Supporting Information

Efficient self-sorting of a racemic tetra-urea calix[4]pyrrole into a single hetero-dimeric capsule

Marcos Chas, ${ }^{\dagger}$ Guzmán Gil-Ramírez, ${ }^{\dagger}$ Eduardo C. Escudero-Adán, ${ }^{\ddagger}$ Jordi BenetBuchholz, ${ }^{\ddagger}$ and Pablo Ballester ${ }^{*}{ }^{\circledR}$
ICREA and Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.
pballester@iciq.es
\section*{Contents for Electronic Supplementary Information}

Synthesis and characterization of the chiral tetraureas S2
Experimental procedures for the self-assembly of the capsules and their corresponding ${ }^{1} \mathrm{H}$ NMR spectra S3
${ }^{1} \mathrm{H}-{ }^{\mathbf{1}} \mathrm{H}$-NOESY spectrum of capsule $\mathbf{3}_{2} \subset R-1 \mathrm{~b}_{2}$ S11
${ }^{1} \mathrm{H}$ - ${ }^{1} \mathrm{H}$-NOESY spectrum of capsule $2 \subset R-1 \mathrm{~b}_{2}$ S12
CD spectra of capsules $\mathbf{3}_{2} \subset \mathbf{1 a} \bullet R-1 \mathrm{~b}, \mathbf{3}_{2} \subset \mathbf{1} \cdot \bullet S-1 \mathrm{~b}$ and urea $R-\mathbf{1 b}$ S13
Homology constructs of the capsules $(M \bullet R, P)-1 \bullet 1 \mathbf{b}$ and $(P \bullet R, M)-1 \bullet 1 \mathbf{b}$ S13
Details of the methodoly used to solve the X-ray structure of 2 $\subset 1$ a S14
X-ray structures of the hydrogen bonded belt formed by the eight ureas S14
CAChe minimized structures of the expected capsules resulting from the self- assembly of racemic 1b induced by encapsulation of 2 S15

[^0]
Synthesis and characterization of chiral tetraureas.

Scheme S1. Synthesis of the chiral urea S-2b.
(S)-(-)- $\boldsymbol{\alpha}$-Methylbenzyl urea (S-1b). Freshly prepared tetraaminocalix[4]pyrrole $\mathbf{4}^{\mathbf{1}}$ (58 $\mathrm{mg}, \quad 0.079 \mathrm{mmol})$ was dissolved in chloroform (10 mL) and (S)-(-)-1-(4Bromophenyl)ethyl isocyanate ($85 \mathrm{mg}, 0.378 \mathrm{mmol}$) was added via syringe. The resulting solution was left stirring under Argon at room temperature overnight. Then, 20 mL of methanol were added to the reaction mixture and the solvents were partially evaporated to 5 mL . The resulting white suspension was left standing for two hours and then filtrated to yield the urea S - $\mathbf{1 b}$ as a white solid. Yield $62 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.56(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 8.31(\mathrm{~s}, 4 \mathrm{H}), 7.51(\mathrm{~m}, 8 \mathrm{H}), 7.26(\mathrm{~d}, 8 \mathrm{H}), 7.18(\mathrm{~d}, 8 \mathrm{H}), 6.76$ (d, 8 H$), 6.55(\mathrm{~d}, 4 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.86(\mathrm{br} \mathrm{s}, 8 \mathrm{H}), 4.75(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{br} \mathrm{s}, 12 \mathrm{H}), 1.34$ (d, $12 \mathrm{H}, J=7.0 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta 154.7,145.3,143.3$, 139.1, 137.7, 131.6, 128.6, 127.5, 120.1, 117.7, 105.1, 48.6, 44.0, 23.4. $[\alpha]_{D}^{25}-95.8^{\circ}(c 1.0$, THF); HRMS (MALDI $+/[\mathrm{M}]^{+}$) calcd. for $\mathrm{C}_{84} \mathrm{H}_{80} \mathrm{Br}_{4} \mathrm{~N}_{12} \mathrm{O}_{4}{ }^{+}$: 1636.3153, found: 1636.2966.
$(\boldsymbol{R})-(+)$ - $\boldsymbol{\alpha}$-Methylbenzyl urea ($\boldsymbol{R} \mathbf{- 1 \mathbf { b }})$. Identical spectra data as obtained for $S \mathbf{- 1 b} .[\alpha]_{D}^{25}$ -91.3° (c 1.0, THF).

[^1]Self-assembly of homocapsule $\mathbf{2} \subset S$ - $\mathbf{1 b}_{2}$ (identical experimental and data for $2 \subset R$ $\mathbf{1 b}_{2}$)

Tetraurea S - $\mathbf{1 b}$ ($1.49 \mathrm{mg}, 0.906 \mu \mathrm{~mol}$) was suspended in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})$. To this suspension, $4,4^{\prime}$-Dipyridyl N, N '-dioxide dihydrate ($0.101 \mathrm{mg}, 0.453 \mu \mathrm{~mol}$) was added and the resulting suspension was sonicated for 2 minutes. Then, ${ }^{1} \mathrm{H}$ NMR was run (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 10.25(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 9.83(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 12 \mathrm{H}), 7.40-7.32(\mathrm{~m}$, 20 H), 7.16-7.09 (m, 12H), 7.07-6.95 (m, 12H), 6.32-6.18 (m, 16H), 6.18-6.07 (m, 16H), $6.05(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~m}, 4 \mathrm{H}), 4.76(\mathrm{~m}, 4 \mathrm{H}), 4.65(\mathrm{~m}, 2 \mathrm{H})$, 1.93 (br s, 12H), $1.84(\mathrm{br} \mathrm{s}, 12 \mathrm{H}), 1.68(\mathrm{~d}, 12 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.52(\mathrm{~d}, 12 \mathrm{H}, J=7.0 \mathrm{~Hz})$.

Figure S. 1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of capsule $\mathbf{2} \subset S-\mathbf{1 b}_{2}$.

Self-assembly of capsule $\mathbf{2} \subset(S, P \cdot R, M)-1 b_{2}$ under homogeneous conditions.

From preformed $\mathbf{2} \subset \mathbf{S} \mathbf{- 1} \mathbf{b}_{\mathbf{2}}$ and $\mathbf{2} \subset \boldsymbol{R} \mathbf{- 1}_{\mathbf{2}}^{\mathbf{2}}$ capsules: Equimolar quantities $(0.906 \mathrm{mmol}$ of each) of capsules $\mathbf{2} \subset S-\mathbf{1} \mathbf{b}_{2}$ and $\mathbf{2} \subset R-\mathbf{1} \mathbf{b}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL}$ each) were separately prepared according with the above experiment and mixed. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ was performed showing the proton signals corresponding to the mixture of capsules (both capsules being enantiomeric afforded the same spectrum). The solution was placed in an oil bath at 313 K for one week, resulting in the appearance of only a small proportion of the $\mathbf{2} \subset(S, P \cdot R, M)-\mathbf{1} \mathbf{b}_{2}$ heterocapsule (see figure S. 2).

Figure S. 2. (Bottom) ${ }^{1} \mathrm{H}$ NMR spectrum of an equimolar mixture of homomeric capsules $\mathbf{2} \subset S-\mathbf{1} \mathbf{b}_{\mathbf{2}}$ and $\mathbf{2} \subset R \mathbf{- 1} \mathbf{b}_{2}$. (Top) ${ }^{1} \mathrm{H}$ NMR spectrum of the same equimolar mixture heated at 313 K for 7 days. The proton signals marked with the @ sign correspond to the heterocapsule $\mathbf{2} \subset(S, P \cdot R, M)-\mathbf{1} \mathbf{b}_{\mathbf{2}}$.

Self-assembly of capsule $\mathbf{2} \subset(S, P \cdot R, M)-\mathbf{1 b}_{2}$ under heterogeneous conditions.
Tetraurea S - 1b $(0.82 \mathrm{mg}, 0.50 \mu \mathrm{~mol})$ and tetraurea $R-\mathbf{1 b}(0.82 \mathrm{mg}, 0.50 \mu \mathrm{~mol})$ were suspended in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. To this suspension, 4,4'-Dipyridyl N, N^{\prime}-dioxide dihydrate ($0.094 \mathrm{mg}, 0.50 \mu \mathrm{~mol}$) was added and the resulting suspension was sonicated for 2 minutes and complete dissolution occurs. Then, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ was run, resulting in the mixture of capsules shown in figure S. 3.

Figure S. 3. ${ }^{1}$ H NMR spectrum of the mixture of capsules obtained under heterogeneous conditions.

Self-assembly of capsule $\mathbf{2} \subset(S, P \cdot R, M)-\mathbf{1 b}_{\mathbf{2}}$ under heterogeneous conditions followed by the addition of THF.

Tetraurea S - 1b $(0.99 \mathrm{mg}, 0.60 \mu \mathrm{~mol})$ and tetraurea R-1b $(0.99 \mathrm{mg}, 0.60 \mu \mathrm{~mol})$ were suspended in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$. To this suspension, 4,4'-Dipyridyl N, N^{\prime}-dioxide dihydrate ($0.114 \mathrm{mg}, 0.60 \mu \mathrm{~mol}$) was added and the resulting suspension was sonicated for 2 minutes and complete dissolution occurs. ${ }^{1} \mathrm{H}$ NMR was run, showing the expected mixture of capsules (see previous experiment). Then THF- $d_{8}(0.06 \mathrm{~mL})$ was added to the NMR tube and the resulting solution was left standing at room temperature for two days. After this time, the analysis of the mixture by ${ }^{1} \mathrm{H}$ NMR revealed that the $\mathbf{2} \subset(S, P \cdot R, M)-1 \mathbf{b}_{2}$ capsule was the almost exclusive component. (400 MHz) $\delta 9.99(\mathrm{br} \mathrm{s}$, $8 \mathrm{H}), 7.51(\mathrm{~m}, 16 \mathrm{H}), 7.36(\mathrm{br} \mathrm{s}, 8 \mathrm{H}), 7.26(\mathrm{~m}, 16 \mathrm{H}), 7.17$ (d, $8 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}), 6.43-6.29$ $(\mathrm{m}, 24 \mathrm{H}), 6.21-6.11(\mathrm{~m}, 24 \mathrm{H}), 5.66(\mathrm{~m}, 4 \mathrm{H}), 4.86(\mathrm{~m}, 8 \mathrm{H}), 4.67(\mathrm{~m}, 8 \mathrm{H}), 1.90(\mathrm{~s}, 24 \mathrm{H})$, $1.57(\mathrm{~d}, 24 \mathrm{H}, J=6.5 \mathrm{~Hz}) ; \mathrm{MS}\left(\mathrm{ESI} /[\mathrm{M}+\mathrm{Na}]^{+}\right)$calcd. for $\mathrm{C}_{178} \mathrm{H}_{168} \mathrm{Br}_{8} \mathrm{~N}_{26} \mathrm{O}_{10} \mathrm{Na}$: 3493.6, found 3493.7.

Figure S. 4. HRMS (ESI +50 ppm acetonitrile) for capsule $\mathbf{2} \subset(S, P \cdot R, M)$ - $\mathbf{1} \mathbf{b}_{2}$; theoretical (top) and experimental (bottom) isotopic distribution pattern for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\left[\mathrm{C}_{178} \mathrm{H}_{168} \mathrm{Br}_{8} \mathrm{~N}_{26} \mathrm{O}_{10} \mathrm{Na}\right]^{+}\right)$.

Figure S. 5. ${ }^{1}$ H NMR spectrum of a heterogeneously prepared mixture of capsules treated with THF (60 $\mu \mathrm{L}$) and left to stand at rt for two days.

Self-assembly of capsule $\mathbf{3}_{2} \subset S$ - $\mathbf{1 b}_{\mathbf{2}}$ (identical experimental and data for $\mathbf{3}_{2} \subset R-\mathbf{1 b}_{\mathbf{2}}$)
Tetraurea S - $\mathbf{1 b}(1.80 \mathrm{mg}$, $1.10 \mu \mathrm{~mol})$ was suspended in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ under inert atmosphere (glove box). To this suspension, trimethylamine N -oxide ($0.082 \mathrm{mg}, 1.10$ $\mu \mathrm{mol}$) was added and the resulting suspension, in a sealed NMR tube, was sonicated for 2 minutes. Then, ${ }^{1} \mathrm{H}$ NMR was run ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 10.16$ (br s, 4 H), 9.78 (br s, $4 \mathrm{H}), 8.45(\mathrm{~m}, 8 \mathrm{H}), 7.98(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{~m}, 8 \mathrm{H}), 7.44(\mathrm{~m}, 8 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 12 \mathrm{H}), 7.17$ $(\mathrm{m}, 8 \mathrm{H}), 7.05(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{~m}, 4 \mathrm{H}), 6.54(\mathrm{~m}, 4 \mathrm{H}), 6.29-6.06(\mathrm{~m}, 36 \mathrm{H}), 5.22-5.06(\mathrm{~m}$, 8 H), 1.89 (br s, 12H), 1.77 (br s, 12H), 1.68 (d, 12H, $J=6.9 \mathrm{~Hz}$), 1.52 (d, 12H, $J=6.9$ Hz), 0.63 (br s, 9H), 0.30 (br s, 9H).

Figure S. 6. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of capsule $\mathbf{3}_{2} \subset S-\mathbf{1} \mathbf{b}_{2}$. The broad singlet at 3.2 ppm corresponds to an excess of trimethylamine N-oxide 3.

Self-assembly of capsule $\mathbf{3}_{2} \subset(S, P \cdot R, M)-1 \mathbf{b}_{2}$ under homogeneous conditions

Equimolar quantities of capsules $\mathbf{3} \subset S-\mathbf{- 1 b}_{2}$ and $\mathbf{3} \subset R-\mathbf{1} \mathbf{b}_{2}\left(0.55 \mu \mathrm{~mol}\right.$ in 0.6 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ each) were separately prepared as described above and mixed in a NMR tube. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ was run $\delta 9.80(\mathrm{br} \mathrm{s}, 8 \mathrm{H}), 8.35(\mathrm{br} \mathrm{s}, 8 \mathrm{H}), 7.53(\mathrm{~m}, 16 \mathrm{H}), 7.44(\mathrm{~d}, 8 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 7.29(\mathrm{~m}, 16 \mathrm{H}), 6.31-6.06(\mathrm{~m}, 48 \mathrm{H}), 5.16(\mathrm{~m}, 8 \mathrm{H}), 1.83(\mathrm{br} \mathrm{s}, 24 \mathrm{H}), 1.58(24 \mathrm{H}$, obscured by the water signal).

Figure S. 7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of capsule $\mathbf{3}_{2} \subset(S, P \cdot R, M)-\mathbf{1} \mathbf{b}_{2}$ assembled under homogeneous conditions.

Self-assembly of capsule $\mathbf{3}_{2} \subset 1 \mathrm{a} \cdot R-1 \mathrm{~B}$:

Equimolar quantities (0.340 mmol of each) of capsules $\mathbf{3}_{2} \subset \mathbf{1} \mathbf{a}_{2}$ and $\mathbf{3}_{2} \subset R \mathbf{- 1} \mathbf{b}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (0.6 mL each) were separately prepared according with the above experiments. Then, ${ }^{1} \mathrm{H}$ NMR was run $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 10.02(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 9.83(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 8.44(\mathrm{~s}, 4 \mathrm{H})$, $8.37(\mathrm{~s}, 4 \mathrm{H}), 7.73(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 12 \mathrm{H}), 7.35-7.16(\mathrm{~m}, \mathrm{xH}), 6.79(\mathrm{~m}, 4 \mathrm{H}), 6.61$ $(\mathrm{m}, 4 \mathrm{H}), 6.35(\mathrm{~m}, 4 \mathrm{H}), 6.32-6.02(\mathrm{~m}, \mathrm{xH}), 5.10(\mathrm{~m}, 4 \mathrm{H}), 4.77-4.68(\mathrm{~m}, 4 \mathrm{H}), 4.61-4.52$ (m, 4H), $2.45(\mathrm{~s}, 12 \mathrm{H}), 1.83(\mathrm{~m}, \mathrm{xH}), 0.49(\mathrm{~s}, 9 \mathrm{H}), 0.34(\mathrm{~s}, 9 \mathrm{H})$.

Figure S. 8. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of capsule $\mathbf{3}_{2} \subset \mathbf{1 a} \cdot \boldsymbol{R} \mathbf{- 1 b}$.

Figure S.9. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of capsule $\mathbf{3}_{2} \subset R-\mathbf{1} \mathbf{b}_{2}$. The signals used to calculate the energy barrier for the change of the direction of the urea belt were those of the pyrrolic NH protons at $\delta=10.16$ and 9.78 ppm .

Figure S.10. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of capsule $\mathbf{2} \subset R-\mathbf{1} \mathbf{b}_{2}$. The signals used to calculate the energy barrier for the change in the direction of the urea belt were those of the pyrrolic NH protons at $\delta=10.25$ and 9.83 ppm .

Figure S. 11. Circular dichroism (CD) spectra of: (blue line) a solution of N-oxide $\mathbf{3}\left(2 \cdot 10^{-5} \mathrm{M}\right), \mathbf{1 a}\left(10^{-5}\right.$ M) and R - $\mathbf{1 b}\left(10^{-5} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (red line) a solution of N-oxide $\mathbf{3}\left(2 \cdot 10^{-5} \mathrm{M}\right), \mathbf{1 a}\left(10^{-5} \mathrm{M}\right)$ and S - $\mathbf{1 b}\left(10^{-5}\right.$ M) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (black dashed line) a solution of $R-\mathbf{1 b}\left(10^{-5} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S. 12. Homology construct structures, based on the X-ray structure of $\mathbf{2} \subset \mathbf{1} \mathbf{a}_{2}$, of the two possible absolute configurations for the heterodimer $\mathbf{1 \bullet 1 b}$ a) $(M \bullet R, P)-\mathbf{1} \bullet \mathbf{1 b}$ and b) $(P \bullet R, M)-\mathbf{1} \bullet \mathbf{1 b}$. In the heterodimer $(P \bullet R, M)-\mathbf{1 \bullet 1 b}$ the transition dipoles (arrows) of the two chromophores (highlighted in yellow) intersect at a positive torsion angle. In accordance with the exciton chirality rule, this absolute configuration is responsible of the positive chirality observed for the first Cotton effect in the CD of the capsule. The hydrogen atoms and the encapsulated guests are removed for clarity.

The solid state structure of $\mathbf{2} \subset \mathbf{1} \mathbf{a}_{2}$ was solved using ab inito methods XM implemented in the SHELXTL interface and refined as a pseudo-merohedral twin of two domains related by the twin law 001010001 with an approximate contribution ratio of 62:38.
The bis N-oxide molecules 2 are disordered in two different positions with an occupation ratio of 70:30 for $\mathrm{C} 1 \mathrm{CA}>\mathrm{C} 10 \mathrm{H}$ and $65: 35$ for $\mathrm{C} 1 \mathrm{~F}>\mathrm{C} 10 \mathrm{~F}$. One calixPyrrol presents also disordered walls that are modeled as follow:
N5D > C41D, C55D > C62D, O2E > C41E, C12 > C13E are disordered in two positions with an occupation ratio of $63: 37$. $\mathrm{C} 14 \mathrm{E}>\mathrm{C} 21 \mathrm{E}$ are disordered in three different positions with occupations of $24 \%, 38 \%$ and 38%.
Four solvent molecules are modeled as disordered. C1SK, C1SD and C1SE are in two different positions with occupations ratio of 63:37 while C1SH has three different sites with occupations of $28 \%, 40 \%$ and 38%.

Explanations of A alerts returned by the checkcif program.

aAlert level A

PLAT432_ALERT_2_A Short Inter X...Y Contact N3E .. C14E .. 2.36 Ang.
PLAT432_ALERT_2_A Short Inter X...Y Contact C13E .. C14E .. 1.59 Ang.
PLAT432_ALERT_2_A Short Inter X...Y Contact C13E .. C15E .. 2.47 Ang.
PLAT432_ALERT_2_A Short Inter X...Y Contact C13E .. C19E .. 2.67 Ang.
PLAT432_ALERT_2_A Short Inter X...Y Contact C7SE .. C467\# .. 2.73 Ang.
PLAT773_ALERT_2_A Suspect C-C Bond in CIF: C18" -- C6K' .. 1.78 Ang.
All this distances are between atoms of disordered groups. NE-C14E, C13E-C15E, C13E-C19E belong to the same molecule and are not Intermolecular distances. C7SEC467\# (C8H') and C18"-C6K' are distances between atom sites that are not occupied at the same time in the crystal.

We thank Professor G. M. Sheldrick for providing us the necessary source to perform this refinement.

Figure S.13. X-ray structures of the rings formed by the eight urea structures, which are alternatively connected to a) the two calix[4]arenes halves ${ }^{2}$ and b) the two phenyl extended calix[4]pyrroles halves ${ }^{3}$. The belt of the urea functions forms the hydrogen-bonding system holding the the capsular assemblies. Hydrogen bonds are depicted by dashed lines. Selected reported distance for the hydrogen bonds are measured between heteroatoms ($\mathrm{N} \cdots \mathrm{O}=\mathrm{C}$). The range of values of the dihedral angles of the planes defined by the $\mathrm{N}-\mathrm{CO}-\mathrm{N}$ atoms of adjacent urea units is also indicated.

[^2]

Figure S.14. CAChe ${ }^{4}$ MM3 minimized structures of the three expected diastereoisomeric capsules resulting from the self-assembly of racemic $\mathbf{1 b}$ induced by encapsulation of $\mathbf{2}$ and their corresponding schematic representations.

[^3]
[^0]: ${ }^{\dagger}$ ICIQ
 ${ }^{\ddagger}$ ICIQ X-Ray Diffraction Unit
 ${ }^{\S}$ ICREA and ICIQ

[^1]: ${ }^{1}$ Ballester, P.; Gil-Ramirez, G., Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 10455-10459.

[^2]: ${ }^{2}$ Mogck, O.; Paulus, E. F.; Bohmer, V.; Thondorf, I.; Vogt, W. Chem. Commun. 1996, 2533-2534.
 ${ }^{3}$ X-ray structure of $\mathbf{2} \subset \mathbf{1} \mathbf{a}_{2}$ capsular assembly reported in this work.

[^3]: ${ }^{4}$ CAChe WorSystem Pro Version 6.1.12.33. Copyright© 2000-2004 Fujitsu Limited.

