Supporting Information

Synthesis of In₂O₃ Nanowire-Decorated Ga₂O₃ Nanobelt Heterostructures and Their Electrical and Field-Emission Properties

Jing Lin,* Yang Huang,* Yoshio Bando, Chengchun Tang, Chun Li, Dmitri Golberg

International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-004, Japan

*Address correspondence to lin.jing@nims.go.jp, huang.yang@nims.go.jp.

Figure S1. (a) Low- and (b,c) high-magnification SEM images reveal that the product consists of numerous 1D heterostructures .

Figure S2. SEM images of products synthesized over different reaction times. (a) After reaction for 10 min. The image clearly shows many 1D heterostructures with short lengths grow on the copper foil substrate, indicating that the heteroepitaxial growth of heterostructures occurred at very early stages of the reaction process. (b) After reaction for 1 h. The final product consists of numerous heterostructures with high aspect ratio.

Standard Ga₂O₃ nanobelts were also synthesized under the same reaction conditions but without the use of the In reactant. Then FETs based on individual pure Ga₂O₃ nanobelt were fabricated, as shown in Figure S2(a). Figure S2(b) presents the I_{ds} - V_{ds} curve recorded on a representative single Ga₂O₃ nanobelt FET. It clearly shows that the resistance of pure Ga₂O₃ nanobelt is much higher than that of In₂O₃/Ga₂O₃ heterostructure. The electrical properties of pure Ga₂O₃ nanobelt was estimated to be 10.87 Ω • cm. An electron concentration value of 1.77*10¹⁷ cm⁻³ and mobility value of 3.2 cm² V⁻¹ S⁻¹ were estimated for this pure Ga₂O₃ nanobelts. Compared with those numbers in In₂O₃/Ga₂O₃ heterostructure, both the electron concentration and mobility are much lower in the pure Ga₂O₃ nanobelt.

Figure S3. (a) SEM image of a Ga₂O₃ nanobelt-based FET. (b) I_{ds} - V_{ds} curves measured with $V_g = 0$ V. (c) Experimental and fitted ln*I* vs *V* plots at an intermediate bias using the *I*-*V* curve in (b).