Supporting Information

Do [all]-S, S^{\prime}-Dioxide Oligothiophenes Show Electronic and Optical Properties of Oligoenes and/or of Oligothiophenes?

María Moreno Oliva, Juan Casado*, Juan T. López Navarrete*
Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga 29071, Spain

Serguei Patchkovskii
Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, K1A 0R6 Canada

Theodore Goodson III, Michael R. Harpham
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
J. Sérgio Seixas de Melo

Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal

Elizabeta Amir, Shlomo Rozen
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-
Aviv 69978, Israel
*To whom correspondence should be addressed. E-mail: (J.C.) casado@uma.es, teodomiro@uma.es

Figure S1. DFT//B3LYP/6-31G** energies of the orbital terms around the gap together with their wavefunctions topologies.

Figure S2. RCIS/HF/3-21G* optimized geometries of the ground electronic state of 4T and 4TSO.

Figure S3. MCQDPT2 pictures of the orbitals contributing to S_{1} and S_{2} singlet excitations in 2TSO.

Figure S4. Absorption and emission spectra of $\mathbf{3 T}$ at $25^{\circ} \mathrm{C}$ in dichloromethane.

Figure S5. Energy diagram showing the singlet and triplet manifold according to TD-DFT//B3LYP/6-31G** calculations in 2TSO (left), 3TSO (middle) and in 4TSO (right). In the boxes, the effect of electron correlation is tried to be described producing a stabilization of the $2{ }^{1} \mathrm{Ag}$ state.

Table S1. Physical properties of the solvents. ${ }^{\text {a) }}$

Solvent	ϵ	$\mu(\mathrm{D})$	Polarity (SPP)	Viscosity $(\mathrm{mPa} \mathrm{s})$
Butyronitrile	20.7	----	0.915	0.57
Ethanol	24.3	1.7	0.853	1.20
DCM	8.9	1.1	0.876	0.44
THF	7.6	1.7	0.838	0.47
Toluene	2.4	0.3	0.655	0.58
Decaline	2.2	≈ 0	0.574	2.7

${ }^{\text {a) }}$ The solvent polarity is expressed in the solvent polarity polarizability (SPP) scale.

Figure S6. Transient triplet-triplet spectra of 3T in ethanol at room temperature $\left(25^{\circ} \mathrm{C}\right)$.

Table S2. Photophysical parameters and rate constants in ethanol.

	Φ_{F}	$\tau_{\mathrm{F}}[\mathrm{ns}]$	Φ_{Δ}	Φ_{T}	$\mathrm{k}_{\mathrm{T}}\left[\mathrm{s}^{-1}\right]$	$\tau_{\mathrm{T}}[\mathrm{s}]$	k_{F} $\left[\mathrm{ns}^{-1}\right]$	k_{NR} $\left[\mathrm{ns}^{-1}\right]$	$\mathrm{k}_{\mathrm{ISC}}$ $\left[\mathrm{ns}^{-1}\right]$	k_{lC} $\left[\mathrm{ns}^{-1}\right]$
3T	0.07	0.19	0.84	0.91	$2.72 \cdot 10^{4}$	$3.68 \cdot 10^{-5}$	0.37	4.89	4.80	0.11
3TSO	0.004	0.22 (53%) 0.82 (47%)	0.01	-	-	-	-	-	-	-

Figure S7. a) DFT//B3LYP/6-31G** theoretical Raman and b) experimental 1064 nm FT-Raman spectra of 4TSO.

Theo.: $1520 \mathrm{~cm}^{-1}$
Exp.: $1527 \mathrm{~cm}^{-1}$

Figure S8. DFT//B3LYP/6-31G** vibrational eigenvectors associated with the most important Raman lines.

Figure S9. DFT//B3LYP/6-31G** theoretical and experimental infrared spectra of 4TSO.

Theo.: $1256 \mathrm{~cm}^{-1}$
Exp.: $1325 \mathrm{~cm}^{-1}$

Figure S10. DFT//B3LYP/6-31G** vibrational eigenvector associated with the $v(\mathrm{~S}-\mathrm{O})$ most intense infrared bands.

Figure S11. 532 nm FT-Raman spectra in solid state of 4TSO at high and low temperatures. Raman thermospectroscopy was carried out in a Limkan cell equipped for the Senterra Raman spectrometer microscope.

Experimental and theoretical details

The chemical synthesis of the studied compounds has been previously published elsewhere. ${ }^{1}$ The data presented in this paper for the oligoenes are those available in the literature. ${ }^{2}$ UV-Vis absorption spectra were recorded on an Agilent 8453 instrument equipped with a diode array detection system. Emission spectra were measured using a spectrofluorometer from Edinburgh Analytical Instrument (FLS920P) equipped with a pulsed xenon flash-lamp. Fluorescence decays were measured using a Single Photon Photomultiplier Detection System (S900) with Picosecond Pulsed Diode Laser (PDL 800-B), from Edinburgh Instruments. For low temperature studies, an OptistatDN Cryostat was used. All solvents used were of spectroscopic grade from Aldrich. Fluorescence quantum yields, ϕ_{F}, were measured for all the solutions using $1 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$ quinine sulfate in $0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{SO}_{4}$ as the standard $\left(\phi_{\mathrm{F}}=0.546\right)$. No fluorescent contaminants were detected upon excitation in the wavelength region of experimental interest.

The two-photon excited fluorescence (TPEF) method was employed to evaluate the two-photon absorption cross-sections (TPACS) of the samples. ${ }^{3,4}$ The TPACS was evaluated over the excitation wavelength range of 710-900 nm using a mode-locked Ti:sapphire laser (Spectra-Physics MaiTai® HP, pulsewidth $<100 \mathrm{fs}$, 80 MHz repetition rate). In applying the TPEF technique, two-photon absorption cross-sections were measured relative to a reference solution of Rhodamine B (prepared at pH 10) in methanol at known concentration. TPACS for a specific excitation wavelength were evaluated at the emission wavelength corresponding to the maximum in the TPEF spectrum.

FT-Raman scattering spectra with excitation at 1064 nm were collected on a Bruker FRA106/S apparatus and a Nd:YAG laser source ($\lambda_{\text {exc }}=1064 \mathrm{~nm}$), in a back-scattering configuration. The operating power for the exciting laser radiation was kept to 100 mW in all the experiments. Samples were analyzed as pure solids averaging 1000 scans with $2 \mathrm{~cm}^{-1}$ of
spectral resolution. Raman spectra ($\lambda_{\text {exc }}=532 \mathrm{~nm}, 633 \mathrm{~nm}, 785 \mathrm{~nm}$) were recorded by using a Senterra dispersive Raman microscope from Bruker whereas the Raman spectrum with the 488 nm excitation wavelength was obtained using a Microscope Invia Reflex Raman RENISHAW.

Ground state total energies, equilibrium geometries, eigenfrequencies, and normal coordinates were calculated using Density Functional Theory (DFT) by means of the GAUSSIAN-03 programming package. ${ }^{5}$ The Becke's three parameter (B3) gradient-corrected exchange functional combined with the correlation Lee-Yang-Parr (LYP) correlation functional was utilized. ${ }^{6}$ The $6-31 \mathrm{G}^{* *}$ basis set was used. ${ }^{7}$ Theoretical Raman spectra were obtained for the resulting ground-state optimized geometries. Harmonic vibrational frequencies and Raman intensities were calculated analytically and numerically respectively. ${ }^{8}$ The time-dependent DFT (TD-DFT) approach has been used for the evaluation of, at a minimum, the ten lowest-energy vertical electronic excited states including both singlet and triplet states. ${ }^{9}$ TD-DFT calculations were performed using the same functional (B3LYP) and basis set $\left(6-31 G^{* *}\right)$. Excited state optimized geometries were assesed with the restricted single excited configuration interaction approach (CIS) within the Hartree-Fock (HF) approximation, or RCIS/HF. ${ }^{10}$ Within this framework, a single determinant RHF wavefunction is used as the reference determinant in a CIS calculation of excited states.

Furthermore, 2T and 2TSO ground-state geometries, constrained to the $\mathrm{C}_{2 \mathrm{~h}}$ point-group symmetry, were optimized using MP2(fc)/cc-Pvdz ${ }^{11}$ level of theory and basis set. The lowlying singlet excited states for the resulting structures were calculated using occupationrestricted multiple active space multi-configurational self-consistent field wavefunctions (ORMAS MCSCF) ${ }^{12}$, including second-order quasi-degenerate multiconfigurational perturbation theory (MCQDPT2) ${ }^{13}$ corrections for the state energies. Restricted active space was partitioned into the occupied and virtual spaces, with up to three electrons in the virtual
space. The occupied and virtual spaces were adjusted until the external singles and doubles MCQDPT2 contributions to the excited states of interest were below 40% and the ordering of the 8 lowest MCQDPT2 singlets has converged. In 2T, the final active space was optimized for the 13 equally-weighed singlets and contained 6 occupied $\left(a_{u}{ }^{3} b_{g}{ }^{3}\right)$ and 9 virtual $\left(a_{u}{ }^{2} a_{g}{ }^{2}\right.$ $\mathrm{b}_{\mathrm{g}}{ }^{2} \mathrm{~b}_{\mathrm{u}}{ }^{3}$) orbitals. In 2TSO, MCSCF optimization included 15 equally-weighted singlets, with 7 occupied ($\left.a_{u}{ }^{3} a_{g}{ }^{1} b_{g}{ }^{3}\right)$ and 9 virtual $\left(a_{u}{ }^{3} a_{g}{ }^{1} b_{g}{ }^{3} b_{u}{ }^{2}\right)$ orbitals. As a convergence check, the 2TSO MCSCF optimization was repeated for 20 lowest singlets, with the virtual space expanded to 12 orbitals $\left(a_{u}{ }^{3} a_{g}{ }^{3} b_{g}{ }^{3} b_{u}{ }^{3}\right)$.
[1]. Amir, E.; Rozen, S. Angew. Chem. Int. Ed. 2005, 44, 7374.
[3]. Xu, C.; Webb, W. W. J. Opt. Soc. Am. B-Opt. Phys. 1996, 13, 481.
[4]. Makarov, N. S.; Drobizhev, M.; Rebane, A. Opt. Expr. 2008, 16, 4029.
[5]. Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;

Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
[6]. Becke, A. D. J. Chem. Phys. 1993, 98, 1372.
[7]. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
[8]. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.
[9]. Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997; Gross, E. K. U.; Kohn, W. Adv. Quantum Chem. 1990, 21, 255; Heinze, H.; Goerling, A.; Roesch, N. J. Chem. Phys. 2000, 113, 2088.
[10]. Foresman, J.B.; Head-Gordon, M.; Pople, J.A.; Frish, M. J. J. Phys. Chem. 1992, 96, 135.
[11]. a) Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.J.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; Windus, T.L.; Dupuis, M.; Montgomery, J.A. J.Comput.Chem. 1993, 14, 1347. b) Gordon, M.S.; Schmidt, M.W. pp 1167-1189 in: Dykstra, C.E.; Frenking, G.; Kim, K.S.; Scuseria, G.E. (eds), "Theory and Applications of Computational Chemistry, the first forty years", (Elsevier, Amsterdam, 2005). c) Aikens, C.M.; Webb, S.P.; Bell, R.L.; Fletcher, G.D.; Schmidt, M.W.; Gordon, M.S. Theor.Chem.Acc. 2003 110, 233. d) Dunning Jr., T.H. J. Chem. Phys. 1989, 90, 1007.
[12]. a) Ivanic, J. J. Chem. Phys. 2003, 119, 9364. b) Ivanic, J. J. Chem. Phys. 2003, 119, 9377. c) Schmidt, M.W.; Gordon, M.S.; Ann. Rev. Phys. Chem. 1998, 49, 233.
[13]. a) Nakano, H.; Uchiyama, R.; Hirao, K. J. Comput. Chem. 2002, 23, 1166. b) Miyajima, M.; Watanabe, Y.; Nakano, H. J.Chem.Phys. 2006, 124, 044101. c) Ebisuzaki, R.; Watanabe, Y.; Nakano, H. Chem. Phys. Lett. 2007, 442, 164.

Additional Theoretical Details

```
Excited states calculations for thiophene and thiophene sulfoxide
oligomers:
Geometries are optimized using MP2(fc)/cc-pVDZ. The optimized Cartesian
coordinates are attached.
All structures are constrained to be planar (C2h point group).
MP2 frequency calculation on 2T gives many soft modes, including:
68i cm-1 CH3 torsion mode (2x)
37i cm}\mp@subsup{}{-1}{c}\mathrm{ central C-C torsion mode
7 9 \mathrm { cm } ^ { - 1 } \text { out-of-plane overall bend}
MP2 frequency run on 2TSO gives many soft modes as well, including:
162i cm-1 CH3 torsion mode (2x)
<70i cm
    4 5 \mathrm { cm } ^ { - 1 } \text { out-of-plane overall bend}
\(\mathrm{CH}_{3}\) torsion modes could be resolved by rotating the groups 30 degrees. However, this would drop the symmetry to either Ci or nothing (depending on the sense of CH3 rotation).
Excited states are calculated using occupation-restricted multiple active space multi-configuratinal self-consistent field wavefunctions (ORMAS MCSCF) with second-order quasi-degenerate multiconfigurational perturbation theory (MCQDPT2) corrections for the state energies.
Restricted active space was partitioned into the occupied and virtual spaces, with up to three electrons in the virtual space. The occupied and virtual spaces were adjusted until the external singles and doubles MCQDPT2 contributions to the excited states of interest were below 40\\%
1. Electronic structure of \(2 T\)
The final active space of the \(2 T\) molecule consisted of a 6-orbital occupied block \((3 * A u+3 * B g\) irreducible representations) and a 9-orbital virtual block \((2 * A u+2 * A g+2 * B g+3 * B u)\). The active space was optimized for the 13 equally-weighted singlet states.
As a check, the calculation using the same active space was repeated using cc-pVTZ basis set.
The lowest singlet excited states of \(2 T\) are (in eV).
```

cc-pVDZ states:

		MCQDPT2	MCSCF	\#\#	Osc.Str.
1	$\mathrm{Ag} / 1$	0.000	0.000	1	
2	$\mathrm{Bu} / 3$	2.838	5.505	3	0.5303
3	$\mathrm{Ag} / 8$	4.454	7.748	10	
4	$\mathrm{Ag} / 4$	4.962	5.364	2	
5	$\mathrm{Bu} / 8$	4.983	8.119	11	0.4042
6	$\mathrm{Ag} / 5$	5.444	6.094	5	

7	$\mathrm{Bg} / 2$	5.455	6.228	6	
8	$\mathrm{Au} / 2$	5.532	6.331	7	0.0008
9	$\mathrm{Au} / 4$	6.557	6.919	8	0.0000
10	$\mathrm{Bg} / 4$	6.569	6.933	9	
11	$\mathrm{Bu} / 9$	6.820	8.257	13	0.0250
12	$\mathrm{Bu} / 4$	7.354	6.027	4	0.1804
13	$\mathrm{Ag} / 10$	7.787	8.186	12	

```
cc-pVIZ states:
```

		MCQDPT2		MCSCF	\#\#
1 Osc.Str.					
1	$\mathrm{Ag} / 1$	0.000	0.000	1	
2	$\mathrm{Bu} / 3$	2.628	5.454	3	0.4066
3	$\mathrm{Ag} / 8$	4.059	7.701	11	
4	$\mathrm{Bu} / 8$	4.837	8.107	12	0.4673
5	$\mathrm{Ag} / 4$	4.857	5.338	2	
6	$\mathrm{Bg} / 2$	5.179	5.973	4	
7	$\mathrm{Au} / 2$	5.222	6.060	6	0.0002
8	$\mathrm{Ag} / 5$	5.328	6.093	7	
9	$\mathrm{Au} / 4$	6.244	6.709	8	0.0003
10	$\mathrm{Bg} / 4$	6.326	6.731	9	
11	$\mathrm{Au} / 6$	6.587	7.586	10	0.0002
12	$\mathrm{Bu} / 4$	7.226	5.995	5	0.1060
13	$\mathrm{Ag} / 10$	7.729	8.172	13	

The two calculations show an excellent agreement for the lowest ten MCQDPT2 states.
The state energies agree to better than 0.4 eV between the two basis sets. The ordering of the states agrees closely as well, except for the interchange between quasi-degenerate 3 Ag and 2 Bu levels around 5.0 eV excitation energy, and the three-level nest of $6 \mathrm{Ag}, 1 \mathrm{Bg}$, and 1 Au levels at approximately 5.5 eV .

The calculated vertical excitation energies for the Ag states also agree quite well with previous CASPT2 calculation by Rubio. At the same time, there is a significant disagreement in the calculated positions of the dipole-allowed levels of $B u$ symmetry. We calculated the 1 Bu level at approximately 2.84 eV (Rubio: 3.88 eV), with the 2 Bu level at 4.98 eV (Rubio: 4.15 eV). In this respect, it has to be noted that states of Bu symmetry are highly sensitive to the size of the active space and the number of states included in the state average. In this work, a 15-orbital restricted active space was necessary to achieve the convergence. Preliminary calculations with smaller active spaces show a better agreement to the results of Rubio et al, who used a lo-orbital complete active space.

In order characterize the nature of excited states, we calculated the reduced one-particle transition density matrix (1-TRDM) for the excitation from the ground state to the seven lowest excited states. In all cases, the MCSCF wavefunctions were used, so that the 1 -TRDM should be treated as semi-quantitative.

$$
\text { State MCQDPT2 } 1 \text {-TRDM trace } 1 \text {-TRDM singular values > } 0.1
$$

1	$\mathrm{Ag} / 1$	0.000						
2	$\mathrm{Bu} / 3$	2.838	2.13	1.20	0.31	0.22	0.16	0.12
3	$\mathrm{Ag} / 8$	4.454	2.26	0.79	0.76	0.27	0.12	
4	$\mathrm{Ag} / 4$	4.962	1.80	0.68	0.65	0.14	0.11	
5	$\mathrm{Bu} / 8$	4.983	1.88	1.01	0.40	0.22		
6	$\mathrm{Ag} / 5$	5.444	1.95	1.04	0.36	0.21	0.13	
7	$\mathrm{Bg} / 2$	5.455	1.65	1.20	0.44			

$$
\begin{array}{llllll}
8 \mathrm{Au} / 2 & 5.532 & 1.67 & 1.18 & 0.48
\end{array}
$$

The trace of the transition density matrix is the measure of the number of electrons excited in forming a given excited state. The shapes of the orbitals corresponding the 1 -TRDM largest singular values are shown in figures listed below. The semi-transparent pink/pumpkin surface corresponds to the "leaving" orbital of the 1Ag ground state. The solid blue/turquose orbital shows the "accepting" orbital of the excited state. The number of electrons transferred for each orbital pair is the singular value.

Note that none of the seven low-lying excited states in this system are of a simple one-electron character. The two lowest excited states are of a significant triple-excited character [as noted previously by Rubio et al]. The five lowest excited states are of a pi->pi* character. Excitation to the S1 (1Bu) involves transfer of 1.2 electrons from the ring pi systems to the central $C=C$ pi bond, which is expected to cause a significant shortening and stiffening of this bond. In contract, formation of the S_{2} (2Ag) excited state involves primarily rearrangement of the electron density within the ring pi system. As a result, it is expected to undergo a slight ring expansion. This state has a pronounced bi-radical character, with two excitations being equally important. The S_{3} (3Ag) state is of a similar nature, but involves weakening of a C4-C5 double bond, instead of the $S 1-C 5$ bond for the S_{2}. The second dipole allowed excitations ($S_{4}, 2 \mathrm{Bu}$) and the nearby $S_{5}(4 \mathrm{Ag})$ are dominated by transfer of an electron from the sulfur $P _z$ orbital to the central $C=C$ bond. Finally, the quasi-degenerate $S_{6}(1 \mathrm{Bg})$ and $\mathrm{S}_{7}(1 \mathrm{Au})$ states correspond to a transfer of an electron from the pi orbitals to the vacant d orbitals of the sulfur atom, stabilized by a partial sigma bond to the carbon atoms.

2. Electronic structure of $2 T S O$

The final active space of $2 T S O$ molecule consisted of a 7 -orbital occupied block (3*Au + 1*Ag + 3*Bg irreducible representations) and a 12-orbital virtual block $(3 * A u+3 * A g+3 * B g+3 * B u)$. The active space was optimized for the 20 equally-weighted singlet states. For a comparison, we also show the results from a calculation using a smaller 9-orbital virtual block $(3 * A u+1 * A g+3 * B g+2 * B u)$ and averaging over 15 lowest singlet states.

Unfortunately, it has proven impossible to repeat the calculation using the cc-pVTZ basis set. Judging by the $2 T$ results, the basis set corrections to the cc-pVDZ results should not exceed 0.5 eV .

The lowest singlet excited states of $2 T S O$ are (in eV).

16-orbital active space

		MCQDPT2		MCSCF	
\#\#	Osc.Str.				
1	$\mathrm{Ag} / 1$	0.000	0.000	1	
2	$\mathrm{Bu} / 8$	3.892	7.989	10	0.3049
3	$\mathrm{Ag} / 12$	3.910	7.980	9	
4	$\mathrm{Bu} / 3$	4.047	5.232	3	1.1908
5	$\mathrm{Ag} / 3$	4.326	4.362	2	
6	$\mathrm{Au} / 2$	4.766	7.035	7	0.0033
7	$\mathrm{Ag} / 5$	5.182	6.270	5	
8	$\mathrm{Bu} / 5$	6.046	6.053	4	0.0061
9	$\mathrm{Bg} / 2$	6.118	8.662	13	
10	$\mathrm{Ag} / 13$	6.148	8.747	15	
11	$\mathrm{Bu} / 12$	6.712	8.665	14	0.0757
12	$\mathrm{Ag} / 10$	7.454	7.477	8	

13	$\mathrm{Au} / 4$	7.464	8.123	11	0.0004
14	$\mathrm{Ag} / 7$	7.813	6.762	6	
15	$\mathrm{Bu} / 10$	8.356	8.340	12	0.0178

```
19-orbital active space
```

		MCQDPT2	MCSCF	\#\#	Osc.Str.
1	$\mathrm{Ag} / 1$	0.000	0.000	1	
2	$\mathrm{Ag} / 12$	3.662	7.808	9	
3	$\mathrm{Bu} / 8$	3.915	7.808	10	0.6388
4	$\mathrm{Bu} / 3$	4.035	5.133	3	0.8287
5	$\mathrm{Ag} / 3$	4.358	4.384	2	
6	$\mathrm{Au} / 2$	4.937	7.186	7	0.0004
7	$\mathrm{Ag} / 5$	5.318	6.187	5	
8	$\mathrm{Bu} / 17$	5.448	9.554	18	0.0758
9	$\mathrm{Ag} / 17$	5.750	9.540	17	
10	$\mathrm{Bg} / 3$	6.166	8.752	15	
11	$\mathrm{Bu} / 5$	6.242	6.082	4	0.0064
12	$\mathrm{Ag} / 13$	6.482	8.627	14	
13	$\mathrm{Bu} / 12$	6.764	8.617	13	0.0219
14	$\mathrm{Au} / 4$	7.676	7.837	11	0.0004
15	$\mathrm{Bu} / 18$	7.680	9.742	20	0.0330
16	$\mathrm{Ag} / 8$	7.961	6.793	6	
17	$\mathrm{Bg} / 4$	8.339	8.827	16	
18	$\mathrm{Ag} / 10$	8.512	7.486	8	
19	$\mathrm{Bg} / 6$	9.390	9.576	19	
20	$\mathrm{Bu} / 10$	9.893	8.354	12	0.0212

The ordering of the low-lying states is in a good agreement for the two active spaces, with only two interchanges occuring among the lowest ten states $\left(S_{1} / S_{2}\right.$ and $\left.S_{8} / S_{9}\right)$.
The MCQDPT2 excitation energies for the lowest ten states also agree closely, with the largest change (0.6 eV) found for S_{7} (3Bu) state. As a result, the 19 -orbital active space calculation may be expected to be converged with respect to the treatment of electron correlation.

Unlike in the 2 S molecule, where the S_{1} was an isolated pi->pi* 1Bu state, 2TSO has a nearly degenerate S_{1} and S_{2} states. At the highest correlation treatment level used here, the $2 A g$ state appears to be the S_{1}. However, since it is separated from the dipole-allowed 1 Bu in S_{2} by only 0.25 eV , the ordering of the two states could change with further improvements in the basis set and correlation treatment.

The transition density matrices for the MCSCF wavefunctions corresponding to the ten lowest states of $2 T S O$ are summarized below:

	State	MCQDPT2	1-TRDM trace	1 -TRDM singular values > 0.1				
				1	2	3		
1	Ag/1	0.000						
2	Ag/12	3.662	1.97	1.01	0.43	0.18	0.10	
3	$\mathrm{Bu} / 8$	3.915	1.94	1.15	0.53			
4	$\mathrm{Bu} / 3$	4.035	2.10	1.27	0.33	0.19		
5	Ag/ 3	4.358	1.53	0.70	0.54			
6	$\mathrm{Au} / 2$	4.937	1.55	1.30	0.11			
7	Ag/5	5.318	2.41	0.93	0.91	0.14	0.12	0.12
8	$\mathrm{Bu} / 17$	5.448	2.26	0.93	0.55	0.34	0.15	
9	Ag/17	5.750	1.94	1.07	0.43	0.15		
10	Bg/3	6.166	1.94	1.18	0.45	0.22		
11	$\mathrm{Bu} / 5$	6.242	1.57	0.67	0.49	0.16		

The two lowest states of $2 T S O$ (2Ag and 1 Bu) involve transfer of an electron from the sulfoxide oxygen atom to the pi system. The transferred electron populates C3=C4, C5=C5' and C3'=C4' double bonds. For both S_{1} and S_{2}, the pattern of the electron transfer is nearly identical, with the only significant difference being the relative phases of the donor p orbitals on the sulfoxide fragments. As a result, these two states should remain neardegenerate upon improvements in the basis sets and correlation treatment. The similar observation applies to the $S_{7}(3 B u)$ and S_{8} (5Ag) pair. These two states again arise from sulfoxide-O to a higher-lying pi* orbital, and should remain as a quasi-degenerate state pair.

The next two excited states - $2 \mathrm{Bu}\left(\mathrm{S}_{3}\right)$ and 3 Ag (Ag) are pi->pi* transitions, dominated by a "flip" in the double bond character along the linear C2-C3-C4-C5-C5'-C4'-C3'-C2' conjugated chain. The acceptor orbitals of the two states are closely related to the S_{4} and S_{5} in the $2 T$ molecule. However, since the p orbital of the sulfur is no longer available for conjugation, the electron is supplied by the carbon-based pi orbitals in $2 T S O$, instead of the sulfur $p _z$ orbitals in $2 T$. In a way, S_{3} and S_{4} states of $2 T S O$ illustrate the polyacetylene-like nature of the $2 T S O$ aromatic system, with electron delocalization proceeding along the one-dimensional carbon chain.

The next excited state in $2 T S O$ - the $1 \mathrm{Au} \mathrm{S}_{5}$ - and its 1 Bg counterpart (S_{9}) has no direct counterpart in $2 T$ again. The presence of the strongly electron-withdrawing sulfoxide groups causes destabilization of the sulfurcarbon bonds, reducing the energy needed for these sigma->pi* excitations.

Finally, the $4 \mathrm{Ag} \mathrm{S}_{6}$ in 2 TSO is the direct analog of S_{3} in 2 T , while the S_{6} (1Bg) and $S_{7}(1 \mathrm{Au})$ of the 2 T molecule have no analog in $2 T S O$ due to the lack of non-bonding sulfur lone pairs in this molecule.

One might expect similar observations to apply to longer oligomers of $\mathrm{S}, \mathrm{S}-$ dioxide thiophenes. The lowest excited state manifold in these systems may be expected to come from the $O(n)$ to pi* excitations. Due to the lack of direct interaction between the $=S O 2$ fragments, dipole-allowed states in this manyfold could be expected to be accompanied by optically dark gerade counterparts. Thus, the $=S O 2$ fragment serves as a more effective functional analog of the sulfur $p _z$ orbitals in the thiophene ologimers (cf. S_{1} / S_{2} in $2 T S O$ and S_{4} / S_{5} in $2 T$).

The ability of the thiophene p_z orbitals into act as a pure electron dopant in oligo-T is impaired by the residuals conjugation to the carboncentered pi system. Due to the mismatch in the size of the orbitals, the oligo-TSO $=$ SO2 fragment is essentially unable to participate in the pisystem conjugation. As a result, the second excited-state manifold in oligo-TSO acquired a nearly pure oligoene character, with a set of onedimensional pi->pi* states appearing in this molecule. The pi->pi* states in oligo-T are of a more complex nature due to multi-path interference causes by participation of sulfur $p _z$ orbitals (cf. S_{3} / S_{4} in $2 T S O$ and S_{1} / S_{2} in 2T).

References:

[GAMESS] a) M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.J.Jensen, S.Koseki, N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, J.A.Montgomery J.Comput.Chem. 14, 1347-1363 (1993); b) M.S.Gordon, M.W.Schmidt pp 1167-1189 in "Theory and Applications of Computational Chemistry, the first forty years" C.E.Dykstra, G.Frenking, K.S.Kim, G.E.Scuseria (editors), Elsevier, Amsterdam, 2005.

```
[ORMAS] J.Ivanic J.Chem.Phys. 119, 9364-9376, 9377-9385(2003).
```

[MCSCF] (FULLNR converger) G.D.Fletcher, Mol.Phys. 105, 2971-2976(2007).
[MCQDPT2] a) H.Nakano, R.Uchiyama, K.Hirao, J.Comput.Chem. 23, 11661175(2002); b) M.Miyajima, Y.Watanabe, H.Nakano J.Chem.Phys. 124, 044101/19(2006); c) R.Ebisuzaki, Y.Watanabe, H.Nakano Chem.Phys.Lett. 442, 164169(2007).
[Rubio] M. Rubio, M. Merchan, E. Orti, J.Chem.Phys. 102, 3580 (1995)

