 resonance is k_{β -OSiPh₃, obs = 1.37(1) × 10⁻⁴ s⁻¹ at 20 °C.

Figure 7.33. First-order consumption of **3h** at 0 °C.

Figure 7.34. First-order consumption of **3h** at 0 °C based on increase of insertion product. $B = ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)].$

 $\label{eq:Figure Figure 7.35.} First-order consumption of $$ [\{(2,6^{-i}Pr_2-C_6H_3)N=CAnCAn=N(2,6^{-i}Pr_2-C_6H_3)\}PdCMe_2(OSiPh_3)][SbF_6][SbF_6]$ at 20 °C. $$$

Figure 7.36. First-order consumption of $[\{(2,6^{-i}Pr_2-C_6H_3)N=CAnCAn=N(2,6^{-i}Pr_2-C_6H_3)\}PdCMe_2(OSiPh_3)][SbF_6][SbF_6] \ at \ 20 \ ^{\circ}C$ based on increase of the allyl product. $B=ln[([B]_{\infty}-[B])/([B]_{\infty}-[B]_0)].$

7.11 Insertion of [{(4-Me-C₆H₅)N=CMeCMe=N(4-Me-C₆H₅)}PdMe(CH₂=CHOSiPh₃)][SbF₆] (3i). The first-order rate constant for the consumption of 3i measured by the disappearance of the H_{trans} 1 H NMR resonance is $k_{\text{insert, 3i}} = 1.76(4) \times 10^{-4} \text{ s}^{-1}$ at 0 °C.

$[\mathbf{A}]/[\mathbf{A}]0$	Time(s)
0	0
-0.32249	2100
-0.88403	5220
-1.37665	7860
	0 -0.32249 -0.88403 -1.37665

Figure 7.37. First-order consumption of 3i at 0 °C.

8. X-Ray Crystallography.

8.1 [(α-diimine)Pd(η³-C₃H₅)][B(C₆F₅)₄](6[B(C₆F₅)₄]). Single crystals of 6[B(C₆F₅)₄] were obtained by slow diffusion of hexanes into the concentrated CH₂Cl₂ solution at room temperature. The molecular structure of 6[B(C₆F₅)₄] was determined by X-ray diffraction and is shown in Figure 8.1 and the crystallographic data are summarized in Table 8.1. Data were collected on a Bruker Smart Apex diffractometer using Mo Kα radiation (0.71073 Å). Direct methods were used to locate The Pd atom as well as many C atoms from the E-map. Repeated difference Fourier maps allowed recognition of all expected non-H atoms. Following anisotropic refinement of all non-hydrogen atoms, ideal H atom positions were calculated. Final refinement was anisotropic for Pd, N, B F and C and isotropic-riding for H atoms. Positional disorder was apparent for C29, C30 and C31. C30 was spit into two atoms, C30A and C30B each with occupancies of 0.5. C30A and C30B were refined as isotropic atoms while the displacement parameters for C29 and C31 showed elongation due to the positional disorder. No other anomalous bond lengths or thermal parameters were noted. All ORTEP diagrams have been drawn with 50% probability ellipsoids.

Figure 8.1. Molecular structure of $6[B(C_6F_5)_4]$. Hydrogen atoms and the anion are omitted for clarity.

Table 8.1. Summary of X-Ray Diffraction Data for $6[B(C_6F_5)_4]$.

formula	$C_{31}H_{45}N_2Pd + C_{24}BF_{20}$
formula weight	1226.10 (including solvent)
crystal system	Monoclinic
space group	$P2_1/c$
a (Å)	15.922(3)
b (Å)	20.076(4)
c (Å)	19.176(3)
β (°)	121.573(10)
$V(\text{Å}^3)$	5222.3(16)
Z	4
T(K)	100
crystal color, habit	yellow, fragment
GOF on F^2	1.018
R indices $[I > 2\sigma(I)]^a$	R1 = 0.0435, $wR2 = 0.0972$
R indices (all data) ^a	R1 = 0.0664, $wR2 = 0.1042$
${}^{a}R1 = \Sigma F_{o} - F_{c} /\Sigma ^{3}$ $bP]^{-1}$	F_o ; wR2 = $[\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$, where $w = q[\sigma^2(F_o^2) + (aP)^2 +$

9. DFT Calculations.

9.1 DFT studies of the structure of 4a and 5a. DFT studies at the B3LYP level using the 6-31G* (for C, H, N, O) and Lanl2DZ (for Pd) basis sets provide additional evidence for the O-chelated structures in 4a and 5a. The optimized structures of 4a and 5a are shown in Figure 9.1. The calculated Pd-O distances are 2.19 Å (4a) and 2.15 Å (5a), which are typical for Pd(II)-OR₂ distances. DFT studies show that the energy difference between 4a and 5a is

small ($E_{4a}-E_{5a}=0.2\pm1.0$ kcal/mol), which is consistent with the fact that both isomers are observed.

Figure 9.1. Optimized structures of the 4a and 5a cations. Hydrogens are omitted.

9.2 DFT studies of the structure of 4c and 5c.

Figure 9.2. Optimized structure of the $(\alpha$ -diimine)Pd{CH₂CH(OSiMe₃)CH₃})⁺ (**4c**) cation.

Figure 9.3. Optimized structure of the $(\alpha$ -diimine)Pd{CMe₂(OSiMe₃)})⁺ (**5c**) cation.

10. NMR Spectra for Cationic Polymers and Kinetics Studies.

10. 1 Spectra of -[CH2CH(O^tBu)]_n- homopolymer.

Figure 10-1a. ¹H NMR of -[CH₂CH(O^tBu)]_n- homopolymer (CDCl₃): full spectrum.

Figure 10-1b. ¹H NMR of -[CH₂CH(O^tBu)]_n- homopolymer (CDCl₃): vertical expansion.

Figure 10-1c. 1H NMR of $-[CH_2CH(O^tBu)]_n$ - homopolymer (CDCl₃): expansion of the δ 6.0-3.0 region.

Figure 10-1d. COSY NMR of -[CH₂CH(O^tBu)]_n- homopolymer (CDCl₃): expansion of the δ 6.0-0.7; 6.0-0.7 region.

Figure 10-1e. ¹³C NMR of -[CH₂CH(O^tBu)]_n- homopolymer (CDCl₃): full spectrum.

Figure 10-1f. ¹³C NMR of -[CH₂CH(O^tBu)]_n- homopolymer (CDCl₃): expansion of the δ 75-65 region. The sharp signal at δ 70.6 is from HO^tBu.

Figure 10-1g. ¹³C NMR of -[CH₂CH(O^tBu)]_n- homopolymer (CDCl₃): expansion of the δ 50-40 region. The sharp signal at δ 31.0 is from HO^tBu.

Figure 10-1h. 13 C NMR of -[CH₂CH(O^tBu)]_n- homopolymer (CDCl₃): expansion of the δ 35-25 region.

Figure 10-2a. ¹H NMR of -[CH₂CH(OSiMe₃)]_n- homopolymer (CDCl₃): full spectrum.

Figure 10-2b. ¹H NMR of -[CH₂CH(OSiMe₃)]_n- homopolymer (CDCl₃): vertical expansion.

Figure 10-2c. ¹H NMR of -[CH₂CH(OSiMe₃)]_n- homopolymer (CDCl₃): expansion of the δ 4.3-3.4 region.

Figure 10-2d. ¹H NMR of -[CH₂CH(OSiMe₃)]_n- homopolymer (CDCl₃): expansion of the δ 1.8-0.5 region.

Figure 10-2e. 1 H NMR of -[CH₂CH(OSiMe₃)]_n- homopolymer (CDCl₃): expansion of the δ 0.3 - -0.1 region.

Figure 10-2f. ¹³C NMR of -[CH₂CH(OSiMe₃)]_n- homopolymer (CDCl₃): full spectrum.

Figure 10-2g. 13 C NMR of -[CH₂CH(OSiMe₃)]_n- (CDCl₃): expansion of the δ 75-60 region.

Figure 10-2h. 13 C NMR of -[CH₂CH(OSiMe₃)]_n- homopolymer (CDCl₃): expansion of the δ 50-40 region.

Figure 10-2i. 13 C NMR of -[CH₂CH(OSiMe₃)]_n- homopolymer (CDCl₃): expansion of the δ 5 - -5 region.

10.3 Selected ¹H NMR spectra for CH₂=CHO^tBu case:

[(α -diimine)Pd{CMe₂(O^tBu)}][B(C₆F₅)₄] (**5b**) at 0 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 5.1 and Figure 5.2.

Figure 10-3b. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHO}^t\text{Bu})][B(C_6F_5)_4]$ (3a) at 0 °C: expansion of δ 0.8-0.1 . The peak at 0.35 is $[\{(\alpha\text{-diimine})\text{PdMe}\}_2(\mu\text{-Cl})][B(C_6F_5)_4]$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 5.1 and Figure 5.2.

Figure 10-3c. Selected for first-order consumption spectra the of $[(\alpha\text{-diimine})Pd\{CH_2CHMe(O^tBu)\}][B(C_6F_5)_4]$ **(4b)** and $[(\alpha\text{-diimine})Pd\{CMe_2(O^tBu)\}][B(C_6F_5)_4]$ (**5b**) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 5.5 and Figure 5.6.

Figure 10-3d. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})Pd\{CH_2CHMe(O^tBu)\}][B(C_6F_5)_4]$ (4b) and [(α -diimine)Pd{CMe₂(O^tBu)}][B(C₆F₅)₄] (**5b**) at 20 °C: expansion of δ 0.8-0.1. The peak at ca. 0.4 is $[\{(\alpha\text{-diimine})PdMe\}_2(\mu\text{-Cl})][B(C_6F_5)_4]$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 5.5 and Figure 5.6.

Figure 10-3e. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHO}^t\text{Bu})][\text{SbF}_6]$ (**3a**) at 0 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.1 and Figure 7.2.

Figure 10-3f. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHO}^t\text{Bu})][\text{SbF}_6]$ (3a) at 0 °C: expansion of δ 0.9-0.1. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.1 and Figure 7.2.

Figure 10-3g. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CH}_2\text{CHMe}(\text{O}^t\text{Bu})\}][\text{SbF}_6]$ (4a) and $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{O}^t\text{Bu})\}][\text{SbF}_6]$ (5a) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.5 and Figure 7.6.

Figure 10-3h. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CH}_2\text{CHMe}(\text{O}^t\text{Bu})\}][\text{SbF}_6]$ (4a) and $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{O}^t\text{Bu})\}][\text{SbF}_6]$ (5a) at 20 °C: expansion of δ 0.9-0.1. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.5 and Figure 7.6.

10.4 Selected ¹H NMR spectra for CH₂=CHOEt case:

Figure 10-4a. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOEt})][B(C_6F_5)_4]$ (3b) at 0 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.1 and Figure 6.2.

Figure 10-4b. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOEt})][B(C_6F_5)_4]$ (**3b**) at 0 °C: expansion of δ 0.8-0.1. The peak at 0.35 is $[\{(\alpha\text{-diimine})\text{PdMe}\}_2(\mu\text{-Cl})][B(C_6F_5)_4]$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.1 and Figure 6.2.

Figure 10-4c. Selected for the first-order spectra consumption of $[(\alpha\text{-diimine})Pd\{CH_2CHMe(OEt)\}][B(C_6F_5)_4]$ (4b) and $[(\alpha\text{-diimine})Pd\{CMe_2(OEt)\}][B(C_6F_5)_4]$ (**5b**) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.5 and Figure 6.6.

Figure Selected 10-4d. spectra for the first-order consumption of $[(\alpha\text{-diimine})Pd\{CH_2CHMe(OEt)\}][B(C_6F_5)_4]$ (4b) and [(α -diimine)Pd{CMe₂(OEt)}][B(C₆F₅)₄] (**5b**) at 20 °C: expansion of δ 0.8-0.1. The peak at 0.42 is $[\{(\alpha\text{-diimine})PdMe\}_2(\mu\text{-Cl})][B(C_6F_5)_4]$. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.5 and Figure 6.6.

Figure 10-4e. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOEt})][\text{SbF}_6]$ (**3b**) at 0 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.7 and Figure 7.8.

Figure 10-4f. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOEt})][\text{SbF}_6]$ (**3b**) at 0 °C: expansion of δ 0.8-0.1. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.7 and Figure 7.8.

Figure 10-4g. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CH}_2\text{CHMe}(\text{OEt})\}][\text{SbF}_6]$ (**4b**) and $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OEt})\}][\text{SbF}_6]$ (**5b**) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.11 and Figure 7.12.

Figure 10-4h. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CH}_2\text{CHMe}(\text{OEt})\}][\text{SbF}_6]$ (**4b**) and $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OEt})\}][\text{SbF}_6]$ (**5b**) at 20 °C: expansion of δ 0.8-0.1. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 7.11 and Figure 7.12.

10. 5 Selected ¹H NMR spectra for CH₂=CHOSiMe₃ case:

Figure 10-5a. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOSiMe}_3)][\text{SbF}_6]$ (3c) at 0 °C: expansion of δ 0.8-0.1. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.15 and Figure 6.16.

Figure 10-5b. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOSiMe}_3)][\text{SbF}_6]$ (**3c**) at 0 °C: expansion of δ 0.8 - -0.2. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.15 and Figure 6.16.

Figure 10-5c. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiMe}_3)\}][\text{SbF}_6]$ (5c) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.17 and Figure 6.18.

Figure 10-5d. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiMe}_3)\}][\text{SbF}_6]$ (**5c**) at 20 °C: expansion of δ 0.8 - -0.2. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.17 and Figure 6.18.

Figure 10-5e. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiMe}_3)\}][B(C_6F_5)_4]$ (5c) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows the conversion of Me₃SiOH to Me₃SiOSiMe₃. For kinetics analysis see Figure 6.7 and Figure 6.8.

Figure 10-5f. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiMe}_3)\}][B(C_6F_5)_4]$ (**5c**) at 20 °C: expansion of δ 0.8 - -0.2. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows the conversion of Me₃SiOH to Me₃SiOSiMe₃. For kinetics analysis see Figure 6.7 and Figure 6.8.

10.6 Selected ¹H NMR spectra for CH₂=CHSiMe₂Ph case.

Figure 10-6a. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOSiMe}_2\text{Ph})][\text{SbF}_6]$ (3d) at 0 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.19 and Figure 6.20.

Figure 10-6b. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOSiMe}_2\text{Ph})][\text{SbF}_6]$ (**3d**) at 0 °C: expansion of δ 0.8-0.1. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.19 and Figure 6.20.

Figure 10-6c. Selected spectra for the first-order consumption of [(α-diimine)Pd{CMe₂(OSiMe₂Ph)}][SbF₆] (**5d**) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows the conversion of PhMe₂SiOH to PhMe₂SiOSiMe₂Ph. For kinetics analysis see Figure 6.21 and Figure 6.22.

Figure 10-6d. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiMe}_2\text{Ph})\}][\text{SbF}_6]$ (**5d**) at 20 °C: expansion of δ 0.8-0.1. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows the conversion of PhMe₂SiOH to PhMe₂SiOSiMe₂Ph. For kinetics analysis see Figure 6.21 and Figure 6.22.

Figure 10-6e. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiMe}_2\text{Ph})\}][B(\text{C}_6\text{F}_5)_4]$ (5d) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows the conversion of PhMe₂SiOH to PhMe₂SiOSiMe₂Ph. For kinetics analysis see Figure 6.9 and Figure 6.10.

Figure 10-6f. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiMe}_2\text{Ph})\}][B(\text{C}_6\text{F}_5)_4]$ (**5d**) at 20 °C: expansion of δ 0.8-0.1. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows the conversion of PhMe₂SiOH to PhMe₂SiOSiMe₂Ph. For kinetics analysis see Figure 6.9 and Figure 6.10.

10.7 Selected ¹H NMR spectra for CH₂=CHSiMe₂Ph case.

Figure 10-7a. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOSiMePh}_2)][\text{SbF}_6]$ (3e) at 0 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.23 and Figure 6.24.

Figure 10-7b. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOSiMePh}_2)][\text{SbF}_6]$ (**3e**) at 0 °C: expansion of δ 0.8-0.1. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.23 and Figure 6.24.

Figure 10-7c. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiMePh}_2)\}][\text{SbF}_6]$ (5e) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.25 and Figure 6.26.

Figure 10-7d. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiMePh}_2)\}][\text{SbF}_6]$ (**5e**) at 20 °C: expansion of δ 0.8-0.1. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.25 and Figure 6.26.

Figure 10-7e. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiMePh}_2)\}][B(C_6F_5)_4]$ (**5e**) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows Ph₂MeSiOH does not convert to Ph₂MeSiOSiMePh₂. For kinetics analysis see Figure 6.11, Figure 6.12 and Figure 6.13.

Figure 10-7f. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiMePh}_2)\}][B(\text{C}_6\text{F}_5)_4]$ (**5e**) at 20 °C: expansion of δ 0.8-0.1. The bottom spectrum is the is the starting point of the reaction, the second to the bottom spectrum corresponds to ca. 50% completion and the second to the top spectrum corresponds to ca. 90% completion. The top spectrum shows Ph₂MeSiOH does not convert to Ph₂MeSiOSiMePh₂. For kinetics analysis see Figure 6.11, Figure 6.12 and Figure 6.13.

10.8 Selected ¹H NMR spectra for CH₂=CHSiPh₃ case:

Figure 10-8a. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOSiPh}_3)][\text{SbF}_6]$ (**3f**) at 0 °C: full spectra. The bottom spectrum is the starting point of the reaction at -60 °C, the middle spectrum corresponds to ca. 50% completion at 0 °C and the top spectrum corresponds to ca. 90% completion at 0 °C. For kinetics analysis see Figure 6.27 and Figure 6.28.

Figure 10-8b. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{PdMe}(\text{CH}_2=\text{CHOSiPh}_3)][\text{SbF}_6]$ (**3f**) at 0 °C: expansion of δ 0.8-0.1. The bottom spectrum is the starting point of the reaction at -60 °C, the middle spectrum corresponds to ca. 50% completion at 0 °C and the top spectrum corresponds to ca. 90% completion at 0 °C. For kinetics analysis see Figure 6.27 and Figure 6.28.

Figure 10-8c. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiPh}_3)\}][\text{SbF}_6]$ (5f) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.29 and Figure 6.30.

Figure 10-8d. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiPh}_3)\}][\text{SbF}_6]$ (5f) at 20 °C: expansion of δ 0.8-0.1. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.29 and Figure 6.30.

Figure 10-8e. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiPh}_3)\}][B(\text{C}_6\text{F}_5)_4]$ (5f) at 20 °C: full spectra. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.14 and Figure 6.15.

Figure 10-8f. Selected spectra for the first-order consumption of $[(\alpha\text{-diimine})\text{Pd}\{\text{CMe}_2(\text{OSiPh}_3)\}][B(\text{C}_6\text{F}_5)_4]$ (5f) at 20 °C: expansion of δ 0.8-0.1. The bottom spectrum is the is the starting point of the reaction, the middle spectrum corresponds to ca. 50% completion and the top spectrum corresponds to ca. 90% completion. For kinetics analysis see Figure 6.14 and Figure 6.15.

11 References

Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

¹ NMR tube experiments demonstrated that poly(vinyl trimethylsilyl ether) had formed prior to hydrolysis in methanol. ¹H NMR (C_6D_5Cl): δ 4.15 (br s, 1H, CH), 1.85 (br s, 2H, CH₂), 0.29 (br, 9H, SiMe₃).

² The CH_2 =CHOPh resonances of **2e** were broad at -60 °C.

³ Key NMR data for C₂H₅OH: ¹**H NMR** (CD₂Cl₂, 20 °C): δ 3.73 (d of q, J = 6, 7 Hz, 2H, OC H_2 CH₃), 1.71 (t, J = 6 Hz, 1H, OH), 1.17 (t, J = 6 Hz, 3H, OCH₂C H_3).

⁴ Key NMR data for Me₃SiOH: ¹H NMR (CD₂Cl₂, 20 °C): δ 2.57 ((b, SiO*H*), 0.14 (s, Si*Me*). Key NMR data for Me₃SiOSiMe₃: ¹H NMR (CD₂Cl₂, 20 °C): δ 0.07 (s, Si*Me*).

⁵ Key NMR data for PhMe₂SiOH: ¹**H NMR** (CD₂Cl₂, 20 °C): δ 2.45 ((b, SiO*H*), 0.34 (s, Si*Me*). Key NMR data for PhMe₂SiOSiMe₂Ph: ¹**H NMR** (CD₂Cl₂, 20 °C): δ 0.40 (s, Si*Me*).

⁶ Key NMR data for Ph₂MeSiOH: ¹**H NMR** (CD₂Cl₂, 20 °C): δ 2.51 ((b, SiO*H*), 0.66 (s, Si*Me*)

⁷ NMR data for Ph₃SiOH: ¹**H NMR** (CD₂Cl₂, 20 °C): δ 7.63 (t, H_{meta}), 7.44 (d, H_{ortho}), 7.39 (t, H_{para}), 2.87 (b, SiO*H*).

⁸ The α -diimine aromatic signal overlap with OSi Ph_3 signals.

⁹ The simulation was done by using Kintecus software. Ianni, J. *Kintecus* V3.8.

¹⁰ Complete citation for reference 73 in the paper.

¹¹ Pd-OR₂ distances in square planar Pd(II) complexes are in the range 2.11-2.20 Å. (a) Bei, X.; Uno, T.; Norris, J.; Turner, H. W.; Weinberg, W. H.; Guram, A. S. *Organometallics* **1999**, *18*, 1840. (b) Kim, Y.; Verkade, J. G. *J. Organomet. Chem.* **2003**, *669*, 32.