Supporting Information Experimental

Phosphine-Catalyzed Asymmetric Synthesis of $\boldsymbol{\beta}$-Lactones from Ketoketenes and Aromatic Aldehydes

Mukulesh Mondal ${ }^{\text {a }}$, Ahmad A. Ibrahim ${ }^{\text {a }}$, Kraig A. Wheeler ${ }^{\text {b }}$ and Nessan J. Kerrigan ${ }^{\text {a }}$
${ }^{\text {a D Department of Chemistry, Oakland University, } 2200 \text { N. Squirrel Road, Rochester, MI 48309-4477, USA }}$
${ }^{\mathrm{b}}$ Department of Chemistry, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920-3099, USA

Table of Contents:

General Information SI-2
Procedure A for β-lactone synthesis SI-2
Procedure B for β-hydroxyacid synthesis SI-3
Experimental Procedure for $\mathbf{3 a}$ and $\mathbf{4 a}$ SI-3
Experimental Procedure for $\mathbf{3 b}, \mathbf{4 b}, \mathbf{3 c}$ and $\mathbf{4 c}$ SI-4
Experimental Procedure for $\mathbf{3 c}, 5 \mathbf{5}, \mathbf{3 d}$ and $\mathbf{4 d}$ SI-5
Experimental Procedure for (\pm) - $\mathbf{3 d}, \mathbf{3 e}$ and $\mathbf{4 e}$ SI-6
Experimental Procedure for $\mathbf{3 f}, \mathbf{4 f}, \mathbf{3 g}$ and $\mathbf{4 g}$ SI-7
Experimental Procedure for $\mathbf{3 h}, \mathbf{3 i}, \mathbf{4 i}, \mathbf{3 j}$ and $\mathbf{4 j}$ SI-8
Experimental Procedure for $\mathbf{3 k}$ and $\mathbf{4 k}$ SI-9
Experimental Procedure for $\mathbf{3 1}, \mathbf{4 1}$, 3mand $\mathbf{4 m}$ SI-10
Experimental Procedure for $\mathbf{3 n}$ and
Control Reactions and Mechanistic Studies
ReferencesSI-12
Determination of trans Relative Stereochemistry: SI-13X-Ray Crystallographic data for Compound (\pm)-3dDetermination of Absolute Stereochemistry:X-Ray Crystallographic data for Compound 3nSI-19

General Information.

Diethyl ether and THF were freshly distilled from benzophenone ketyl radical under nitrogen prior to use. Dichloromethane was dried using a calcium hydride stills and $N, N-$ dimethylethylamine was distilled from calcium hydride under nitrogen. ${ }^{1}$ Tri- n-butylphosphine, (R)-BINAPHANE, lithium iodide, benzaldehyde, 2-chlorobenzaldehyde, 4-chlorobenzaldehyde 4-nitrobenzaldehyde, pentanal, hydrocinnamaldehyde, cinnamaldehyde, potassium hydroxide and sodium azide were purchased from Aldrich Chemical Co. Iatrobeads (Bioscan, 6RS-8060, $60 \mu \mathrm{M}$ particle size). TLC plates (Sorbent Technologies, UV254, $250 \mu \mathrm{M}$) were used as received. Methylphenylketene, ethylphenylketene, n-butylphenylketene, methyl-4-tolylketene, methyl-2tolylketene diphenylketene, and ethyl- N-methylindolylketene were prepared according to literature procedures. ${ }^{2-4}$

NMR spectra were recorded on Bruker DPX Avance 200 spectrometer (200 MHz for ${ }^{1} \mathrm{H}$ and 50 MHz for ${ }^{13} \mathrm{C}$) and on Bruker Biospin AG 400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$). NMR chemical shifts were reported relative to TMS (0 ppm) for ${ }^{1} \mathrm{H}$ and to CDCl_{3} (77.23 ppm) for ${ }^{13} \mathrm{C}$ spectra. High resolution mass spectra were obtained from the College of Sciences Major Instrumentation Cluster at Old Dominion University. Optical rotations were measured on Rudolph DigiPol 781 TDV automatic polarimeter. IR spectra were recorded on a Bio Rad FTS-175C spectrometer.

Analytical high performance liquid chromatography (HPLC) was performed using a Daicel Chiralpak AD column ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$) and an AS-H column ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$) (Daicel Chemical Ind., Ltd.) on a Perkin Elmer 235C instrument attached with diode array detector (deuterium lamp, 190-600 nm) with HPLC-grade isopropanol and hexanes as the eluting solvents.

Compound Characterization and Determination of Diastereomeric Ratios and Enantiomeric Excesses: Most of the β-lactones $\mathbf{3}$ appear to be unstable during attempted flash column chromatographic purification. The phosphine catalyst was removed by passing a dilute solution of the reaction mixture through a plug column of neutral silica (see procedure \mathbf{A}), without causing decomposition of the β-lactones 3 (obtained in $70-99 \%$ purity). In order to provide characterization data for all compounds, the impure β-lactones ($<95 \%$ purity) were converted into the corresponding stable β-hydroxyacids 4 by treatment with aqueous KOH in THF. The β-hydroxyacids 4 were purified by flash column chromatography to provide pure samples for full characterization (see procedure B). Diastereomeric ratios were determined for the crude β-lactones 3a-n either by integrating the tertiary $\mathbf{C} \underline{\mathbf{H}}$ resonances in ${ }^{1} \mathrm{H}$ NMR or by comparing the peak areas of HPLC data. Enantiomeric excesses were determined by assaying the crude β-lactones 3a-n using chiral HPLC analysis (at $\lambda=225 \mathrm{~nm}$; details given for each compound). Authentic racemic samples for chiral HPLC analysis were generated through the PBu_{3}-catalyzed reaction (Procedure A).

Procedure A for $\boldsymbol{\beta}$-lactone synthesis: To a stirring solution of aldehyde ($0.34-1.02 \mathrm{mmol}, 1.0-$ 3.0 equiv.) and phosphine catalyst (PBu_{3} or BINAPHANE) ($0.034 \mathrm{mmol}, 0.1$ equiv.) in dichloromethane (0.40 mL) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere, was added a solution of ketoketene ($0.34 \mathrm{mmol}, 1.0$ equiv.) in dichloromethane (0.40 mL) [overall ketene concentration $0.43 \mathrm{M}]$ over a period of 4 h using syringe pump and stirring was continued at $-78^{\circ} \mathrm{C}$. After 4 h , the reaction was allowed to warm up to room temperature gradually over 4 h in the cooling bath (total reaction time $=12 \mathrm{~h})$. The reaction was then quenched by addition of dilute $\mathrm{H}_{2} \mathrm{O}_{2}(0.002$ $\mathrm{mL}, 0.038 \mathrm{mmol}, 0.1$ equiv), diluted with $10 \% \mathrm{EtOAc} / \mathrm{hexane}(10 \mathrm{~mL})$ and dichloromethane (2.5 mL) [for $\sim 100 \mathrm{mg}$ reaction mixture] and the crude solution was passed through a plug column of
neutral silica (iatrobeads, $2 \times 2 \mathrm{~cm}, 5 \mathrm{~g}$) [50 x reaction mixture]. The plug column was eluted with $10 \% \mathrm{EtOAc} / \mathrm{Hexane}$ solvent system $(100 \mathrm{~mL})$, and the solvent was removed under vacuum to furnish the desired β-lactone 3a-n with $70->99 \%$ purity (as determined by GC-MS or ${ }^{1} \mathrm{H}$ NMR analysis).

Procedure B for $\boldsymbol{\beta}$-hydroxyacid synthesis: A stirring mixture of β-lactone $\mathbf{3}(0.30 \mathrm{mmol}, 1.0$ equiv.) and aqueous $\mathrm{KOH}(1.0 \mathrm{~N} ; 0.60 \mathrm{~mL}, 0.60 \mathrm{mmol}, 2.0$ equiv.) in THF (1.2 mL) was heated to $60^{\circ} \mathrm{C}$ in a sealed tube for 6-12 h. After cooling, the reaction mixture was diluted with water (2 mL), extracted with dichloromethane (30 mL) to remove undesired product. The aqueous layer was acidified with $\mathrm{HCl}(10 \%)$, extracted with dichloromethane ($20 \mathrm{~mL} \times 3$) and combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under vacuum followed by column chromatographic purification using hexane/EtOAc solvent system furnished the desired β-hydroxyacid. Isolated yields are determined for two steps from the relevant ketoketene.

(3R,4R)-4-(4-Chlorophenyl)-3-ethyl-3-phenyloxetan-2-one (3a): Following procedure A, ethylphenylketene (51 mg , 0.35 mmol) was added to 4 chlorobenzaldehyde (49 mg, 0.35 mmol) and (R)BINAPHANE ($25 \mathrm{mg}, 0.035$ mmol). 3a was obtained as a colorless oil (94 mg , 94% yield, 96% purity by ${ }^{1} \mathrm{H}$ NMR), dr 93:7 (by HPLC); HPLC analysis: 64% ee [Daicel Chiralpak AS-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: 10% isopropanol in hexane; retention times: 11.6 min (major), 16.7 min (minor)]; $[\alpha]_{D}^{24}$ $=-34.0\left(\mathrm{c}=0.10, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2933, 1827, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.40-7.28(\mathrm{~m}, 9 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.58(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.8,137.5,135.0,133.6,129.3,129.3,128.2,127.4$, $126.5,82.3,68.8,27.4,8.5$; MS (EI 70 eV) m/z 242, 227, 192. Satisfactory HRMS data was not obtained for $\mathbf{3 a}$, so it was converted to $\mathbf{4 a}$ to provide full characterization data.
(2R)-2-((R)-(4-Chlorophenyl)hydroxymethyl)-2-phenylbutanoic acid (4a): Procedure B was followed employing 3a ($94 \mathrm{mg}, 96 \%$ purity), aqueous $\mathrm{KOH}(0.63 \mathrm{~mL}, 0.63 \mathrm{mmol})$ and a reaction time of 6 hours. Elution with $25 \% \mathrm{EtOAc} / \mathrm{hexane}$ followed by solvent removal under reduced pressure yielded $4 \mathbf{4}$ as a white gum ($93 \mathrm{mg}, 87 \%$ yield for two steps), dr 93:7 (by HPLC); $[\alpha]_{D}^{22}$ $=-38.0\left(\mathrm{c}=0.53, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2964, 2935, $1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TMS) $\delta 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.74-6.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 2.11-$ $2.02(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.9$, 138.4, 137.2, 133.9, 129.2, 128.6, 128.1, 127.9, 127.9, 78.5, 60.7, 25.0, 10.1; (M+Na) HRMS m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{3} \mathrm{Na}$: 327.0758; Found: 327.0759.

3b
(3R,4R)-3-Methyl-3,4-diphenyloxetan-2-one (3b): Following procedure A, methylphenylketene $(45 \mathrm{mg}, \quad 0.34$ mmol) was added to benzaldehyde (36 $\mathrm{mg}, 0.34 \mathrm{mmol})$ and (R)-BINAPHANE ($24 \mathrm{mg}, 0.034 \mathrm{mmol}$). 3b was obtained as colorless oil ($80 \mathrm{mg}, 90 \%$ purity by ${ }^{1} \mathrm{H}$ NMR), dr 96:4 (by ${ }^{1} \mathrm{H}$ NMR); HPLC
analysis for 3b: 79% ee [Daicel Chiralpak AS-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: 10% isopropanol in hexane; retention times: 12.7 min (major), 18.3 min (minor)].
(2R,3R)-3-Hydroxy-2-methyl-2,3-diphenylpropanoic acid (4b): Procedure B was followed employing 3b ($80 \mathrm{mg}, 90 \%$ purity), aqueous $\mathrm{KOH}(0.60 \mathrm{~mL}, 0.60 \mathrm{mmol})$ and a reaction time 4 h . Elution with $20 \% \mathrm{EtOAc} /$ hexane followed by solvent removal under reduced pressure yielded $\mathbf{4 b}$ as white gum ($76 \mathrm{mg}, 87 \%$ yield for two steps), dr $>96: 4$ (by ${ }^{1} \mathrm{H}$ NMR); $[\alpha]_{D}^{23}=-130.3$ ($\mathrm{c}=$ $0.76, \mathrm{EtOAc}) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 3569,3491,3022,1699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): δ $7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 182.1,139.3,138.3,128.6,127.9,127.7,127.6,127.4,127.0,78.4$, 56.5, 15.2; $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}$: 279.0992; Found: 279.0990.

For ee determination of $\mathbf{4 b}, \mathbf{4 b}$ was recyclized to 3b. Experimental procedure: To an ice-cooled stirring solution of $\mathbf{4 b}(26 \mathrm{mg}, 0.10 \mathrm{mmol})$ and triethylamine ($30 \mathrm{mg}, 0.30 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.6 mL), benzoylchloride (28 $\mathrm{mg}, 0.20 \mathrm{mmol}$) was added dropwise and stirring was continued for 1 h at 0 ${ }^{\circ} \mathrm{C}$. Then the reaction mixture was passed through a plug column of neutral silica (like general procedure A), and the solvent was removed under vacuum to furnish the desired β-lactone $\mathbf{3 b}$ ($>99 \%$ purity) as a colorless oil ($9 \mathrm{mg}, 37 \%$ yield), dr $>99: 1$ (by ${ }^{1} \mathrm{H}$ NMR); HPLC analysis: 79% ee [Daicel Chiralpak AS-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: 10% isopropanol in hexane; retention times: 13.0 min (major), 18.9 min (minor) $] ;[\alpha]_{D}^{23}=-19.3$ (c = 0.07, EtOAc); IR (Neat): 2925, $1832 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta 7.33-7.51(\mathrm{~m}, 10 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H})$, $1.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.9,139.9,135.0,129.5,129.1,129.0,128.2$, 125.7, 83.0, 64.7, 20.5; ($\left.\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}$: 261.0886; Found: 261.0887.

(3R,4R)-4-(4-Chlorophenyl)-3-methyl-3-phenyloxetan-2-one (3c): Following procedure A, methylphenylketene $(50 \mathrm{mg}, \quad 0.38$ mmol) was added to 4chlorobenzaldehyde (53 mg, 0.38 mmol) and (R)-BINAPHANE (25 mg , 0.038 mmol). $3 \mathbf{c}$ was obtained as a colorless oil ($80 \mathrm{mg}, 90 \%$ purity by ${ }^{1} \mathrm{H}$ NMR), dr $95: 5$ (by ${ }^{1} \mathrm{H}$ NMR); HPLC analysis: 90% ee [Daicel Chiralpak AS-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: 10% isopropanol in hexane; retention times: 17.8 min (major), 27.1 min (minor)].
(2R,3R)-3-(4-Chloro-phenyl)-3-hydroxy-2-methyl-2-phenyl-propionic acid (4c): Procedure B was followed employing $3 \mathbf{c}(80 \mathrm{mg}, 90 \%$ purity), aqueous $\mathrm{KOH}(0.53 \mathrm{~mL}, 0.53 \mathrm{mmol})$ and a reaction time of 4 h . Elution with $25 \% \mathrm{EtOAc} / \mathrm{hexane}$ followed by solvent removal under reduced pressure yielded $\mathbf{4 c}$ as a white gum ($72 \mathrm{mg}, 65 \%$ yield for two steps), dr 96:4 (by ${ }^{1} \mathrm{H}$

NMR); $[\alpha]_{D}^{23}=-130.0\left(\mathrm{c}=0.42, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3441,2631,1699,1090 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.8,138.9$, $136.8,133.5,129.0,128.8,128.2,127.6,127.0,77.8,56.5,14.7$; ($\left.{ }^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{3} \mathrm{Na}$: 313.0602; Found: 313.0600.

3c

5c
(3R,4R)-4-(4-Chlorophenyl)-3-methyl-3-phenyloxetan-2-one (3c): Following procedure A, methylphenylketene ($103 \mathrm{mg}, 0.78$ mmol) was added to 4chlorobenzaldehyde $110 \mathrm{mg}, 0.78$ mmol) and (R)-BINAPHANE (55 $\mathrm{mg}, 0.078 \mathrm{mmol}) .3 \mathrm{c}$ was obtained as a colorless oil (202 mg , 90% purity by ${ }^{1} \mathrm{H}$ NMR), dr 95:5 (by ${ }^{1} \mathrm{H}$ NMR); HPLC analysis: 90% ee [Daicel Chiralpak AS-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: 10% isopropanol in hexane; retention times: 17.8 min (major), 27.1 min (minor)].
(2R,3S)-3-Azido-3-(4-Chlorophenyl)-3-methyl-2-phenylpropanoic acid (5c): Sodium azide ($23 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added to a stirring solution of $\mathbf{3 c}(50 \mathrm{mg}, \sim 0.18 \mathrm{mmol})$ in DMSO (1.2 mL). The reaction vessel was sealed and heated to $65^{\circ} \mathrm{C}$ for 48 h . After cooling, the reaction mixture was acidified with HCl (10%), and extracted with dichloromethane ($20 \mathrm{~mL} \times 3$). The combined organics were washed with brine ($20 \mathrm{~mL} x 3$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under vacuum followed by column chromatographic purification ($15 \% \mathrm{EtOAc} /$ hexane) furnished the desired β-azido acid $\mathbf{5 c}$ as a white gum ($32 \mathrm{mg}, 61 \%$ yield), $\mathrm{dr}>99: 1$ (by ${ }^{1} \mathrm{H}$ NMR); HPLC analysis: 90% ee [Daicel Chiralpak AD column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: 2% isopropanol in hexane; retention times: 27.3 min (major), 34.8 min (minor) $] ;[\alpha]_{D}^{23}=-133.1$ ($\mathrm{c}=$ 0.32, EtOAc); IR $\left(\mathrm{CHCl}_{3}\right): 3345,3019,2108,1703,1493,1215 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right): \delta 7.41-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{~s}$, $1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.7,137.4,134.7,134.4,130.7,128.4$, $128.4,128.3,128.3,70.8,55.2,19.2 ;\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{Na}$: 338.0667; Found: 338.0665.

(3R,4R)-3-Methyl-4-(4-nitrophenyl)-3-phenyloxetan-2-one (3d): Following procedure A, methylphenylketene ($46 \mathrm{mg}, 0.35$ mmol) was added to 4nitrobenzaldehyde ($53 \mathrm{mg}, \quad 0.35$ mmol) and (R)-BINAPHANE (24
$\mathrm{mg}, 0.035 \mathrm{mmol}$). Eluting with $20 \% \mathrm{EtOAc} /$ hexane through a plug column of neutral silica followed by solvent removal under reduced pressure afforded 3d as a colorless oil ($90 \mathrm{mg}, 80 \%$ purity by ${ }^{1} \mathrm{H}$ NMR), dr 95:5 (by ${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 d}$); HPLC analysis: 92% ee [Daicel Chiralpak ASH column; $1.0 \mathrm{~mL} / \mathrm{min}$; solvent system: 8% isopropanol in hexane; retention times: 22.4 min (major), 33.7 min (minor)].
(2R,3R)-3-Hydroxy-2-methyl-3-(4-nitrophenyl)-2-phenylpropanoic acid (4d): Procedure B was followed employing $3 \mathbf{d}(90 \mathrm{mg}, 80 \%$ purity), aqueous $\mathrm{KOH}(0.51 \mathrm{~mL}, 0.51 \mathrm{mmol})$ and a reaction time 4 h . Elution with $20 \% \mathrm{EtOAc} / \mathrm{hexane}$ followed by solvent removal under reduced pressure yielded $\mathbf{4 d}$ as a white gum ($66 \mathrm{mg}, 63 \%$ yield for two steps), dr $95: 5$ (by ${ }^{1} \mathrm{H} \mathrm{NMR}$); $[\alpha]_{D}^{25}=-126.0(\mathrm{c}=0.44, \mathrm{EtOAc}) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 3553,3021,1695,1521,1349,1216 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.15(\mathrm{~m}$,
$2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.0$, $147.4,145.8,138.3,129.1,128.6,128.5,126.9,122.4,77.6,56.4,14.2 ;\left(\mathrm{M}^{+}+\mathrm{Na}\right) \mathrm{HRMS} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{Na}$: 324.0842; Found: 324.0843.

(\pm - $\mathbf{3 d}$
(\pm)-3-Methyl-4-(4-nitrophenyl)-3-phenyloxetan-2-one
(3d):
Following procedure \mathbf{A}, methylphenylketene ($44 \mathrm{mg}, 0.33 \mathrm{mmol}$) was added to 4-nitrobenzaldehyde ($50 \mathrm{mg}, 0.33 \mathrm{mmol}$) and $n-\mathrm{Bu}_{3} \mathrm{P}(7 \mathrm{mg}$, 0.033 mmol). Elution with $20 \% \mathrm{EtOAc} /$ hexane through a plug column of neutral silica gel followed by recrystallization of the crude product from acetone/hexane afforded ($\mathbf{\pm}$)-3d as a colorless solid ($58 \mathrm{mg}, 61 \%$ yield, $>99 \%$ purity by ${ }^{1} \mathrm{H}$ NMR), $\mathrm{dr}>99: 1$ (by ${ }^{1} \mathrm{H}$ NMR); mp: 124-125 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right): 3021,1835,1526,1350,1216 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS): $\delta 8.36$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63 (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.51-7.44$ (m, 4H), 7.43-7.37 (m, 1H), $5.80(\mathrm{~s}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 171.7$, 148.4, 142.2, 138.8, 129.7, 128.6, 126.7, 125.6, 124.4, 81.8, 65.5, 20.4.

(3R,4R)-4-(4-Chlorophenyl)-3-ethyl-3-(1-methyl-1H-indol-3-yl)oxetan-2-one (3e): Folllowing procedure A, 1-methylindol-3-ylethylketene $(72 \mathrm{mg}, 0.36 \mathrm{mmol})$ was added to 4-chlorobenzaldehyde (50.6 $\mathrm{mg}, \quad 0.36 \mathrm{mmol})$ and (R) - BINAPHANE ($25 \mathrm{mg}, 0.036 \mathrm{mmol}$). 3 e was obtained as a yellow oil $\left(115 \mathrm{mg}, 90 \%\right.$ purity by ${ }^{1} \mathrm{H}$ NMR), dr 83:17 (by HPLC analysis); HPLC analysis: for major diastereoisomer >99\% ee [Daicel Chiralpak AD column; $1 \mathrm{~mL} / \mathrm{min}$; solvent system: 2% isopropanol in hexane; retention times: 12.6 min (major), 14.0 min (minor)].
(2R)-2-((R)-(4-Chlorophenyl)hydroxymethyl)-2-(1-methyl-1H-indol-3-yl)butanoic acid (4e): Procedure B was followed employing $\mathbf{3 e}(115 \mathrm{mg}, 90 \%$ purity $)$, aqueous $\mathrm{KOH}(0.61 \mathrm{~mL}, 0.61$ mmol) and a reaction time of 11 hours. Elution with $25 \% \mathrm{EtOAc} / \mathrm{hexane}$, followed by solvent removal under reduced pressure yielded $\mathbf{4 e}$ as a yellow gum ($97 \mathrm{mg}, 75 \%$ yield for two steps), dr 83:17 (by ${ }^{1} \mathrm{H}$ NMR); $[\alpha]_{D}^{24}=-10.8\left(\mathrm{c}=0.06, \mathrm{CHCl}_{3}\right.$); IR (thin film): $3420,2918,1646 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H})$, 7.15 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 180.2,138.2,137.3,133.7,129.7,129.4,127.7,127.5,122.2,122.0,119.4,110.2$, $109.8,77.8,57.5,33.1,27.0,9.7 ;\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{3} \mathrm{Na}: 380.1024$; Found: 380.1022.
(3R,4R)-3-Ethyl-3-
 (1-methyl-1H-indol-3-yl)-4-(2-phenylethyl)-xetan-2one (3f): Following procedure A, ethyl- N methylindolylketene (45 mg , 0.23 mmol) was added to hydrocinnamaldehyde (93 $\mathrm{mg}, 0.69 \mathrm{mmol}$) and (R)-BINAPHANE ($16 \mathrm{mg}, 0.023 \mathrm{mmol}$). Eluting with $15 \% \mathrm{EtOAc} / \mathrm{hexane}$ through a plug column of neutral silica followed by solvent removal under reduced pressure afforded 3f as a colorless oil (70 mg , 90% purity by ${ }^{1} \mathrm{H}$ NMR), $\mathrm{dr}>99: 1$ (by ${ }^{1} \mathrm{H}$ NMR); HPLC analysis: 97% ee [Daicel Chiralpak AS-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: 5\% isopropanol in hexane; retention times: 19.8 min (minor), 21.0 min (major)].
(2R,3R)-2-Ethyl-3-hydroxy-2-(1-methyl-1H-indol-3-yl)-5-phenylpentanoic acid (4f): Procedure B was followed employing $\mathbf{3 f}(70 \mathrm{mg}, 90 \%$ purity $)$, aqueous $\mathrm{KOH}(0.38 \mathrm{~mL}, 0.38$ mmol) and a reaction time of 17 h . Elution with $30 \% \mathrm{EtOAc} / \mathrm{hexane}$ followed by solvent removal under reduced pressure yielded $\mathbf{4 f}$ as a light yellow gum ($48 \mathrm{mg}, 61 \%$ yield for two steps), dr $>99: 1$ (by ${ }^{1} \mathrm{H} \mathrm{NMR}$); $[\alpha]_{D}^{25}=2.4$ (c $=0.19$, EtOAc); IR $\left(\mathrm{CHCl}_{3}\right): 3457,3018,1704$, $1217 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta 7.61$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30-7.02 (m, 8H), $6.95(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=10.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.53(\mathrm{~m}, 1 \mathrm{H})$, 2.35-2.09 (m, 2H), 1.87-1.76 (m, 1H), 1.49-1.37 (m, 1H), 0.86 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.1,142.2,137.4,128.8,128.7,128.5,127.0,126.0,121.8,121.5,119.6$, $111.4,109.7,74.4,56.7,34.1,33.1,32.7,28.0,9.6 ;\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}$: 374.1727 ; Found: 374.1725 .

(3R,4R)-4-Butyl-3-ethyl-3-(1-methyl-1H-indol-3-yl) xetan-2one $(\mathbf{3 g})$: Following procedure A, ethyl- N-methylindolylketene ($46 \mathrm{mg}, 0.23 \mathrm{mmol}$) was added to pentanal ($60 \mathrm{mg}, 0.69 \mathrm{mmol}$) and (R)-BINAPHANE ($16 \mathrm{mg}, 0.023$ mmol). Eluting with 15% EtOAc/hexane through a plug column of neutral silica followed by solvent removal under reduced pressure afforded $\mathbf{3 g}$ as a yellowish oil (62 mg , 90% purity by ${ }^{1} \mathrm{H} N M R$), dr $>99: 1$ (by ${ }^{1}$ H NMR); HPLC analysis: 93% ee [Daicel Chiralpak AS-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: 5\% isopropanol in hexane; retention times: 14.8 min (minor), 16.5 min (major)].
(2R,3R)-2-Ethyl-3-hydroxy-2-(1-methyl-1H-indol-3-yl)heptanoic acid (4g): Procedure B was followed employing $\mathbf{3 g}$ ($62 \mathrm{mg}, 90 \%$ purity), aqueous $\mathrm{KOH}(0.40 \mathrm{~mL}, 0.40 \mathrm{mmol}$) and a reaction time of 20 h . Elution with $30 \% \mathrm{EtOAc} / \mathrm{hexane}$ followed by solvent removal under reduced pressure yielded $\mathbf{4 g}$ as a light yellow gum ($41 \mathrm{mg}, 59 \%$ yield for two steps), dr $>99: 1$ (by ${ }^{1} \mathrm{H}$ NMR $) ;[\alpha]_{D}^{24}=-2.7\left(\mathrm{c}=0.09\right.$, EtOAc); IR $\left(\mathrm{CHCl}_{3}\right): 3535,2957,1702,1216 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=8.2$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{ddd}, J=8.1,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.05(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.81(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.6,137.5,129.0,127.0,121.8$, $121.6,119.5,111.5,109.7,75.7,57.1,33.1,32.1,28.8,27.9,22.7,14.3,9.8 ;\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}$: 326.1727; Found: 326.1726.

3h
(3R,4S)-4-(2-Chlorophenyl)-3-ethyl-3-phenyloxetan-2-one
(3h): Following procedure A, ethylphenylketene ($57 \mathrm{mg}, 0.39 \mathrm{mmol}$) was added to 2-chlorobenzaldehyde ($55 \mathrm{mg}, 0.39 \mathrm{mmol}$) and (R) BINAPHANE ($27 \mathrm{mg}, 0.039 \mathrm{mmol}$). 3h was obtained as a colorless oil (112 mg, $>99 \%$), dr 75:25 (by ${ }^{1} \mathrm{H}$ NMR); $[\alpha]_{D}^{24}=-84.0$ (c $=0.15$, CHCl_{3}); IR (thin film): 2973, 1829, $1109 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS) for the major diastereoisomer $\delta 7.58-6.92(\mathrm{~m}, 9 \mathrm{H}), 5.91$ $(\mathrm{s}, 1 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=14.8 \mathrm{~Hz}, 3 \mathrm{H}) ;) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) for the major diastereoisomer $\delta 172.2,134.5,133.8,132.0,129.9,129.5,129.0$, $128.5,127.7,127.6,126.9,79.5,72.0,30.4,9.5 ;$ MS (EI=70 eV) m/z 242, 146, 117; ($\left.\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClO}_{2} \mathrm{Na}$: 309.065; Found: 309.0657.

$3 i$

$4 i$
(3R,4R)-3-Ethyl-4-(4-nitrophenyl)-3-phenyloxetan-2-one (3i): Following procedure A, ethylphenylketene (50 $\mathrm{mg}, 0.34 \mathrm{mmol}$) was added to 4 nitrobenzaldehyde ($52 \mathrm{mg}, 0.34 \mathrm{mmol}$) and (R)-BINAPHANE ($24 \mathrm{mg}, 0.034$ mmol). Eluting with 20% EtOAc/hexane through a plug column of neutral silica followed by solvent removal under reduced pressure afforded $\mathbf{3 i}$ as a colorless oil (93 mg , 75% purity by ${ }^{1} \mathrm{H} N M R$), dr 80:20 (by HPLC); HPLC analysis: 87% ee (major isomer) [Daicel Chiralpak AS-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: 10% isopropanol in hexane; retention times for major isomer: 27.9 min (minor), 40.1 min (major)].
(2R)-2-((R)-(Hydroxy(4-nitrophenyl)methyl))-2-phenylbutanoic acid (4i): Procedure B was followed employing $\mathbf{3 i}$ ($93 \mathrm{mg}, 75 \%$ purity), aqueous $\mathrm{KOH}(0.47 \mathrm{~mL}, 0.47 \mathrm{mmol})$ and a reaction time 4 of h. Elution with $20 \% \mathrm{EtOAc} /$ hexane followed by solvent removal under reduced pressure yielded $4 \mathbf{i}$ as a white gum ($55 \mathrm{mg}, 51 \%$ yield for two steps), dr $>95: 5$ (by ${ }^{1} \mathrm{H} \mathrm{NMR}$); $[\alpha]_{D}^{24}=-47.5(\mathrm{c}=0.32$, EtOAc $) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 3522,3025,1703,1522,1349,1218 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta 7.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.02(\mathrm{~m}$, $2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 2.22-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 181.1,147.5,146.1,138.1,128.8,128.7,128.2,128.0,122.6,78.7$, 60.5, 24.1, 10.3; $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}$: 338.0999; Found: 338.0998.

(3R,4R)-3-Butyl-4-(4-nitrophenyl)-3-phenyloxetan-2-one (3j): Following procedure A, nbutylphenylketene ($62 \mathrm{mg}, 0.35$ mmol) was added to 4nitrobenzaldehyde ($54 \mathrm{mg}, 0.35$
mmol) and (R)-BINAPHANE ($25 \mathrm{mg}, 0.035 \mathrm{mmol}$). $\mathbf{3 j}$ was obtained as a white solid (123 mg , 94% purity by GC/MS), dr 47:53 (by HPLC analysis); HPLC analysis: 61% ee for the major diastereoisomer [Daicel Chiralpak AS-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: 2% isopropanol in hexane; retention times: 20.8 min (major), 22.1 min (minor)] and 96% ee for the minor diastereoisomer [Daicel Chiralpak AS-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: 2% isopropanol in hexane; retention times: 25.5 min (minor), 29.8 min (major)].
(2R)-2-((R)-Hydroxy(4-nitrophenyl)methyl)-2-phenylhexanoic acid (4j): General procedure B was followed employing $\mathbf{3 j}$ ($123 \mathrm{mg}, 94 \%$ purity), aqueous $\mathrm{KOH}(0.71 \mathrm{~mL}, 0.71 \mathrm{mmol})$ and a reaction time of 4 h . Elution with $30 \% \mathrm{EtOAc} / \mathrm{hexane}$ followed by solvent removal under reduced pressure yielded $\mathbf{4} \mathbf{j}$ as a white gum ($121 \mathrm{mg}, 99 \%$ yield for two steps). $\mathbf{4 j}$ was isolated in two fractions, the first fraction (105 mg) being a mixture of diastereoisomers and the second fraction (16 mg) being enriched with the major diastereoisomer. Fractions were characterized separately; IR (thin film): $3429,2917,1647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) for the mixture of diastereoisomers $\delta 7.89(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.98$ (m, 4H), 6.94 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}$, $1 \mathrm{H}), 2.08-1.06(\mathrm{~m}, 12 \mathrm{H}), 1.60-0.90(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) for the mixture of diastereoisomers $\delta 180.2,179.1,147.7,147.5,146.0,145.9$, $138.3,135.8,129.1,129.1,128.8,128.3,128.3,128.1,127.9,127.8,123.3,122.6,77.5,75.7$, $60.2,60.1,33.8,30.9,27.2,26.2,23.8,23.4,14.1,14.1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) for the major diastereoisomer $\delta 7.89(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.76(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 2.08-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.06(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for the major diastereoisomer $\delta 180.2,147.7,145.9,135.8$, 129.1, 129.1, 128.3, 128.1, 122.6, 75.7, 60.2, 33.8, 27.2, 23.4, 14.1. ($\left.\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{Na}$: 366.1312 ; Found: 366.1310.

(3R,4R)-3-Methyl-4-(4-nitrophenyl)- 3-o-tolyloxetan-2-one (3k): Following procedure A, methyl-o-tolylketene (47 mg , 0.32 mmol) was added to 4 nitrobenzaldehyde (49 mg, 0.32 mmol) and (R)BINAPHANE ($22 \mathrm{mg}, 0.032 \mathrm{mmol}$). Eluting with $20 \% \mathrm{EtOAc} /$ hexane through a plug column of neutral silica followed by solvent removal under reduced pressure afforded $\mathbf{3 k}$ as a light yellow oil (90 mg , 90% purity by ${ }^{1} \mathrm{H}$ NMR), dr $96: 4$ (by ${ }^{1} \mathrm{H}$ NMR); HPLC analysis: 54% ee [Daicel Chiralpak AS-H column; $1.0 \mathrm{~mL} / \mathrm{min}$; solvent system: 15% isopropanol in hexane; retention times: 19.3 min (minor), 36.0 min (major)].
(2R,3R)-3-Hydroxy-2-methyl-3-(4-nitrophenyl)-2-p-tolylpropanoic acid (4k): Procedure B was followed employing $\mathbf{3 k}$ (90 mg , 90% purity), aqueous $\mathrm{KOH}(0.55 \mathrm{~mL}, 0.55 \mathrm{mmol})$ and a reaction time of 5 h . Elution with $30 \% \mathrm{EtOAc} / \mathrm{hexane}$ followed by solvent removal under reduced pressure yielded $\mathbf{4 k}$ as a yellowish gum ($73 \mathrm{mg}, 72 \%$ yield for two steps), dr $>99: 1$ (by ${ }^{1} \mathrm{H}$ NMR $) ;[\alpha]_{D}^{24}=101.2(\mathrm{c}=0.45, \mathrm{EtOAc}) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3497,3020,1689,1522,13501216$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta 7.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.66$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 184.3,147.3,145.6,136.6,136.0,132.2,128.7,128.5$, $127.6,126.7,122.3,74.4,54.8,21.0,17.7 ;\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}$: 338.0999; Found: 338.0998.

obtained as a colorless oil ($80 \mathrm{mg}, 85 \%$ purity by ${ }^{1} \mathrm{H}$ NMR), dr $92: 8$ (by ${ }^{1} \mathrm{H}$ NMR of 4I); HPLC analysis: 84% ee [Daicel Chiralpak AS-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: 10% isopropanol in hexane; retention times: 14.8 min (major), 21.6 min (minor)].
(2R,3R)-3-Hydroxy-2-methyl-3-(4-nitrophenyl)-2-p-tolylpropanoic acid (4I): Procedure B was followed employing $31(80 \mathrm{mg}, 85 \%$ purity), aqueous $\mathrm{KOH}(0.47 \mathrm{~mL}, 0.47 \mathrm{mmol})$, and a reaction time of 6 h . Elution with $20 \% \mathrm{EtOAc} /$ hexane followed by solvent removal under reduced pressure yielded $\mathbf{4 l}$ as a white gum ($62 \mathrm{mg}, 72 \%$ yield for two steps), dr $92: 8$ (by ${ }^{1} \mathrm{H}$ NMR $) ;[\alpha]_{D}^{24}=-151.2(\mathrm{c}=0.17, \mathrm{EtOAc}) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3513,3020,1699,1215 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR [Major] (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right): \delta 7.16-7.01(\mathrm{~m}, 6 \mathrm{H}), 6.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.39$ (s, 1H), 2.33 (s, 3H), $1.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR [Major] ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.3,137.9,136.9$, 135.9, 133.3, 129.5, 129.0, 127.5, 126.9, 77.7, 56.1, 21.2, 14.6; ($\left.\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}_{3} \mathrm{Na}$: 327.0758; Found: 327.0756.

BINAPHANE ($22 \mathrm{mg}, 0.031 \mathrm{mmol}$). Eluting with $20 \% \mathrm{EtOAc} /$ hexane through a plug column of neutral silica followed by solvent removal under reduced pressure afforded $\mathbf{3 m}$ as a light yellow oil ($85 \mathrm{mg}, 70 \%$ purity by ${ }^{1} \mathrm{H}$ NMR), dr $90: 10$ (by ${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 m}$); HPLC analysis: 85% ee [Daicel Chiralpak AS-H column; $1.0 \mathrm{~mL} / \mathrm{min}$; solvent system: 8% isopropanol in hexane; retention times: 20.5 min (major), 29.5 min (minor)].
(2R,3R)-3-Hydroxy-2-methyl-3-(4-nitrophenyl)-2-p-tolylpropanoic acid (4m): Procedure B was followed employing $\mathbf{3 m}(85 \mathrm{mg}, 70 \%$ purity), aqueous $\mathrm{KOH}(0.40 \mathrm{~mL}, 0.40 \mathrm{mmol})$ and a reaction time of 6 h . Elution with $25 \% \mathrm{EtOAc} /$ hexane followed by solvent removal under reduced pressure yielded $\mathbf{4 m}$ as a yellowish gum ($53 \mathrm{mg}, 55 \%$ yield for two steps), dr 90:10 (by ${ }^{1} \mathrm{H}$ NMR $) ;[\alpha]_{D}^{25}=-123.1(\mathrm{c}=0.18$, EtOAc $) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 3495,3021,1704,1521,1349 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR [Major] ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS): $\delta 7.92$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19-7.03 (m, 4H), 6.92 $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR [Major] (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 182.2,147.4,145.9,138.4,135.3,129.7,128.6,126.8,122.4,77.5,56.1,21.3,14.3 ;$ $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}$: 338.0999; Found: 338.0997.

SI-11

3n
(4R)-4-(4-Nitrophenyl)-3,3-diphenyloxetan-2-one (3n): Following procedure A, diphenylketene ($40 \mathrm{mg}, 0.21$ mmol) was added to 4-nitrobenzaldehyde ($31 \mathrm{mg}, 0.21$ mmol) and (R)-BINAPHANE ($15 \mathrm{mg}, 0.021 \mathrm{mmol}$). Elution with $20 \% \mathrm{EtOAc} /$ hexane through a plug column of neutral silica gel followed by recrystallization of the crude product from EtOAc/hexane afforded $3 n$ as a colorless crystalline solid ($44 \mathrm{mg}, 62 \%$ yield), HPLC analysis: 96% ee [Daicel Chiralpak AS-H column; $1.0 \mathrm{~mL} / \mathrm{min}$; solvent system: 15% isopropanol in hexane; retention times: 20.4 \min (minor), 29.6 min (major)]; mp: $167-168{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=$ 218.8 ($\mathrm{c}=0.44, \mathrm{EtOAc}) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 3021,1834,1525,1352,1216 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta 8.06$ (dt, $\left.J=8.7,2.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.56(\mathrm{dt}, J=8.0,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{tt}, J=7.9,2.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{tt}, J=8.6,2.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 170.0,148.0,142.1,137.9,135.0,129.5,128.8,128.7,128.2,127.7$, 127.6, 127.1, 123.6, 81.7, 75.6; MS (EI 70 eV) m/z 301, 253, 165, 126, 91; ($\mathrm{M}^{+}+\mathrm{Na}$) HRMS m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}$: 368.0893; Found: 368.0894.

Control Reactions and Mechanistic Studies:

Quantitative Generation of phosphonium enolate from diphenyl ketene and reaction with 4-nitrobenzaldehyde: $n-\mathrm{Bu}_{3} \mathrm{P}(89 \mathrm{mg}, 0.46 \mathrm{mmol})$ was added to a solution of diphenylketene ($98 \mathrm{mg}, 0.46 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.92 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C} .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) showed complete consumption of n - $\mathrm{Bu}_{3} \mathrm{P}$ and gave a signal at 13.4 ppm , then 4 -nitrobenzaldehyde (71 $\mathrm{mg}, 0.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{ml})$ was added to the phosphonium enolate solution at $-78{ }^{\circ} \mathrm{C}$ and the reaction was allowed to warm up to room temperature in the cooling bath over five hours. GCMS analysis of the reaction showed no β-lactone formation.
${ }^{31} \mathbf{P}$ NMR study of the reaction of $\boldsymbol{n}-\mathrm{Bu}_{3} \mathrm{P}$ and 4 -nitrobenzaldehyde: $n-\mathrm{Bu}_{3} \mathrm{P}(17 \mathrm{mg}, 0.084$ mmol) was added to a solution of 4-nitrobenzaldehyde ($127 \mathrm{mg}, 0.84 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) analysis of the reaction solution at $-78{ }^{\circ} \mathrm{C}$ showed a signal for $n-\mathrm{Bu}_{3} \mathrm{P}$ at $\delta-31 \mathrm{ppm}$.
${ }^{31} \mathbf{P}$ NMR study of the reaction of $\boldsymbol{n}-\mathrm{Bu}_{3} \mathrm{P}, 4$-nitrobenzaldehyde and diphenylketene: \boldsymbol{n} - $\mathrm{Bu}_{3} \mathrm{P}$ $(10 \mathrm{mg}, 0.048 \mathrm{mmol})$ was added to a solution of diphenylketene ($73 \mathrm{mg}, 0.48 \mathrm{mmol}$) and $4-$ nitrobenzaldehyde ($94 \mathrm{mg}, 0.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, 85 \%$ $\mathrm{H}_{3} \mathrm{PO}_{4}$) analysis of the reaction solution at $-78^{\circ} \mathrm{C}: \delta 13.4,28.2 \mathrm{ppm}, 34.2 \mathrm{ppm} .{ }^{5,6,7}$

10
(S,Z)-3-Methyl-3-phenyl-4-(1-phenylethylidene)oxetan-2-one: Methylphenylketene ($57 \mathrm{mg}, 0.39 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.35 \mathrm{~mL}$) and was cooled to $-78{ }^{\circ} \mathrm{C} .(R)$-BINAPHANE ($27 \mathrm{mg}, 0.04 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.35 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. The phosphepine solution was then transferred via syringe to the flask containing the ketoketene solution. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 hours, after which the solvent was removed under reduced pressure. The crude material was dissolved in $10 \% \mathrm{EtOAc} /$ hexane $(12 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and passed through a plug of neutral silica ($6 \mathrm{~g}, 2 \times 2 \mathrm{~cm}$), eluting with $10 \% \mathrm{EtOAc} /$ hexane $(100 \mathrm{~mL})$. The solvent was then removed under reduced pressure to yield 10 as a colorless oil ($46 \mathrm{mg}, 81 \%$); HPLC analysis: 31% ee [Daicel Chiralpak AD column; $1 \mathrm{~mL} / \mathrm{min} ; \lambda=255 \mathrm{~nm}$; solvent system: 2% isopropanol in
hexane; retention times: 4.8 min (minor), 6.7 min (major) $] ;[\alpha]_{D}^{24}=-24.5\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right)^{7}$; IR (thin film): $1881,1844,1699,1140 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$): $\delta 7.52-7.16$ (m, $10 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.4,146.9,136.2,135.2$, 129.4, 128.6, 128.6, 127.6, 127.4, 126.3, 108.6, 64.4, 19.6, 15.6; MS (EI 70 eV): m/z 264, 132, 104, 78; $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ HRMS m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}$: 287.1043; found: 287.1039.

1. Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, $4^{\text {th }}$ ed., Butterworth Heinemann, 2002.
2. Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 10006-10007.
3. Wiskur, S. L.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 6176-6177.
4. Allen, A. D.; Baigrie, L. M.; Gong, L.; Tidwell, T. T. Can. J. Chem. 1991, 69, 138-145.
5. Ibrahim, A. A.; Harzmann, G. D.; Kerrigan, N. J. J. Org. Chem., 2009, 74, 1777-1780.
6. Vedejs, E.; Diver, S. T. J. Am. Chem. Soc. 1993, 115, 3358-3359.
7. Lv, H.; Zang, Y. R.; Huang, X. L.; Ye, S. Adv. Synth. Catal. 2008, 350, 2715-2718.

Determination of trans Relative Stereochemistry:

X-Ray Crystal Structure for Compound (\pm)-3d

(\pm) - 3 d

A colorless solution of crude (\pm)-3d in acetone/hexane (1:4) was prepared. Crystals suitable for X-ray structure analysis were obtained from this on standing.
A clear colourless plate-like specimen of $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}$, approximate dimensions $0.09 \mathrm{~mm} \times 0.13$ $\mathrm{mm} \times 0.33 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.
A total of 2668 frames were collected. The total exposure time was 7.41 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 14868 reflections to a maximum θ angle of 68.19° ($0.83 \AA$ resolution), of which 2392 were independent (average redundancy 6.216 , completeness $=97.0 \%, \mathrm{R}_{\text {int }}=4.82 \%, \mathrm{R}_{\text {sig }}=3.01 \%$) and 1843 (77.05\%) were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{\mathrm{a}}=24.6054(4) \AA, \underline{\mathrm{b}}=7.01010(10) \AA \mathrm{A}, \underline{\mathrm{c}}=$ $15.5516(2) \AA$, volume $=2682.44(7) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 1166 reflections above $20 \sigma(\mathrm{I})$ with $7.183^{\circ}<2 \theta<130.0^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.781 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7665 and 0.9278 .
The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $\mathrm{P} \mathrm{c} \mathrm{c} \mathrm{n} \mathrm{with} \mathrm{Z}=$,8 for the formula unit, $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 191 variables converged at $\mathrm{R} 1=3.91 \%$, for the observed data and $\mathrm{wR} 2=10.37 \%$ for all data. The goodness-of-fit was 1.042. The largest peak in the final difference electron density synthesis was $0.229 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.222 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.042 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.403 \mathrm{~g} / \mathrm{cm}^{3}$ and $F(000), 1184 \mathrm{e}^{-}$.

Table 1. Sample and crystal data for 3d

Identification code
Chemical formula
Formula weight

Temperature	$100(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal size	$0.09 \times 0.13 \times 0.33 \mathrm{~mm}$	
Crystal habit	clear colourless plate	
Crystal system	orthorhombic	
Space group	P c c n	
	$\mathrm{a}=24.6054(4) \AA$	$\alpha=90^{\circ}$
Unit cell dimensions	$\mathrm{b}=7.01010(10) \AA$	$\beta=90^{\circ}$
	$\mathrm{c}=15.5516(2) \AA$	$\gamma=90^{\circ}$
Volume	$2682.44(7) \AA^{3}$	
Z	8	
Density (calculated)	$1.403 \mathrm{Mg} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.846 \mathrm{~mm}^{-1}$	
F(000)	1184	

Table 2. Data collection and structure refinement for 3d

Theta range for data collection	3.59 to 68.19°
Index ranges	$-29<=\mathrm{h}<=25,-7<=\mathrm{k}<=6,-18<=1<=16$
Reflections collected	14868
Independent reflections	$2392[\mathrm{R}(\mathrm{int})=0.0482]$
Coverage of independent reflections	97.0\%
Absorption correction	multi-scan
Max. and min. transmission	0.9278 and 0.7665
Structure solution technique	direct methods
Structure solution program	SHELXS-97 (Sheldrick, 1990)
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-97 (Sheldrick, 1997)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	2392/0/191
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.042
$\Delta / \sigma_{\text {max }}$	0.001
al R indices	$\begin{array}{ll} 1843 \text { data; } & \mathrm{R} 1=0.0391, \\ \mathrm{I}>2 \sigma(\mathrm{I}) & \mathrm{wR} 2=0.0956 \end{array}$
R indices	$\begin{array}{ll} \text { all data } & \mathrm{R} 1=0.0560 \\ \mathrm{wR2}=0.1037 \end{array}$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)+(0.0533 \mathrm{P})^{2}+0.7123 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}^{2}+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
Largest diff. peak and hole	0.229 and -0.222 e \AA^{-3}
R.M.S. deviation from mean	$0.042 \mathrm{e}^{\AA^{-3}}$

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (\mathbf{A}^{2}) for 3d

$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U (e q)}$
O1	$0.59128(5)$	$0.20915(17)$	$0.88318(8)$	$0.0284(2)$
O2	$0.67093(6)$	$0.0511(2)$	$0.85968(8)$	$0.0358(2)$
O3	$0.52573(6)$	$0.7966(2)$	$0.22741(8)$	$0.0367(4)$
O4	$0.53880(6)$	$0.0483(2)$	$0.14947(8)$	$0.0348(2)$
N1	$0.53697(6)$	$0.8754(2)$	$0.15881(9)$	$0.0282(4)$
C1	$0.64462(8)$	$0.1946(2)$	$0.86051(11)$	$0.0284(4)$
C2	$0.65289(6)$	$0.4058(2)$	$0.84292(11)$	$0.0261(4)$
C3	$0.59127(6)$	$0.4173(2)$	$0.86756(11)$	$0.0256(4)$
C4	$0.69259(8)$	$0.4999(2)$	$0.90607(11)$	$0.0304(4)$
C5	$0.57547(6)$	$0.5306(2)$	$0.94534(10)$	$0.0243(4)$
C6	$0.56884(6)$	$0.4477(2)$	$0.02624(11)$	$0.0259(4)$
C7	$0.55498(6)$	$0.5591(2)$	$0.09655(11)$	$0.0263(4)$
C8	$0.54939(6)$	$0.7529(2)$	$0.08453(11)$	$0.0252(4)$
C9	$0.55623(6)$	$0.8396(2)$	$0.00524(11)$	$0.0260(4)$
C10	$0.56859(6)$	$0.7260(2)$	$0.93515(11)$	$0.0253(4)$
C11	$0.66617(6)$	$0.4588(2)$	$0.75036(11)$	$0.0267(4)$
C12	$0.66823(8)$	$0.6494(2)$	$0.72724(12)$	$0.0322(4)$
C13	$0.67970(8)$	$0.7022(2)$	$0.64314(12)$	$0.0361(5)$
C14	$0.68930(8)$	$0.5654(2)$	$0.58158(12)$	$0.0373(5)$
C15	$0.68727(10)$	$0.3773(2)$	$0.60407(12)$	$0.0468(5)$
C16	$0.67595(9)$	$0.3222(2)$	$0.68835(12)$	$0.0401(5)$

Table 4. Bond lengths (A) for 3d

$\mathrm{O} 1-\mathrm{C} 1$	$1.363(2)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.479(2)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.196(2)$	$\mathrm{O} 3-\mathrm{N} 1$	$1.233(2)$
$\mathrm{O} 4-\mathrm{N} 1$	$1.221(2)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.472(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.520(3)$	$\mathrm{C} 2-\mathrm{C} 11$	$1.522(2)$
$\mathrm{C} 2-\mathrm{C} 4$	$1.534(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.566(3)$
C3-C5	$1.498(2)$	C3-H3	1.0
C4-H4A	0.98	C4-H4B	0.98
C4-H4C	0.98	C5-C10	$1.390(3)$
C5-C6	$1.395(2)$	C6-C7	$1.386(2)$
C6-H6	0.95	C7-C8	$1.379(3)$
C7-H7	0.95	C8-C9	$1.385(2)$
C9-C10	$1.384(2)$	C9-H9	0.95

C10-H10	0.95	C11-C16	$1.381(3)$
C11-C12	$1.384(3)$	C12-C13	$1.388(3)$
C12-H12	0.95	C13-C14	$1.375(3)$
C13-H13	0.95	C14-C15	$1.365(3)$
C14-H14	0.95	C15-C16	$1.395(3)$
C15-H15	0.95	C16-H16	0.95

Table 5. Bond angles $\left(^{\circ}\right.$) for 3d

C1-O1-C3	$91.82(13)$	O4-N1-O3	$123.79(15)$
O4-N1-C8	$118.56(15)$	O3-N1-C8	$117.65(16)$
O2-C1-O1	$125.94(18)$	O2-C1-C2	$138.16(18)$
O1-C1-C2	$95.88(14)$	C1-C2-C11	$115.91(15)$
C1-C2-C4	$112.89(15)$	C11-C2-C4	$111.33(15)$
C1-C2-C3	$82.89(13)$	C11-C2-C3	$115.26(15)$
C4-C2-C3	$115.96(15)$	O1-C3-C5	$112.99(14)$
O1-C3-C2	$89.39(13)$	C5-C3-C2	$118.41(15)$
O1-C3-H3	111.4	C5-C3-H3	111.4
C2-C3-H3	111.4	C2-C4-H4A	109.5
C2-C4-H4B	109.5	H4A-C4-H4B	109.5
C2-C4-H4C	109.5	H4A-C4-H4C	109.5
H4B-C4-H4C	109.5	C10-C5-C6	$119.94(16)$
C10-C5-C3	$117.54(15)$	C6-C5-C3	$122.50(16)$
C7-C6-C5	$120.36(17)$	C7-C6-H6	119.8
C5-C6-H6	119.8	C8-C7-C6	$118.21(16)$
C8-C7-H7	120.9	C6-C7-H7	120.9
C7-C8-C9	$122.77(16)$	C7-C8-N1	$119.31(16)$
C9-C8-N1	$117.90(16)$	C10-C9-C8	$118.38(17)$
C10-C9-H9	120.8	C8-C9-H9	120.8
C9-C10-C5	$120.29(16)$	C9-C10-H10	119.9
C5-C10-H10	119.9	C16-C11-C12	$118.81(17)$
C16-C11-C2	$121.90(17)$	C12-C11-C2	$119.29(16)$
C11-C12-C13	$120.62(18)$	C11-C12-H12	119.7
C13-C12-H12	119.7	C14-C13-C12	$120.3(2)$
C14-C13-H13	119.8	C12-C13-H13	119.8
C15-C14-C13	$119.3(2)$	C15-C14-H14	120.4
C13-C14-H14	120.4	C14-C15-C16	$121.1(2)$
C14-C15-H15	119.5	C16-C15-H15	119.5
C11-C16-C15	$119.9(2)$	C11-C16-H16	120.0
C15-C16-H16	120.0		

Table 6. Torsion angles $\left({ }^{\circ}\right)$ for 3d

C3-O1-C1-O2	$179.90(18)$	C3-O1-C1-C2	$1.09(13)$
O2-C1-C2-C11	$65.7(3)$	O1-C1-C2-C11	$-115.71(16)$
O2-C1-C2-C4	$-64.4(3)$	O1-C1-C2-C4	$114.19(15)$
O2-C1-C2-C3	$-179.6(2)$	O1-C1-C2-C3	$-1.04(13)$
C1-O1-C3-C5	$-121.88(15)$	C1-O1-C3-C2	$-1.06(13)$
C1-C2-C3-O1	$0.95(12)$	C11-C2-C3-O1	$116.30(15)$
C4-C2-C3-O1	$-111.09(16)$	C1-C2-C3-C5	$116.95(16)$
C11-C2-C3-C5	$-127.70(17)$	C4-C2-C3-C5	$4.9(2)$
O1-C3-C5-C10	$-173.34(15)$	C2-C3-C5-C10	$84.2(2)$
O1-C3-C5-C6	$8.1(2)$	C2-C3-C5-C6	$-94.4(2)$
C10-C5-C6-C7	$0.5(3)$	C3-C5-C6-C7	$179.03(16)$
C5-C6-C7-C8	$-1.6(3)$	C6-C7-C8-C9	$1.0(3)$
C6-C7-C8-N1	$-177.45(15)$	O4-N1-C8-C7	$171.01(16)$
O3-N1-C8-C7	$-8.4(2)$	O4-N1-C8-C9	$-7.5(2)$
O3-N1-C8-C9	$173.12(16)$	C7-C8-C9-C10	$0.7(3)$
N1-C8-C9-C10	$179.21(16)$	C8-C9-C10-C5	$-1.9(3)$
C6-C5-C10-C9	$1.3(3)$	C3-C5-C10-C9	$-177.31(16)$
C1-C2-C11-C16	$-6.8(3)$	C4-C2-C11-C16	$124.0(2)$
C3-C2-C11-C16	$-101.3(2)$	C1-C2-C11-C12	$172.78(17)$
C4-C2-C11-C12	$-56.4(2)$	C3-C2-C11-C12	$78.4(2)$
C16-C11-C12-C13	$0.3(3)$	C2-C11-C12-C13	$-179.35(18)$
C11-C12-C13-C14	$-0.2(3)$	C12-C13-C14-C15	$0.2(3)$
C13-C14-C15-C16	$-0.4(3)$	C12-C11-C16-C15	$-0.5(3)$
C2-C11-C16-C15	$179.2(2)$	C14-C15-C16-C11	$0.5(4)$

Table 7. Anisotropic atomic displacement parameters ($\AA^{\mathbf{2}}$) for 3d

The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2\right.$ $\mathrm{hka} \mathrm{a}^{*}{ }^{*} \mathrm{U}_{12}$]

	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
O1	$0.0310(8)$	$0.0242(7)$	$0.0299(5)$	$-0.0019(5)$	$0.0012(5)$	$-0.0007(5)$
O2	$0.0411(8)$	$0.0293(8)$	$0.0372(7)$	$-0.0009(5)$	$-0.0008(5)$	$0.0065(5)$
O3	$0.0476(9)$	$0.0415(9)$	$0.0209(5)$	$0.0006(5)$	$0.0059(5)$	$-0.0079(5)$
O4	$0.0457(9)$	$0.0289(9)$	$0.0297(7)$	$-0.0030(5)$	$0.0011(5)$	$0.0036(5)$
N1	$0.0281(9)$	$0.0316(11)$	$0.0248(8)$	$-0.0011(5)$	$0.0000(5)$	$-0.0008(5)$
C1	$0.0331(11)$	$0.0312(11)$	$0.0210(9)$	$-0.0029(8)$	$-0.0018(7)$	$0.0006(8)$
C2	$0.0261(10)$	$0.0264(10)$	$0.0257(9)$	$-0.0031(7)$	$-0.0001(7)$	$0.0012(7)$
C3	$0.0295(10)$	$0.0227(10)$	$0.0247(9)$	$-0.0002(7)$	$-0.0006(7)$	$-0.0008(7)$

SI-18

	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
C4	$0.0296(11)$	$0.0343(11)$	$0.0273(10)$	$-0.0025(8)$	$-0.0012(8)$	$-0.0004(8)$
C5	$0.0205(10)$	$0.0289(10)$	$0.0234(9)$	$0.0001(7)$	$-0.0008(7)$	$-0.0010(7)$
C6	$0.0252(10)$	$0.0240(10)$	$0.0285(9)$	$0.0024(7)$	$-0.0011(7)$	$-0.0016(7)$
C7	$0.0264(10)$	$0.0310(11)$	$0.0216(9)$	$0.0029(7)$	$-0.0014(7)$	$-0.0040(7)$
C8	$0.0235(10)$	$0.0304(11)$	$0.0218(9)$	$-0.0029(7)$	$0.0001(7)$	$-0.0014(7)$
C9	$0.0260(10)$	$0.0249(10)$	$0.0272(9)$	$0.0008(7)$	$-0.0009(7)$	$-0.0005(7)$
C10	$0.0254(10)$	$0.0277(10)$	$0.0229(9)$	$0.0024(7)$	$0.0012(7)$	$-0.0012(7)$
C11	$0.0226(10)$	$0.0330(11)$	$0.0246(9)$	$-0.0031(7)$	$-0.0004(7)$	$-0.0010(7)$
C12	$0.0356(11)$	$0.0312(11)$	$0.0297(9)$	$-0.0027(8)$	$0.0060(8)$	$0.0002(8)$
C13	$0.0329(11)$	$0.0407(13)$	$0.0346(10)$	$0.0075(9)$	$0.0040(8)$	$0.0007(8)$
C14	$0.0311(11)$	$0.0548(14)$	$0.0260(10)$	$0.0005(9)$	$0.0030(8)$	$-0.0005(9)$
C15	$0.0621(16)$	$0.0504(15)$	$0.0279(10)$	$-0.0122(10)$	$0.0057(10)$	$-0.0002(11)$
C16	$0.0555(14)$	$0.0330(11)$	$0.0318(10)$	$-0.0046(9)$	$0.0028(9)$	$-0.0031(9)$

Table 8. Hydrogen atomic coordinates and isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for 3d

	\mathbf{y} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U (e q)}$
H3	0.5683	0.4513	0.8167	0.031
H4A	0.6829	0.4640	0.9650	0.046
H4B	0.6906	0.6388	0.9000	0.046
H4C	0.7297	0.4569	0.8936	0.046
H6	0.5738	0.3142	1.0332	0.031
H7	0.5495	0.5033	1.1515	0.032
H9	0.5525	0.9738	0.9991	0.031
H10	0.5724	0.7819	0.8798	0.03
H12	0.6617	0.7449	0.7693	0.039
H13	0.6809	0.8334	0.6280	0.043
H14	0.6973	0.6015	0.5241	0.045
H15	0.6937	0.2825	0.5616	0.056
H16	0.6750	0.1907	0.7031	0.048

Determination of Absolute Stereochemistry:

X-Ray Crystal Structure for Compound 3n

3n

A colorless solution of crude $\mathbf{3 n}$ in EtOAc/hexane (2:3) was prepared. Crystals suitable for X-ray structure analysis were obtained from this on standing.
A clear colourless rod-like specimen of $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{4}$, approximate dimensions $0.28 \mathrm{~mm} \times 0.34$ $\mathrm{mm} \times 0.39 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.
A total of 3681 frames were collected. The total exposure time was 5.11 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 24408 reflections to a maximum θ angle of 71.71° ($0.81 \AA$ resolution), of which 3296 were independent (average redundancy 7.405 , completeness $\left.=99.9 \%, \mathrm{R}_{\text {int }}=2.49 \%, \mathrm{R}_{\text {sig }}=1.36 \%\right)$ and $3213(97.48 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{\mathrm{a}}=9.51250(10) \AA, \underline{\mathrm{b}}=10.85260(10) \AA, \underline{\mathrm{c}}=$ $16.4229(2) \AA$, volume $=1695.42(3) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 7955 reflections above $20 \sigma(\mathrm{I})$ with $8.146^{\circ}<2 \theta<142.1^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.877 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7534 and 0.8127 .

Table 1. Sample and crystal data for $3 n$

Identification code
Chemical formula
Formula weight
Temperature
Wavelength
Crystal size
Crystal habit
Crystal system
Space group
Unit cell dimensions

3n
$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{4}$
345.34

100(2) K
1.54178 Å
$0.28 \times 0.34 \times 0.39 \mathrm{~mm}$
clear colourless rod orthorhombic
P 212121

$$
\begin{array}{ll}
\mathrm{a}=9.51250(10) \AA & \alpha=90^{\circ} \\
\mathrm{b}=10.85260(10) \AA & \beta=90^{\circ}
\end{array}
$$

	$\mathrm{c}=16.4229(2) \AA$	$\gamma=90^{\circ}$
Volume	$1695.42(3) \AA^{3}$	
Z	4	
Density (calculated)	$1.353 \mathrm{Mg} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.775 \mathrm{~mm}^{-1}$	
F(000)	720	

Table 2. Data collection and structure refinement for 3n

Theta range for data collection	4.88 to 71.71°
Index ranges	$-11<=\mathrm{h}<=11,-13<=\mathrm{k}<=13,-19<=1<=20$
Reflections collected	24408
Independent reflections	$3296[\mathrm{R}(\mathrm{int})=0.0249]$
Coverage of independent reflections	99.9\%
Absorption correction	multi-scan
Max. and min. transmission	0.8127 and 0.7534
Structure solution technique	direct methods
Structure solution program	SHELXS-97 (Sheldrick, 1990)
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-97 (Sheldrick, 1997)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	3296/0/236
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.065
$\Delta / \sigma_{\text {max }}$	0.013
Final R indices	$\begin{array}{ll} 3213 \text { data; } & \mathrm{R} 1=0.0266 \\ \mathrm{I}>2 \sigma(\mathrm{I}) & \mathrm{wR} 2=0.0687 \end{array}$
Fnal R	$\begin{array}{ll} \text { all data } & \mathrm{R} 1=0.0274 \\ \mathrm{wR} 2=0.0694 \end{array}$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\mathrm{a}^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0424 \mathrm{P})^{2}+0.2177 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3 \end{aligned}$
Largest diff. peak and hole	0.174 and $-0.176 \mathrm{e}^{-3}$
R.M.S. deviation from mean	$0.037 \mathrm{e}^{\circ}{ }^{-3}$

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (\mathbf{A}^{2}) for $\mathbf{3 n}$

$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	\mathbf{x} / \mathbf{a}	$\mathbf{y / b}$	\mathbf{z} / \mathbf{c}	$\mathbf{U (e q)}$
O1	$0.00270(9)$	$0.35799(8)$	$0.94346(5)$	$0.0279(2)$
O2	$0.78038(9)$	$0.30505(9)$	$0.90528(5)$	$0.0313(2)$
O3	$0.64386(9)$	$0.34257(9)$	$0.69770(6)$	$0.0350(2)$

SI-21

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U (e q)}$
O4	$0.50517(10)$	$0.48149(10)$	$0.64865(6)$	$0.0429(2)$
N1	$0.53405(11)$	$0.40185(10)$	$0.69900(6)$	$0.0288(2)$
C1	$0.90298(12)$	$0.28308(11)$	$0.91095(6)$	$0.0253(2)$
C2	$0.00172(12)$	$0.17614(11)$	$0.89128(6)$	$0.0227(2)$
C3	$0.11489(12)$	$0.26539(11)$	$0.92984(6)$	$0.0242(2)$
C4	$0.22896(12)$	$0.31200(11)$	$0.87531(6)$	$0.0234(2)$
C5	$0.20635(12)$	$0.40996(11)$	$0.82228(6)$	$0.0277(2)$
C6	$0.30803(12)$	$0.44197(11)$	$0.76572(8)$	$0.0295(2)$
C7	$0.43069(12)$	$0.37435(11)$	$0.76315(6)$	$0.0254(2)$
C8	$0.45868(12)$	$0.27953(11)$	$0.81690(6)$	$0.0275(2)$
C9	$0.35665(12)$	$0.24922(11)$	$0.87344(6)$	$0.0272(2)$
C10	$0.02259(11)$	$0.15296(10)$	$0.80083(6)$	$0.0214(2)$
C11	$0.95137(12)$	$0.22179(11)$	$0.74232(6)$	$0.0252(2)$
C12	$0.98550(13)$	$0.20953(12)$	$0.66037(6)$	$0.0293(2)$
C13	$0.09129(12)$	$0.12980(12)$	$0.63652(6)$	$0.0290(2)$
C14	$0.16104(12)$	$0.05953(11)$	$0.69453(6)$	$0.0269(2)$
C15	$0.12604(12)$	$0.07027(11)$	$0.77628(6)$	$0.0246(2)$
C16	$0.96604(12)$	$0.06176(11)$	$0.94087(6)$	$0.0240(2)$
C17	$0.82716(12)$	$0.01986(12)$	$0.94124(6)$	$0.0291(2)$
C18	$0.78946(14)$	$0.91788(12)$	$0.98716(8)$	$0.0352(2)$
C19	$0.88887(17)$	$0.85661(12)$	$0.03338(8)$	$0.0374(2)$
C20	$0.02684(17)$	$0.89732(12)$	$0.03302(8)$	$0.0363(2)$
C21	$0.06575(13)$	$0.99934(11)$	$0.98698(6)$	$0.0301(2)$

Table 5. Bond lengths ($\mathbf{(}$) for $\mathbf{3 n}$

O1-C1	$1.3585(16)$	O1-C3	$1.4828(14)$
O2-C1	$1.1940(15)$	O3-N1	$1.2270(14)$
O4-N1	$1.2273(15)$	N1-C7	$1.4715(16)$
C1-C2	$1.5276(17)$	C2-C10	$1.5197(16)$
C2-C16	$1.5229(15)$	C2-C3	$1.5805(16)$
C3-C4	$1.4951(17)$	C3-H3	1.0
C4-C5	$1.3910(17)$	C4-C9	$1.3930(17)$
C5-C6	$1.3854(18)$	C5-H5	0.95
C6-C7	$1.3790(17)$	C6-H6	0.95
C7-C8	$1.3817(17)$	C8-C9	$1.3830(18)$
C8-H8	0.95	C9-H9	0.95
C10-C15	$1.3915(17)$	C10-C11	$1.3929(17)$
C11-C12	$1.3908(17)$	C11-H11	0.95
C12-C13	$1.384(2)$	C12-H12	0.95

SI-22

C13-C14	$1.3891(18)$	C13-H13	0.95
C14-C15	$1.3881(16)$	C14-H14	0.95
C15-H15	0.95	C16-C21	$1.3899(17)$
C16-C17	$1.3972(17)$	C17-C18	$1.386(2)$
C17-H17	0.95	C18-C19	$1.383(2)$
C18-H18	0.95	C19-C20	$1.385(2)$
C19-H19	0.95	C20-C21	$1.3908(18)$
C20-H20	0.95	C21-H21	0.95

Table 6. Bond angles (${ }^{\circ}$) for 3n

C1-O1-C3	$92.16(8)$	O3-N1-O4	$123.22(11)$
O3-N1-C7	$118.36(11)$	O4-N1-C7	$118.40(10)$
O2-C1-O1	$126.38(12)$	O2-C1-C2	$137.37(12)$
O1-C1-C2	$96.22(9)$	C10-C2-C16	$114.64(9)$
C10-C2-C1	$114.38(9)$	C16-C2-C1	$111.66(9)$
C10-C2-C3	$113.84(9)$	C16-C2-C3	$115.91(9)$
C1-C2-C3	$82.44(9)$	O1-C3-C4	$112.54(9)$
O1-C3-C2	$89.17(8)$	C4-C3-C2	$117.50(9)$
O1-C3-H3	111.9	C4-C3-H3	111.9
C2-C3-H3	111.9	C5-C4-C9	$119.67(11)$
C5-C4-C3	$121.42(11)$	C9-C4-C3	$118.72(10)$
C6-C5-C4	$120.23(11)$	C6-C5-H5	119.9
C4-C5-H5	119.9	C7-C6-C5	$118.54(11)$
C7-C6-H6	120.7	C5-C6-H6	120.7
C6-C7-C8	$122.67(11)$	C6-C7-N1	$118.64(11)$
C8-C7-N1	$118.66(11)$	C7-C8-C9	$118.09(11)$
C7-C8-H8	121.0	C9-C8-H8	121.0
C8-C9-C4	$120.69(11)$	C8-C9-H9	119.7
C4-C9-H9	119.7	C15-C10-C11	$119.34(11)$
C15-C10-C2	$118.84(10)$	C11-C10-C2	$121.46(10)$
C12-C11-C10	$120.17(11)$	C12-C11-H11	119.9
C10-C11-H11	119.9	C13-C12-C11	$120.24(11)$
C13-C12-H12	119.9	C11-C12-H12	119.9
C12-C13-C14	$119.77(11)$	C12-C13-H13	120.1
C14-C13-H13	120.1	C15-C14-C13	$120.18(11)$
C15-C14-H14	119.9	C13-C14-H14	119.9
C14-C15-C10	$120.26(11)$	C14-C15-H15	119.9
C10-C15-H15	119.9	C21-C16-C17	$118.96(11)$
C21-C16-C2	$122.45(11)$	C17-C16-C2	$118.58(11)$
C18-C17-C16	$120.45(12)$	C18-C17-H17	119.8

$\mathrm{C} 16-\mathrm{C} 17-\mathrm{H} 17$	119.8	$\mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 17$	$120.36(13)$
$\mathrm{C} 19-\mathrm{C} 18-\mathrm{H} 18$	119.8	$\mathrm{C} 17-\mathrm{C} 18-\mathrm{H} 18$	119.8
C18-C19-C20	$119.49(12)$	C18-C19-H19	120.3
C20-C19-H19	120.3	C19-C20-C21	$120.57(13)$
C19-C20-H20	119.7	C21-C20-H20	119.7
C16-C21-C20	$120.17(12)$	C16-C21-H21	119.9
C20-C21-H21	119.9		

Table 7. Torsion angles (${ }^{\circ}$) for 3n

C3-O1-C1-O2	$178.29(12)$	C3-O1-C1-C2	$-0.26(8)$
O2-C1-C2-C10	$69.18(18)$	O1-C1-C2-C10	$-112.55(10)$
O2-C1-C2-C16	$-63.09(18)$	O1-C1-C2-C16	$115.19(10)$
O2-C1-C2-C3	$-178.03(15)$	O1-C1-C2-C3	$0.25(8)$
C1-O1-C3-C4	$119.85(10)$	C1-O1-C3-C2	$0.25(8)$
C10-C2-C3-O1	$113.14(10)$	C16-C2-C3-O1	$-110.68(10)$
C1-C2-C3-O1	$-0.22(7)$	C10-C2-C3-C4	$-1.99(15)$
C16-C2-C3-C4	$134.18(11)$	C1-C2-C3-C4	$-115.36(11)$
O1-C3-C4-C5	$-21.21(14)$	C2-C3-C4-C5	$80.23(14)$
O1-C3-C4-C9	$163.87(10)$	C2-C3-C4-C9	$-94.68(13)$
C9-C4-C5-C6	$2.52(17)$	C3-C4-C5-C6	$-172.35(11)$
C4-C5-C6-C7	$0.33(18)$	C5-C6-C7-C8	$-2.8(2)$
C5-C6-C7-N1	$175.27(11)$	O3-N1-C7-C6	$179.00(11)$
O4-N1-C7-C6	$-2.20(17)$	O3-N1-C7-C8	$-2.83(16)$
O4-N1-C7-C8	$175.97(11)$	C6-C7-C8-C9	$2.33(18)$
N1-C7-C8-C9	$-175.76(11)$	C7-C8-C9-C4	$0.64(17)$
C5-C4-C9-C8	$-3.03(17)$	C3-C4-C9-C8	$171.98(11)$
C16-C2-C10-C15	$-58.65(14)$	C1-C2-C10-C15	$170.52(10)$
C3-C2-C10-C15	$78.09(13)$	C16-C2-C10-C11	$128.25(12)$
C1-C2-C10-C11	$-2.58(15)$	C3-C2-C10-C11	$-95.00(13)$
C15-C10-C11-C12	$-1.26(17)$	C2-C10-C11-C12	$171.81(11)$
C10-C11-C12-C13	$-0.62(18)$	C11-C12-C13-C14	$1.65(18)$
C12-C13-C14-C15	$-0.79(18)$	C13-C14-C15-C10	$-1.10(18)$
C11-C10-C15-C14	$2.11(17)$	C2-C10-C15-C14	$-171.13(11)$
C10-C2-C16-C21	$100.44(13)$	C1-C2-C16-C21	$-127.42(12)$
C3-C2-C16-C21	$-35.38(15)$	C10-C2-C16-C17	$-80.95(13)$
C1-C2-C16-C17	$51.19(14)$	C3-C2-C16-C17	$143.22(11)$
C21-C16-C17-C18	$0.24(18)$	C2-C16-C17-C18	$-178.41(11)$
C16-C17-C18-C19	$0.2(2)$	C17-C18-C19-C20	$-0.5(2)$
C18-C19-C20-C21	$0.3(2)$	C17-C16-C21-C20	$-0.41(18)$
C2-C16-C21-C20	$178.19(11)$	C19-C20-C21-C16	$0.1(2)$

Table 8. Anisotropic atomic displacement parameters (\AA^{2}) for 3n

The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h\right.$ $\mathrm{ka}{ }^{*} \mathrm{~b}^{*} \mathrm{U}_{12}$]

	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
O1	$0.0303(4)$	$0.0265(4)$	$0.0270(4)$	$-0.0023(2)$	$0.0064(2)$	$0.0016(4)$
O2	$0.0263(5)$	$0.0365(5)$	$0.0310(4)$	$0.0072(4)$	$0.0088(4)$	$0.0058(4)$
O3	$0.0219(4)$	$0.0430(5)$	$0.0401(5)$	$-0.0053(4)$	$0.0023(4)$	$0.0003(4)$
O4	$0.0347(5)$	$0.0448(5)$	$0.0494(5)$	$0.0164(5)$	$0.0098(4)$	$0.0001(5)$
N1	$0.0221(5)$	$0.0307(5)$	$0.0336(5)$	$-0.0042(4)$	$0.0006(4)$	$-0.0052(4)$
C1	$0.0277(5)$	$0.0288(5)$	$0.0194(5)$	$0.0041(4)$	$0.0048(4)$	$0.0010(5)$
C2	$0.0202(5)$	$0.0260(5)$	$0.0219(5)$	$0.0010(4)$	$-0.0007(4)$	$0.0006(5)$
C3	$0.0275(5)$	$0.0240(5)$	$0.0211(5)$	$-0.0009(4)$	$-0.0022(5)$	$0.0005(5)$
C4	$0.0241(5)$	$0.0242(5)$	$0.0220(5)$	$-0.0034(4)$	$-0.0034(4)$	$-0.0026(5)$
C5	$0.0233(5)$	$0.0266(5)$	$0.0330(5)$	$0.0021(5)$	$0.0004(5)$	$0.0021(5)$
C6	$0.0268(5)$	$0.0267(5)$	$0.0351(5)$	$0.0065(5)$	$0.0003(5)$	$-0.0009(5)$
C7	$0.0214(5)$	$0.0274(5)$	$0.0274(5)$	$-0.0034(5)$	$-0.0010(5)$	$-0.0057(5)$
C8	$0.0212(5)$	$0.0307(5)$	$0.0305(5)$	$-0.0038(5)$	$-0.0050(5)$	$0.0032(5)$
C9	$0.0282(5)$	$0.0280(5)$	$0.0255(5)$	$0.0018(5)$	$-0.0056(5)$	$0.0016(5)$
C10	$0.0196(5)$	$0.0231(5)$	$0.0216(5)$	$-0.0010(4)$	$0.0002(4)$	$-0.0035(4)$
C11	$0.0242(5)$	$0.0257(5)$	$0.0257(5)$	$-0.0003(4)$	$-0.0007(5)$	$-0.0004(5)$
C12	$0.0353(7)$	$0.0292(5)$	$0.0235(5)$	$0.0029(5)$	$-0.0046(5)$	$-0.0019(5)$
C13	$0.0342(5)$	$0.0312(5)$	$0.0217(5)$	$-0.0020(5)$	$0.0033(5)$	$-0.0086(5)$
C14	$0.0237(5)$	$0.0281(5)$	$0.0290(5)$	$-0.0057(5)$	$0.0032(5)$	$-0.0030(5)$
C15	$0.0233(5)$	$0.0251(5)$	$0.0255(5)$	$-0.0004(4)$	$-0.0018(4)$	$-0.0015(5)$
C16	$0.0288(5)$	$0.0254(5)$	$0.0179(5)$	$-0.0008(4)$	$0.0021(5)$	$-0.0014(5)$
C17	$0.0296(5)$	$0.0309(5)$	$0.0267(5)$	$-0.0016(5)$	$0.0016(5)$	$-0.0013(5)$
C18	$0.0362(7)$	$0.0353(7)$	$0.0342(7)$	$-0.0017(5)$	$0.0086(5)$	$-0.0079(5)$
C19	$0.0566(9)$	$0.0290(7)$	$0.0265(5)$	$0.0040(5)$	$0.0053(5)$	$-0.0097(5)$
C20	$0.0527(9)$	$0.0291(5)$	$0.0270(5)$	$0.0031(5)$	$-0.0083(5)$	$-0.0013(5)$
C21	$0.0333(5)$	$0.0277(5)$	$0.0293(5)$	$0.0005(5)$	$-0.0058(5)$	$-0.0014(5)$

Table 9. Hydrogen atomic coordinates and isotropic atomic displacement parameters (\AA^{2}) for 3n

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U}(\mathbf{e q})$
H3	0.1530	0.2325	0.9823	0.029
H5	0.1209	0.4551	0.8249	0.033
H6	0.2936	0.5090	0.7295	0.035
H8	0.5455	0.2364	0.8151	0.033

SI-25

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	$\mathbf{z / c}$	$\mathbf{U}(\mathbf{e q})$
H9	0.3738	0.1849	0.9114	0.033
H11	-0.1207	0.2773	0.7584	0.03
H12	-0.0640	0.2561	0.6206	0.035
H13	0.1161	0.1232	0.5807	0.035
H14	0.2329	0.0040	0.6782	0.032
H15	0.1729	0.0210	0.8156	0.03
H17	-0.2419	0.0615	0.9098	0.035
H18	-0.3052	-0.1101	0.9869	0.042
H19	-0.1373	-0.2129	1.0651	0.045
H20	0.0955	-0.1448	1.0645	0.044
H21	0.1607	0.0264	0.9871	0.036

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 212121 , with $\mathrm{Z}=4$ for the formula unit, $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{4}$. The final anisotropic fullmatrix least-squares refinement on F^{2} with 236 variables converged at $\mathrm{R} 1=2.66 \%$, for the observed data and $\mathrm{wR} 2=6.94 \%$ for all data. The goodness-of-fit was 1.065. The largest peak in the final difference electron density synthesis was $0.174 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.176 \mathrm{e}^{-}$ $/ \AA^{3}$ with an RMS deviation of $0.037 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.353 \mathrm{~g} / \mathrm{cm}^{3}$ and $F(000), 720 \mathrm{e}^{-}$.

