Supporting Information

Comparison of the ¹H NMR spectra of DPB and PBI (Figure S1A and S1B) shows the benzimidazole ring protons H_4 and H_7 at 7.9 and 7.7 ppm in both structures, though DPB contains two unsubstituted benzimidazole rings as evidenced by the peaks at 7.5-7.6 ppm and 8.3 ppm. Peak assignments for the benzimidazole ring protons of PBI have already been reported.¹ The ¹H NMR spectrum of oligomeric PBI synthesized with a 1.35 : 1 molar excess of isophthalic acid shows an additional minor peak at 8.9 ppm, likely resulting from isophthaloyl end groups (Figure S1C). The 1 H spectrum of isophthalic acid is also shown for comparison (Figure S1D), the isolated proton flanked by the two carboxyl groups occurring at 8.5 ppm. The ¹H¹³C HMQC spectrum of PBI (Figure S2) reveals that the broadened carbon peaks at ~113 and ~116 ppm are C_4 and C_7 respectively. ¹³C NMR spectra of PBI and PBIP_{Et}1 are displayed in Figure S3. The aromatic carbon region shows broadening upon phosphonylation with a noticeable shoulder at \sim 142 ppm corresponding to aromatic ring carbon atoms substituted with phosphorus. In Figure S4 the ${}^{1}H^{1}H$ COSY spectrum of PBIP_{Et} (DS ~ 1) shows the protons at ~8.1 ppm and ~8.5 ppm corresponding to H_{12} and H_{13} protons of a m-phenylene ring phosphonylated at C_{12} to be coupled confirming their proximity. The ${}^{1}H^{1}H$ COSY and ${}^{1}H^{13}C$ HMBC spectra of DPBP are shown in Figure S5. Correlation occurs between H_{11} and H_{12} and between H_6 and H_7 confirming the proximity of these protons. The HMBC spectrum shows long range correlation between H_6 and carbon at ~141 ppm, supporting a C_4 substituted benzimidazole ring with adjacent H_6 and H_7 protons. TDPB with two unsubstituted phenyl rings shows long range correlation of two C_{13} atoms with H_{11} in the ¹H¹³C HMBC spectrum (Figure S6), while DPBP shows only one such correlation. The ¹H¹³C HMQC spectra of TDPB and DPBP (Figure S7) show that in the case of TDPB, the carbon atoms at 129 ppm ($C_{6'}$) and 118 ppm ($C_{4'}$) bear the protons at 7.7 ppm ($H_{6'}$) and 7.9 ppm (H₄) respectively. The ¹H¹³C HMBC spectrum shows that $C_{6'}$ is coupled long range to H_{4'} supporting a structure in which $\mathbf{H}_{6'}$ and $\mathbf{H}_{4'}$ are positioned meta to each other. Additionally, the ¹H,¹³C HMQC and HMBC spectra of DPBP also show that the carbon resonating at 125 ppm (\mathbf{C}_6) bears \mathbf{H}_6 at 7.3 ppm (Figure S7A) and couples long range with \mathbf{H}_7 (7.7 ppm), Figure S5B.

Pyrolysis mass spectra of PBIP_{Et} (DS ~ 3) and TDPB are displayed in Figures S8 and S9 with possible fragment structures given in Table S1. Pyrolysis of PBIP_{Et} gave several large mass fragments corresponding to phosphonylated benzimidazole, phenyl benzimidazole, bibenzimidazole and diphenyl bibenzimidazole ring systems. The Pyrolysis mass spectrum of TDPB (Figure S9) shows m/z = 794 corresponding to the molecular ion, as well as m/z = 658 and 686 corresponding to diphosphonylated and diphosphonylated, ethylated DPB structures. Minor fragments, m/z = 640, 641 may arise from a triphosphonylated bibenzimidazole fragment. Figure S10 displays the HPLC/MS data for DPBP. The mass spectrum shows m/z = 659 indicating a diphosphonylated DPB structure. The fragment m/z = 330 could be the result of fragmentation into a monophosphonylated phenyl benzimidazole structure supporting DPBP-1 or possibly diprotonation of the DPBP structure.

Reference

(1) Kojima, T. J. Polym. Sci. Polym. Phys. 1980, 18, 1791-1800.

Figure S1. ¹H NMR spectra of A) DPB (300 MHz), B) PBI (600 MHz), C) oligomeric PBI (300 MHz), D) isophthalic acid (300 MHz), d^6 -DMSO.

Figure S2. 1 H 13 C HMQC (600 MHz) spectrum of PBI, 3% in d^{6} -DMSO.

Figure S3. ¹³C NMR (150 MHz) spectra of A) PBI and B) PBIP_{Et}1 in d^6 -DMSO.

Figure S4. ¹H¹H COSY (600 MHz) spectrum of PBIP_{Et} (DS ~ 1) in Φ -H region, d^6 -DMSO.

Figure S5. A) ¹H COSY (600 MHz) spectrum and B) ¹H¹³C HMBC (600 MHz) spectrum of DPBP in d^6 -DMSO.

Figure S6. ${}^{1}\text{H}{}^{13}\text{C}$ HMBC (600 MHz) spectra of A) DPBP and B) TDPB in d^{6} -DMSO.

7

Figure S7. ${}^{1}\text{H}{}^{13}\text{C}$ HMQC (600 MHz) spectra of A) DPBP and B) TDPB in d^{6} -DMSO.

Figure S8. Pyrolysis mass spectrum of PBIP_{Et}1 at 234 °C, A) m/z = 200-400, B) m/z = 400-700.

Figure S9. Pyrolysis mass spectrum of TDPB at 270-450 °C, m/z = 600-800.

Table S1. Structures Corresponding to Mass Spectral Fragments

Figure S10. Isolated DPBP product A) HPLC trace⁻ 50-100% MeCN gradient for 30 min, 1mL/min, mass spectral detector, and B) corresponding mass spectrum.