SUPPORTING INFORMATION

Annulated Diketopiperazines from Dipeptides or Schöllkopf Reagents via Tandem Cyclization-Intramolecular N-Arylation

Hwan Jung Lim, Judith C. Gallucci and T. V. RajanBabu*

Department of Chemistry, The Ohio State University, Columbus, OH 43210 USA

Table of Contents

General Information	S3
Synthesis of 4,7-dibromo-1 <i>H</i> -indole (5)	S3
Synthesis of 4,7-dibromo-1 <i>H</i> -indole-3-carboxaldehyde (6)	S3
Synthesis of 4,7-dibromo- <i>N</i> -Boc-indole carboxaldehyde (7)	S4
Synthesis of <i>N</i> -Boc, <i>N</i> -Me- <i>L</i> -valine amide (9)	S4
Synthesis of ethyl 2-diazo-2-(diethoxyphosphoryl)acetate (10)	S5
Synthesis of Schmidt's phosphonate 11	S 5
Synthesis of enamide 12 using Horner-Emmons reaction	S5
General procedure for Rh-catalyzed asymmetric hydrogenation (Table 1).	
Synthesis of 13a	S6
Use of {[(SS)-Et-DuPhos]Rh[COD]} ⁺ BF ₄ -catalyzed asymmetric hydrogenation	
(entry 5, Table 1)	S6
Table 1. Rh(I)-Catalyzed Hydrogenation of the Dehydro-dipeptide 12	S7
Attempts to prepare indolyl N-BOC protected NHMe dipeptide 13c	
by selective deprotection of the BOC group in Valine	S7
Synthesis of the dipeptide 13b by deprotection of both BOC groups	S7
Synthesis of indolyl N-BOC protected dipeptide 13c by selective	
deprotection of the BOC group in valine	S 8
General procedure of Buchwald-Hartwig amination for	
macrocyclization (Table 2)	S9
Table 2. Attempted Pd-catalyzed Intramolecular N-Arylation Reactions	S9
Synthesis of tetracyclic DKP 14 by the Cu-mediated tandem cyclization	S9
Synthesis of (S)-N-BOC-valinyl 2-bromophenylalanyl ethyl ester (19)	

using Horner-Emmons reaction followed by hydrogenation	S10
(a) Synthesis of dehydrodipeptide substrate 18	S10
(b) Synthesis of dipeptide 19 using Rh-catalyzed asymmetric	
hydrogenation of 18 (entry 3, Table 3)	S11
Table 3. Rh-catalyzed asymmetric hydrogenations of Z-dehydro-dipeptide 18	S12
Dipeptide N-Val-2-Br-Phe-OEt (20) via deprotection of the BOC group from 19	S12
Synthesis of 2-bromophenylalanine (23a) using Schöllkopf reagent	S13
Synthesis of o-iodo phenylalanine (23b) using Schöllkopf reagent	S14
Synthesis of dipeptide 25b using a peptide coupling reaction,	
followed by deprotection	S14
General procedure of Cu-mediated tandem cyclizations (Table 1 in the article)	S15
Synthesis of the tricyclic DKP 27 and 28 by Cu-mediated tandem cyclization	S16
Synthesis of the tricyclic DKPs 27 and 28 by catalytic amount of Cu-mediated	
tandem cyclization	S16
Synthesis of proline-containing dipeptide 26a by an aminoacid coupling	
reaction, and deprotection to 26b	S16
Synthesis of the tetracyclic DKPs 29 and 30 by Cu-mediated tandem cyclization	S17
General procedure of demethylations of dimethoxy-2,5-dihydropyrazine	
to 2,5-diketopiperazine	S18
Synthesis of (3 <i>S</i> ,6 <i>R</i>)-3-(2-bromobenzyl)-6-isopropylpiperazine-2,5-dione (31a)	S18
Synthesis of (3 <i>S</i> ,6 <i>R</i>)-3-(2-iodobenzyl)-6-isopropylpiperazine-2,5-dione (31b)	S18
Synthesis of tricyclic DKP 32 using stoichiometric amount of CuI	S19
Synthesis of tricyclic DKP 32 using catalytic amount of CuI and	
bromo-substrate 31a	S19
Synthesis of tricyclic DKP 32 using stoichiometric amount of CuI and	
iodo-substrate 31b	S20
Synthesis of tricyclic DKP 32 using catalytic amount of CuI and	
iodo-substrate 31b	S20
Synthesis of tricyclic DKP ent-28	S20
REFERENCES	S20
¹ H and ¹³ C NMR Spectra of key compounds	S22

General Information. All solvents were dried by standard methods prior to use. Methylene chloride was distilled from calcium hydride under nitrogen and stored over molecular sieves. Tetrahydrofuran was distilled under nitrogen from sodium/benzophenone ketyl. Reactions requiring air-sensitive manipulations were conducted under an inert atmosphere of nitrogen by using Schlenk techniques or a Vacuum Atmospheres glovebox. Analytical TLC was performed on E. Merck precoated (0.25 mm) silica gel 60 F254 plates. Flash column chromatography was carried out on silica gel 40 (Scientific Adsorbents Incorporated, Microns Flash). **NMR** experiments were performed using CDCl₃ with CHCl₃ (δ 7.24) as an internal standard. Optical rotations were recorded on a Perkin-Elmer Model 241 polarimeter at the sodium D line in chloroform. Rhodium catalysts for asymmetric hydrogenation, CuI, and CsOAc were stored in a Vacuum Atomspheres drybox. CuI and CsOAc were purchased from Sigma-Aldrich Inc. Both Rh(COD)(S,S-MeDuPhos)BF₄ and ethyl analogue were either purchased from Strem Chemicals or prepared by known routes.¹ (R)-Schöllkopf reagent² and other Rh-hydrogenation catalysts (Tables 1 and 3)³ were prepared according to procedures published before. For pressurized hydrogenation reaction, Parr Pressure Reactor was used.

Synthesis of 4,7-dibromo-1*H*-indole (5). Under N₂ atmosphere, 1 M vinyl magnesium bromide

(160.5 mL, 16.05 mmol) in anhydrous THF (320 mL) was added to a stirred solution of 2,5-dibromonitrobenzene (15 g, 5.34 mmol) at - 70 °C. The resulting mixture was stirred additional 20 min at - 50 °C, and then poured into sat. NH₄Cl.

After the crude product was extracted with EtOAc (300 mL x 3), combined organics were dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by column chromatography (10 % EtOAc in hexane.) to yield 6.95 g (47 %) of the title compound. ¹H NMR δ (CDCl₃): 8.39 (br s, 1H, N*H*), 7.28-7.21 (m, 3H, Ar 2, 5, and 6), 6.73-6.71 (dd, 1H, J = 3.2, 2.4 Hz, Ar 3); ¹³C NMR δ (CDCl₃): 134.6, 129.5, 125.5, 125.1, 123.1, 104.4, 103.9.

Synthesis of 4,7-dibromo-1*H*-indole-3-carboxaldehyde (6). To an ice-cooled reaction vessel

containing DMF (50 mL) under N_2 atmosphere, POCl₃ (2.6 mL, 27.2 mmol) was added dropwise. Indole **5** (6.8 g, 24.7 mmol) in DMF (100 mL) was slowly added to the mixture. The resulting solution was stirred for 1 h at 0 °C and then for

5 h at RT. After the starting indole was consumed completely, the solution was poured into

crushed ice. The mixture was treated with 1 M NaOH to adjust pH to $10 \sim 11$, followed by quick heating to boil for 5 min. The mixture was cooled to 0 °C, and then acidified with 3 M HCl. The desired aldehyde was collected by filtration, and washed with water and hexane to get 5.9 g (79 %) of the title compound. ¹H NMR δ (DMSO-d₆): 10.67 (s, 1H, CHO), 8.28 (s, 1H, Ar 2), 7.40 (s, 2H, Ar 5 and 6); ¹³C NMR δ (DMSO-d₆): 146.1, 144.3, 136.7, 135.8, 135.6, 128.5, 121.4, 114.7.

Synthesis of 4,7-dibromo-N-Boc-indole carboxaldehyde (7). To a stirred solution of 4,7-

 $\Rightarrow \bigcup_{Br} \bigcup_{Br} \bigcup_{Fr} \bigcup_{Fr$ Br

g, 44.0 mmol) in THF (200 mL) was added slowly. The resulting mixture was stirred overnight at RT, and then the reaction was quenched by slow addition of water (500 mL). The crude product was extracted by ether (500 mL x 3) and the combined organic layers was dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by column chromatography (10 % EtOAc in hexane.) to get 11.1 g (83 %) of the title compound. ¹H NMR δ (CDCl₃): 10.92 (s, 1H, CHO), 8.25 (s, 1H, Ar), 7.43-7.37 (dd, 2H, J = 12.8, 8.4 Hz, Ar), 1.65 (s, 9H, tBu); ¹³C NMR δ (CDCl₃): 186.5, 147.1, 135.4, 135.3, 131.2, 129.9, 129.7, 121.0, 113.0, 107.5, 87.1, 28.0; IR cm⁻¹ (KBr) : 3142, 2978, 2937, 2887, 1764, 1668, 1544, 1534, 1470, 1374, 1310, 1235, 1144, 1021.

Synthesis of N-Boc, N-Me-L-valine amide (9).⁴ To a stirred solution of N-Boc, N-Me-L-valine

(5 g, 21.6 mmol) and N-methyl morpholine (2.38 mL, NH₂ 21.6 mmol) in anhydrous DME (100 mL) was added isobutyl chloroformate (2.82 mL, 21.65 mmol)

dropwise at - 15 °C. After 0.5 h of stirring, NH₃ gas was bubbled into the reaction mixture for 15 min at - 15 °C and, for additional 15 min at rt. After addition of water (100 mL), the crude product was extracted by chloroform (100 mL x 3) and the combined organics were dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by recrystallization (10 % EtOAc in hexane.) to yield 3.9 g (78 %) of the title compound. ¹H NMR δ (CDCl₃); 6.14 (br s, 1H, CONH₂), 5,35 (br s, 1H, CONH₂), 4.07-4.04 (d, 1H, J = 10.8 Hz, α-H), 2.78 (s, 3H, NCH₃), 2.27-2.18 (m, 1H, $-CH(CH_3)_2$), 1.45 (s, 9H, tBu), 0.96-0.94 (d, 3H, J = 6.4 Hz, -CH(CH₃)₂), 0.86-0.84 (d, 3H, J = 6.8 Hz, -CH(CH₃)₂); ¹³C NMR δ (CDCl₃): 173.2,

157.0, 80.3, 64.0, 30.2, 28.5, 26.1, 19.8, 18.6.

Synthesis of ethyl 2-diazo-2-(diethoxyphosphoryl)acetate (10).⁵ To a stirred solution of $PO(OEt)_2$ $N_2 - CO_2Et$ triethyl phosphonate (2.5 g, 11.15 mmol) in anhydrous $PO(OEt)_2$ $PO(OEt)_2$ THF was added a mixture of NaH (0.54 g, 13.38 mmol) and *p*-toluenesulfonyl azide (2.64 g, 13.38 mmol) in THF (5 mL) slowly at 0 °C. The resulting mixture was stirred at the same temperature for 10 min, and then stirred additional 10 min at RT. After ether (10 mL) and water (10 mL) were added, the crude product was extracted by ether (10 mL x 3). The combined organic layers was dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by column chromatography (25 % EtOAc in hexane.) to get 2.35 g (84 %) of the title compound. ¹H NMR δ (CDCl₃): 4.24-4.10 (m, 4H, -OCH₂CH₃), 1.32-1.23 (m, 6H, -OCH₂CH₃); ¹³C NMR δ (CDCl₃): 163.6, 163.4, 63.7, 61.8, 16.3, 14.5.

Synthesis of Schmidt's phosphonate 11.⁵ To a single-necked rb flask, triethyl diazophosphonate (2.2 g, BocN $\stackrel{\vee}{\bigcirc}$ NH₂ + $\stackrel{N_2 \stackrel{\vee}{\longrightarrow} CO_2Et}{PO(OEt)_2}$ $\stackrel{\vee}{\longrightarrow}$ BocN $\stackrel{\vee}{\bigcirc}$ $\stackrel{\vee}{\longrightarrow}$ $\stackrel{\vee}{\longrightarrow}$ CO₂Et 4.34 mmol), N-Boc,N-Me-O PO(OEt)₂ L-valine amide (2 g. 4 34

mmol) were added. After the solution was treated with rhodium acetate (19 mg, 0.087 mmol), the mixture was heated to refluxed temperature until the starting diazo-compound was completely consumed. The solvent was evaporated, and the crude product was purified by column chromatography (10 % EtOAc in hexane) to get 11.1 g (83 %) of the title compound. ¹H NMR δ (CDCl₃): 4.30-4.05 (m, 8H, 3OC*H*₂CH₃, 2α-H), 2.76 (s, 3H, NC*H*₃), 2.30-2.14 (m, 1H, *i*Pr), 1.43 (s, 9H, *t*Bu), 1.35-1.20 (m, 9H, 3OCH₂CH₃), ¹³C NMR δ (CDCl₃): 167.5, 166.3, 80.2, 68.5, 64.5, 63.6, 61.7, 51.2, 49.7, 30.0, 28.3, 19.7, 18.9, 18.4, 16.3, 14.9, 14.1; ³¹P NMR δ (CDCl₃): 15.9, 14.4; IR cm⁻¹ (KBr pellet): 3372, 3195, 2973, 1743, 1677, 1471, 1444, 1366, 1311, 1255, 1166, 1028.

(0.94 mL, 5.80 mmol) at 0 °C, the resulting mixture was stirred for 1 d at RT. The solvent was evaporated, and the crude product (**12**) was purified by column chromatography (20 % to 50 % EtOAc in hexane) to get 2.7 g (71 %) of the title compound. ¹H NMR δ (CDCl₃): 8.23 (s, 1H,

enamide), 7.76 (s, 1H, Ar2), 7.34-7.32 (d, 1H, J = 8.4 Hz, Ar), 7.28-7.26 (d, 1H, J = 8.4 Hz, Ar), 4.30-4.20 (m, 3H, -OCH₂CH₃ & α -H of Val.), 2.82 (s, 3H, -NCH₃), 2.29 (br s, 1H, -CH(CH₃)₂), 1.65 (s, 9H, tBu), 1.43 (s, 9H, *t*Bu), 1.33-1.30 (t, 3H, J = 7.2 Hz, -OCH₂CH₃), 1.01-0.99 (d, 3H, J = 6.4 Hz, -CH(CH₃)₂), 0.87-0.85 (d, 3H, J = 6.8 Hz, -CH(CH₃)₂); ¹³C NMR δ (CDCl₃): 169.8, 164.6, 157.3, 147.6, 134.9, 131.0, 130.7, 130.5, 129.1, 125.6, 124.0, 114.5, 113.5, 107.5, 85.9, 80.6, 61.5, 30.6, 28.4, 27.9, 25.9, 20.2, 18.6, 14.4; IR cm⁻¹ (KBr pellet) : 3423, 3256, 2969, 2921, 2873, 1755, 1666, 1468, 1367, 1241, 1146; HRMS 724.1034 (M+Na⁺⁺; calcd for C₂₉H₃₉Br₂NaN₃O₇ 724.1029).

General procedure for Rh-catalyzed asymmetric hydrogenation (Table 1). Synthesis of

brought out of the box, and set up in a fume hood. The reactor was evacuated and refilled with H₂-gas three times and finally pressurized to 90 psi. The mixture was stirred for 4 d at RT. After the pressure was released, the solvent was evaporated, and the crude product was purified by column chromatography. Hydrogenation of **12** was conducted using the following complexes and the results are recorded in Table 1: {[(*RR*)-2,5-diphenylphosphinohexane]Rh[NBD]}⁺BF₄⁻, {[(*RR*)-3,6-diphenylphosphino-2.7-dimethyloctane] Rh[NBD]}⁺BF₄⁻ (Table 1, entries 1, 2); [(*SS*)-Me-DuPhos]Rh[NBD]}⁺BF₄ (entries 3 and 4).

Use of [(*SS*)-Et-DuPhos]Rh[COD]}⁺BF₄-catalyzed asymmetric hydrogenation (entry 5, Table 1).¹ Following the general procedure, enamide 12 (0.5 g, 0.73 mmol) was hydrogenated using Rh[COD](Et-*S*,*S*-Duphos)⁺BF₄⁻ (44.0 mg, 0.073 mmol) and degassed MeOH (10 mL) under 90 psi for 4 d at RT. The crude product was purified by column chromatography (20 % EtOAc in hexane) to get 0.5 g (conv. 90 %, *S*:*R* = 8.5:1) of the title compound with 10 % of the unreacted starting enamide. ¹H NMR δ (CDCl₃): 7.41 (s, 1H, Ar), 7.34-7.32 (d, 1H, J = 8.4 Hz, Ar), 7.28-7.24 (t, 1H, J = 8.0 Hz, Ar), 4.9 (br s, α-H of Typ.), 4.18-4.09 (m, 2H, -OCH₂CH₃), 4.03-4.00 (d, 1H, J = 10 Hz, α-H of Val.), 3.55-3.50 (dd, 1H, J = 15.2, 5.6 Hz, -CH₂-), 3.38-3.32 (dd, 1H, J = 14.8, 8.8 Hz, -CH₂-), 2.70 (s, 3H, -NCH₃), 2.25 (br s, 1H, -CH(CH₃)₂), 1.64 (s, 9H, *t*Bu), 1.36 (s, 9H, *t*Bu), 1.33-1.30 (t, 3H, J = 7.0 Hz, -OCH₂CH₃), 0.94-0.93 (d, 3H, J = 6.4 Hz, -CH(CH₃)₂); ¹³C NMR δ (CDCl₃): 171.1, 170.5, 147.6;

135.5, 131.2, 130.3, 129.2, 128.4, 113.3, 107.4, 84.9, 80.2, 61.4, 60.4, 28.2, 27.9, 21.0, 18.5, 14.2; IR cm⁻¹ (neat) : 3322, 3119, 3057, 2976, 2873, 1746, 1693, 1530, 1469, 1392, 1315, 1242, 1153; HRMS 726.1192 ((M+Na⁺⁺); 726.1186 calcd for $C_{29}H_{41}Br_2NaN_3O_7$).

entry	ligand	conditions ^a	yield % (dr) ^b
1	PPh ₂	R = Me (10 mol%), 90 psi, 3 d	> 99 (3.2:1.0)
2	PPh ₂	R = i-Pr (10 mol%), 90 psi, 3 d	92 (2.9:1.0)
3	R	R = Me (10 mol%), 70 psi, 4 d	85 (4.6:1.0)
4		R = Me (10 mol%), 90 psi, 2 d	88 (4.6:1.0)
5	R	R = Et (10 mol%), 90 psi, 4 d	90 (8.5:1.0)

 Table 1. Rh(I)-Catalyzed Hydrogenation of the Dehydro-dipeptide 12

^a Reactions done using {[Rh(ligand)(L)]⁺ BF₄⁻ (L = NBD entries 1,2; or COD (entries 3-5)} in deoxygenated MeOH in a high pressure Parr hydrogenator. ^b dr = diastereomeric ratio, determined by ¹H NMR.

12 h. After, the solvent was evaporated, the residue was diluted with CH_2Cl_2 (10 mL) and washed with sat. NaHCO₃ (10 mL). The organic layer was dried over MgSO₄ and evaporated under reduced pressure. Only starting dipeptide compound **13a** was recovered.

Synthesis of the dipeptide 13b by deprotection of both BOC groups. Di-BOC-protected

dipeptide **13a** (91 mg, 0.132 mmol) was treated with 30 % TFA in CH_2Cl_2 (5 mL), and then the reaction mixture was stirred for

then the reaction mixture was stirred at rt for

1 h at RT. After the starting 13a was consumed completely, the mixture was evaporated. The residue was diluted with CH₂Cl₂ (10 mL) and washed with sat. NaHCO₃ (10 mL). The organic layer was dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to get 66 mg (99 %) of the desired amine **13b**. ¹H NMR δ (CDCl₃): 8.38 (br s, 1H, NH of indole), 7.69-7.66 (d, 1H, J = 9.3 Hz, NH of amide), 7.22-7.21 (d, 1H, J = 1.0 Hz, Ar), 7.13 (s, 2H, Ar), 4.99-4.95 (m, 1H, α -H of Typ.), 4.20-4.12 (m, 2H, $-OCH_2CH_3$), 3.65-3.40 (m, 2H, benzylic H), 2.70-2.68 (d, 1H, J = 5.0 Hz, α -H of Val.), 2.32 (s, 3H, -NCH₃), 1.91-1.72 (m, 1H, -CH(CH₃)₂), 1.23-1.17 (t, 3H, J = 7.1 Hz, -OCH₂CH₃), 0.86-0.83 (d, 3H, J = 6.7 Hz, -CH(CH₃)₂), 0.63-0.60 (d, 3H, J = 6.7 Hz, -CH(CH₃)₂); ¹³C NMR δ (CDCl₃): 173.8, 172.4, 136.0, 126.6, 125.3, 125.2, 113.9, 113.6, 104.4, 75.9, 71.1, 61.5, 53.1, 36.1, 34.3, 31.4, 29.9, 28.8, 19.5, 17.9, 14.3; IR cm⁻¹ (neat) : 3323, 2959, 2922, 2852, 1737, 1659, 1517, 1478, 1371, 1335, 1247, 1170, 1070, 1029.; HRMS 526.0117 (M+Na^{+*}); 526.0141 calcd for C₁₉H₂₅Br₂NaN₃O₃); $[\alpha]^{22}_{D} = -8.3$ (c = 0.405, CHCl₃)

Synthesis of indolyl N-BOC protected dipeptide 13c by selective deprotection of the BOC

 $\xrightarrow{\text{Br}}_{\text{Rr}} \xrightarrow{\text{CO}_2\text{Et}}_{\text{O}} \xrightarrow{\text{group in valine.}}_{\text{NH}} \text{Di-BOC-protected}$ $\xrightarrow{\text{dipeptide 13a (0.36 g, 0.52 mmol) was}}_{\text{treated with 20.017}}$

0 °C, and then the reaction mixture was stirred for 12 h at the same temperature. The solvent was evaporated, and the residue was diluted with CH₂Cl₂ (10 mL) and washed with sat. NaHCO₃ (10 mL). The organic layer was dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to get the mono-protected amine **13c** (0.21 g, 67 %) along with some **13b** (71 mg, 30 %). **13c**: ¹H NMR δ (CDCl₃): 7.72-7.70 (d, 1H, J = 9.2 Hz, NH of amide), 7.47 (s, 1H, Ar), 7.35-7.33 (d, 1H, J = 8.0, Ar), 7.28-7.26 (d, 1H, J = 8.0 Hz, Ar), 5.06 (m, 1H, α -H of Typ.), 4.23-4.17 (q, 2H, J = 7.2 Hz, -OCH₂CH₃), 3.65-3.60 (dd, 1H, J = 14.0, 5.2 Hz, benzylic H), 3.42-3.36 (dd, 1H, J = 15.6, 9.6 Hz, benzylic H), 2.76-2.75 (d, 1H, J = 4.8 Hz, α-H of Val.), 2.39 (s, 3H, -NCH₃), 1.97-1.86 (m, 1H, -CH(CH₃)₂), 1.65 (s, 9H, tBu), 1.25-1.22 (t, 3H, J = 7.2 Hz, -OCH₂CH₃), 0.85-0.83 (d, 3H, J = 6.8 Hz, -CH(CH₃)₂), 0.73-0.72 (d, 3H, J = 6.8 Hz, -CH(CH₃)₂); ¹³C NMR δ (CDCl₃): 173.5, 172.0, 147.6, 131.3, 130.4, 129.3, 128.4, 115.8, 113.33, 107.3, 84.86, 70.8, 61.4, 52.1, 36.0, 31.3, 27.9, 19.4, 17.8, 14.1; IR cm⁻¹ (KBr pellet) : 3326, 2971, 2794, 1737, 1659, 1515, 1459, 1376, 1315, 1238, 1143, 1088, 1016.; HRMS 604.0840 (($M+H^{+\bullet}$); 604.0841 calcd for C₂₄H₃₃Br₂N₃O₅).

General procedure of Buchwald-Hartwig amination for macrocyclization (Table 2). To a sealable pressure tube, the Pd source (e. g., Pd_2dba_3 ·CHCl₃, 5-10 mol%), phosphine ligand (10 mol%), and a strong base like NaO*t*Bu (200 mol%) were added to a solution of the starting amine **13c** in toluene or 1,4-dioxane. The vessel was heated to 80 - 100 °C for 4-20 h. The mixture was cooled to RT, and then diluted with water (10 mL) and EtOAc (10 mL). The product was extracted by EtOAc (10 mL x 3), and the combined organic layers were dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by column chromatography. Results are tabulated in Table 2.

entry	conditions	temp. (°C) time (h)	result
1	$Pd(OAc)_2$ (5 mol%), DPPP (10 mol%), NaO'Bu (200 mol%), toluene ^a	80 °C, 14 h	b
2	Pd ₂ dba ₃ .CHCl ₃ (5 mol%), 3- (tol) ₃ P (10 mol%), ^t BuONa (200 mol%), toluene	rt, 4 d	b
3	Pd(OAc) ₂ (3.3 mol%), MOP (10 mol%), Cs ₂ CO ₃ (200 mol%), toluene ^a	100 °C, 20 h	sm recovered
4	Pd ₂ dba ₃ ·CHCl ₃ (10 mol%), BINAP (10 mol%), ^{<i>t</i>} BuOK (200 mol%), K ₂ CO ₃ (200 mol%), toluene ^a	90 °C, 14 h	b
5	Pd ₂ dba ₃ ·CHCl ₃ (8 mol%), BINAP (9 mol%), ¹ BuONa (200 mol%), dioxane	100 °C, 5 h	b

 Table 2.
 Attempted Pd-catalyzed Intramolecular N-Arylation Reactions

^aReaction was performed in sealed tube.

^b No desired product without any starting material.

Synthesis of tetracyclic DKP 14 by the Cu-mediated tandem cyclization. CuI (62 mg, 0.123

mmol) and CsOAc (60 mg, 0.307 mmol) were added to a 1-neck flask in N_2 charged drybox, and then the vessel was taken out. To the vessel, Free amine **13b** (62 mg, 0.123 mmol) in anhydrous DMSO (1.5

mL) was added. The resulting mixture was heated to 90 °C for 12 h under N2 atmosphere. After

the starting material was completely consumed, the mixture was cooled to RT, and then diluted with water (10 mL) and EtOAc (10 mL). The product was extracted by EtOAc (10 mL x 3), and the combined organic layer was dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by preparative TLC (67% EtOAc in *n*-Hex.) to get 29.3 mg (63 %) of **14** and 4.8 mg (10 %) of an unidentified compound. Pure major product **14** was crystallized under ether/EtOAc (2:1) for X-ray crystallography. **14**: ¹H NMR δ (CDCl₃): 8.15 (br s, 1H, N*H* of indole), 7.78-7.74 (d, J = 8.0 Hz, Ar), 7.33-7.29 (d, J = 8.3 Hz, Ar), 6.97 (s, 1H, Ar), 4.50-4.44 (dd, 1H, J = 12.2, 3.0 Hz, Benzylic), 4.04-4.03 (d, 1H, J = 3.7 Hz, α-H of Typ.), 3.80-3.72 (dd, 1H, J = 15.7, 3.2 Hz, Benzylic), 3.16-3.08 (m, 4H, -NCH₃ & α-H of Val.), 2.35-2.28 (m, 1H, -*CH*(CH₃)₂), 1.16-1.13 (d, 3H, J = 7.0 Hz, -CH(CH₃)₂), 0.88-0.86 (d, 3H, J = 6.2 Hz, -CH(CH₃)₂); ¹³C NMR δ (CDCl₃): 165.5, 163.6, 133.6, 130.5, 125.6, 122.0, 118.7, 113.8, 110.1, 100.3, 68.4, 60.2, 34.5, 32.4, 29.1, 19.8, 18.2; IR cm⁻¹ (KBr pellet): 3299, 2922, 1650, 1494, 1402, 1344, 1292, 1260, 1080.; HRMS 376.0644 ((M+H⁺⁺); 376.0661 calcd for C₁₇H₁₉BrN₃O₂); [α]²²_D = - 51.1 (c = 0.355, CHCl₃)

Synthesis of (S)-N-BOC-valinyl 2-bromophenylalanyl ethyl ester (19) using Horner-Emmons reaction followed by hydrogenation. (a) Synthesis of dehydrodipeptide substrate

18. After 2-bromobenzladehyde (0.5 g, 2.7 mmol) and Schmidt's phosphonate **11** (1.25 g, 2.7 mmol) in anhydrous CH_2Cl_2 were treated

with DBU (0.41 mL, 0.54 mmol) at 0 °C, the resulting mixture was stirred for 1 d at RT. The solvent was evaporated, and the crude product was purified by column chromatography (10 % to 20 % EtOAc in hexane.) to get 0.85 g (65 %) of the dehydrodipeptide **18**. ¹H NMR δ (CDCl₃): 7.76 (br s, 1H, CH in enamide), 7.54-7.52 (d, 1H, J = 8.0 Hz, Ar), 7.40 (s, 1H, NH), 7.33-7.32 (d, 1H, J = 7.2 Hz, Ar), 7.17-7,14 (t, 1H, J = 7.2 Hz, Ar), 7.10-7.06 (m, 1H, Ar), 4.27-4.22 (q, 2H, 6.8 Hz, -OCH₂CH₃), 4.09-4.06 (d, 1H, J = 11.2 Hz, α -H of Val.), 2.65 (s, 3H, -NCH₃), 2.20-2.06 (m, 1H, -CH(CH₃)₂), 1.41 (s, 9H, *t*Bu), 1.30-1.27 (t, 3H, J = 7.1 Hz, -OCH₂CH₃), 0.85-0.83 (d, 3H, J = 6.4 Hz, -CH(CH₃)₂), 0.79-0.77 (d, 3H, J = 6.4 Hz, -CH(CH₃)₂); ¹³C NMR δ (CDCl₃): 168.6, 164.5; 157.1, 134.9, 133.0, 130.2, 130.1, 129.5, 127.1, 126.1, 124.4, 80.6, 64.5, 61.9, 30.2, 28.5, 25.9, 19.6, 18.5, 14.3; IR cm⁻¹ (neat): 3277, 2973, 2932, 2874, 1725, 1666, 1480, 1392, 1368, 1296, 1256, 1153, 1100, 1026.; HRMS 483.1472 ((M+H⁺⁺); 483.1495 calcd for

C₂₂H₃₂BrN₂O₅).

(b) Synthesis of dipeptide 19 using Rh-catalyzed asymmetric hydrogenation of 18 (entry 3,

Table 3).^{3a} To a high-pressure Parr reactor, enamide **18** (0.36 g, 0.74 mmol), {Rh[[2,3-**D**gluco-1,2-diarylphosphinite][NBD]}⁺ BF₄^{-2b} (3.9 mg, 0.037 mmol) and anhydrous THF (10 mL)

were added in N₂ charged drybox. The reactor was brought out, and set up in a fume hood. The reactor was evacuated and refilled 3 times, and finally pressurized to 90 psi. The mixture was stirred for 4 d at RT. After the pressure was released, the solvent was evaporated, and the crude product was purified by column chromatography (20 % EtOAc in *n*-Hex.) to yield 0.36 g (conv. > 99 %, *SS*:*RS* = 6.8:1, based on ¹H NMR) of the 2-Br-Phe-Val derivative **19**. ¹H NMR δ (CDCl₃): 7.47-7.45 (d, 1H, J = 8.0 Hz, Ar), 7.15-7.10 (m, 2H, Ar), 7.04-7.00 (m, 1H, Ar), 6.58 (br s, 1H, NH), 4.85-4.84 (br d, 1H, 6.8 Hz, α-H of Tyr.), 4.13-3.99 (m, 3H, -OCH₂CH₃, & α-H of Val.), 3.29-3.24 (dd, 1H, J = 14.0, 5.6 Hz, benzylic), 3.06-2.98 (br m, 1H, Benzylic), 2.67 (s, 3H, -NCH₃, minor isomer), 2.53 (s, 3H, -NCH₃, major isomer), 2.17-2.06 (m, 1H, -CH(CH₃)₂), 1.42 (s, 9H, *t*Bu), 1.19-1.14 (t, 3H, J = 7.0 Hz, -OCH₂CH₃), 0.85-0.83 (d, 3H, J = 6.4 Hz, -CH(CH₃)₂); ¹³C NMR δ (CDCl₃): 171.1, 170.1, 156.7, 136.1, 132.9, 131.2, 128.5, 127.3, 124.9, 80.1, 64.4, 61.4, 60.3, 51.7, 38.4, 29.9, 28.4, 26.0, 21.0, 19.7, 18.4, 14.0; IR cm⁻¹ (neat): 3330, 3058, 2964, 2870, 1740, 1677, 1510, 1469, 1442, 1369, 1333, 1307, 1155, 1030.; HRMS 485.1630 ((M+H⁺⁺); 485.1651 calcd for C₂₂H₃₄BrN₂O₃); [α]²²_D _{589nm} = -79.3 (c = 0.75, CHCl₃).

Results of hydrogenation using other catalysts are summarized in Table 3.

entry	ligand	condition	yield (dr) ^b
1		cat. 5 mol%, MeOH 60 psi, rt, 24 h	100 % (<i>SS/SR</i> = 3.6:1.0)
2	Ph O O OPh Ar ₂ PO	cat. 5 mol%, THF 40 psi, rt, 24 h	38% (SS/SR = 10:1.0)
3	Ar = 3,5 dimethylphenyl	cat. 5 mol%, THF 60 psi, rt, 48 h	100 % (<i>SS/SR</i> = 6.8:1.0)

Table 3. Rh-catalyzed asymmetric hydrogenations of Z-dehydro-dipeptide 18^{a}

^a High pressure Paar hydrogenator was used. ^b Selectivities were determined by ¹H NMR.

Dipeptide N-Val-2-Br-Phe-OEt (20) via deprotection of the BOC group from 19. N-BOC-

protected dipeptide 19 (0.16 g, 0.33 mmol) was treated with 30 % TFA in CH₂Cl₂ (5 mL), and then the reaction mixture was stirred overnight at RT. After the starting BOC-derivative was

consumed completely, the mixture was evaporated. The residue was diluted with CH₂Cl₂ (10 mL) and washed with sat. NaHCO₃ (10 mL). The organic layer was dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to get 0.13 g (> 99 %) of the desired dipeptide (20). ¹H NMR δ (CDCl₃): 7.66-7.64 (d, 1H, J = 8.8 Hz, NH), 7.52-7.50 (d, 1H, J = 8.0 Hz, Ar), 7.28-7.26 (d, 1H, J = 8.0 Hz, Ar), 7.23-7.19 (t, 1H, J = 6.8 Hz, Ar), 7.08-7.05 (t, 1H, J = 6.8 Hz, Ar), 4.96-4.93 (m, 1H, α -H of Tyr.), 4.19-4.14 (q, 2H, J = 7.2 Hz, -OCH₂CH₃), 3.35-3.30 (dd, 1H, J = 14.0, 5.6 Hz, benzylic), 3.19-3.13 (dd, 1H, J = 14.4, 10.0 Hz, Benzylic), 2.73- 2.72 (d, 1H, J = 4.8 Hz, α -H of Val.), 2.34 (s, 3H, -NCH₃), 1.95-1.83 (m, 1H, -CH(CH₃)₂), 0.94-0.93 (d, 3H, J = 7.0 Hz, -CH(CH₃)₂, minor isomer (RS)), 0.88-0.86 (d, 3H, J = 7.0 Hz, -CH(CH₃)₂, minor isomer (RS)), 0.80-0.78 (d, 3H, J = 6.8 Hz, $-CH(CH_3)_2$), major isomer (SS)), 0.73-0.71 (d, 3H, J = 6.8 Hz, $-CH(CH_3)_2$, major isomer (SS)); ¹³C NMR δ (CDCl₃): 173.5, 171.8, 136.4, 133.0, 131.3, 128.7, 127.6, 125.1, 70.9, 70.5, 61.6, 53.6, 51.9, 38.1, 36.1, 35.9, 31.3, 19.4, 18.1, 14.2; IR cm⁻¹ (neat): 3319, 3055, 2964, 2801, 1736, 1655, 1513, 1473, 1437, 1366, 1199, 1133, 1026.

Synthesis of 2-bromophenylalanine (23a) using Schöllkopf reagent.⁷ *n*-BuLi (3.7 ml, 5.43

mmol, 1.47 M in hexane) was added dropwise to the solution of Schöllkopf reagent (1.0 g, 5.43 mmol) in anhydrous THF (5 mL) at -78 $^{\circ}$ C under N₂. The resulting solution was stirred additional

20 min. A solution of 2-bromobenzyl bromide (1.29 g, 5.43 mmol) was added to the mixture over 5 min periods, and the resulting mixture was stirred for 3 h at -78 °C. After the reaction was quenched with sat. NH₄Cl (5 mL), the reaction was warmed up to RT, and diluted with EtOAc (20 mL) and water (10 mL). The crude product was extracted with EtOAc (3 x 20 mL), and combined organic phase was dried over MgSO₄. After volatiles were evaporated, the crude product was purified by column chromatography (5 % EtOAc in hexane.). 1.7 g (93 %) of desired alkylated compound **22a** was obtained. ¹H NMR δ (CDCl₃): 7.51-7.50 (d, 1H, J = 7.5 Hz, Ar), 7.21-7.16 (m, 2H, Ar), 7.05-7.02 (m, 1H, Ar), 4.33-4.30 (m, 1H, α -H of Tyr.), 3.71 (s, 3H, OCH₃), 3.66-3.65 (t, 1H, J = 3.5 Hz, α -H of Val.), 3.62 (s, 3H, OCH₃), 3.47-3.43 (dd, 1H, J = 13.8, 4.8 Hz, benzylic), 2.95-2.90 (dd, 1H, J = 13.8, 8.2 Hz, benzylic), 2.21-2.18 (m, 1H, -CH(CH₃)₂), 1.00-0.99 (d, 3H, J = 7.0 Hz, -CH(CH₃)₂), 0.65-0.63 (d, 3H, J = 6.5 Hz, -CH(CH₃)₂); ¹³C NMR δ (CDCl₃): 163.8, 163.1, 137.9, 132.6, 131.9, 127.9, 126.8, 125.4, 60.5, 55.9, 52.5, 40.3, 31.4, 19.1, 16.6; IR cm⁻¹ (neat): 3056, 2962, 2870, 1685, 1587, 1461, 1458, 1374, 1239, 1109, 1026.

The alkylated compound **22a** (0.5 g, 1.42 mmol) in CH₃CN (10 mL) was treated with 0.3 N HCl (10 mL), and the resulting solution was stirred at rt for 30 min. The solution was made basic with sat. NaHCO₃, and the product was extracted with CH₂Cl₂ (3 x 20 mL). After drying and evaporation, the product was purified by column chromatography (EtOAc) to yield 0.34 g (92 %) of 2-bromo-*L*-phenylalanine methyl ester **23a**. All spectral data were matched with reported data. ¹H NMR δ (CDCl₃): 7.58-7.56 (d, 1H, J = 8.0 Hz, Ar), 7.28-7.24 (m, 2H, Ar), 7.15-7.10 (m, 1H, Ar), 3.90 (br s, 1H, α -H of Tyr.), 3.73 (s, 3H, OCH₃), 3.30-3.26 (dd, 1H, J = 13.4, 5.4 Hz, benzylic), 2.97-2.92 (dd, 1H, J = 13.6, 8.8 Hz, benzylic).

Synthesis of *o*-iodo phenylalanine (23b) using Schöllkopf reagent.⁷ Using the same procedure

as in the previous experiment, but with 2iodobenzyl bromide (0.385 g, 1.3 mmol), 0.388 g (75 %) of desired alkylated compound **22b** was obtained. ¹H NMR δ

(CDCl₃): 7.80-7.79 (d, 1H, J = 7.5 Hz, Ar), 7.24-7.19 (m, 2H, Ar), 6.88-6.84 (m, 1H, Ar), 4.30-4.27 (m, 1H, α -H of Tyr.), 3.72-3.71 (4H, OCH₃ & α -H of Val.), 3.63 (s, 3H, OCH₃), 3.44-3.40 (dd, 1H, J = 13.8, 4.8 Hz, benzylic), 2.95-2.91 (dd, 1H, J = 13.8, 7.8 Hz, benzylic), 2.22-2.19 (m, 1H, -CH(CH₃)₂), 1.01-1.00 (d, 3H, J = 7.0 Hz, -CH(CH₃)₂), 0.66-0.64 (d, 3H, J = 6.5 Hz, -CH(CH₃)₂); ¹³C NMR δ (CDCl₃): 163.9, 163.2, 141.4, 139.5, 131.1, 128.2, 127.9, 102.0, 60.7, 56.3, 52.8, 52.7, 45.0, 31.6, 19.3, 16.8; IR cm⁻¹ (neat): 3222, 2969, 1722, 1681, 1585, 1462, 1373, 1342, 1215, 1168, 1014.

The alkyated compound **22b** (0.24 g, 0.601 mmol) in CH₃CN (10 mL) was treated with 0.3 N HCl (5 mL), and the resulting solution was stirred at rt for 30 min. The solution was made basic with sat. NaHCO₃, and the product was extracted with CH₂Cl₂ (3 x 20 mL). After drying and evaporation, the product was purified by column chromatography (EtOAc) to get 0.184 g of the mixture of 2-iodo-*L*-phenylalanine methyl ester **23b** (85 %) with valine methyl ester (15 %). This mixture was used for a coupling reaction without further purification. All spectral data were matched with reported data. ¹H NMR δ (CDCl₃): 7.86-7.85 (d, 1H, J = 7.8 Hz, Ar), 7.31-7.28 (m, 1H, Ar), 7.24-7.22 (dd, 1H, J = 7.8, 1.8 Hz, Ar), 6.96-6.92 (m, 1H, Ar), 3.86-3.83 (dd, 1H, J = 8.2, 4.2 Hz, α -H of Tyr.), 3.73 (s, 3H, OCH₃), 3.27-3.23 (dd, 1H, J = 13.8, 4.2 Hz, benzylic), 2.95-2.90 (dd, 1H, J = 13.5, 8.0 Hz, benzylic); ¹³C NMR δ (CDCl₃): 175.4, 140.5, 139.9, 130.9, 128.8, 128.4, 101.1, 54.8, 52.2, 45.9.

Synthesis of dipeptide 25b using a peptide coupling reaction, followed by deprotection. To

a stirred solution of *N*-Boc, *N*-Me-*L*-valine (52 mg, 0.224 mmol), 2iodo-*L*-phenylalanine methyl ester OMe (57 mg, 0.187 mmol), and DIEA

(79 μ L, 0.449 mmol) in anhydrous CH₂Cl₂ (3 mL) was added HBTU (72 mg, 0.224 mmol), and the resulting solution was stirred for 12 h at RT. After the solvent was evaporated, the crude product was purified by column chromatography (10 to 20 % EtOAc in hexane) to get 95 mg (98

%) of the dipeptide **24b**. ¹H NMR δ (CDCl₃): 7.79-7.77 (d, 1H, J = 7.6 Hz, Ar), 7.49 (br s, 1H, Ar), 7.11-7.09 (d, 1H, J = 7.2 Hz, Ar), 6.90-6.86 (t, 1H, J = 7.6 Hz, Ar), 6.55 (br s, 1H, N*H*), 4.88 (br s, 1H, α-H of Tyr.), 4.10-3.99 (d, 1H, J = 10.8 Hz, α-H of Val.), 3.69 (s, 3H, -OC*H*₃) 3.30-3.25 (dd, 1H, J = 14.0, 5.6 Hz, benzylic), 3.06-2.98 (br d, 1H, J = 6.0 Hz, Benzylic), 2.54 (s, 3H, -NC*H*₃), 2.20-2.10 (m, 1H, -C*H*(CH₃)₂), 1.44 (s, 9H, *t*Bu), 0.87-0.85 (d, 3H, J = 6.4 Hz, -CH(C*H*₃)₂), 0.79-0.78 (d, 3H, J = 6.4 Hz, -C*H*(CH₃)₂); ¹³C NMR δ (CDCl₃): 171.7, 170.3, 157.0, 139.9, 139.4, 130.5, 128.8, 128.4, 101.1, 80.36, 64.7, 52.6, 51.9, 43.1, 30.2, 28.6, 26.1, 19.8, 18.6; $[\alpha]^{22}_{D 589nm} = -74.4$ (c = 1.285, CHCl₃).

The resulting compound **24b** (85 mg, 0.164 mmol) was treated with by 30 % TFA in CH₂Cl₂ (5 mL), and then the reaction mixture was stirred at RT for 8 h. After the starting BOC derivative was consumed completely, the mixture was evaporated. The residue was diluted with CH₂Cl₂ (10 mL) and washed with sat. NaHCO₃ (10 mL). The organic layer was dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to yield 67.2 mg (98 %) of the desired amine **25b**. ¹H NMR δ (CDCl₃): 7.78-7.77 (d, 1H, J = 8.0 Hz, Ar), 7.59-7.57 (d, 1H, J = 8.5 Hz, NH), 7.24-7.22 (m, 2H, Ar), 6.89-6.85 (m, 1H, Ar), 4.95-4.91 (m, 1H, α-H of Tyr.), 3.71 (s, 3H, -OCH₃), 3.34-3.30 (dd, 1H, J = 14.0, 6.0 Hz, benzylic), 3.14-3.09 (dd, 1H, J = 14.0, 10.0 Hz, Benzylic), 2.69-2.68 (d, 1H, J = 5.0 Hz, α-H of Val.), 2.33 (s, 3H, -NCH₃), 1.88-1.84 (m, 1H, -CH(CH₃)₂), 0.77-0.76 (d, 3H, J = 7.0 Hz, -CH(CH₃)₂), 0.69-0.67 (d, 3H, J = 7.0 Hz, -CH(CH₃)₂); ¹³C NMR δ (CDCl₃): 173.7, 172.4, 139.8, 130.4, 128.9, 128.6, 101.4, 71.1, 52.6, 52.1, 42.7, 36.1, 31.5, 19.5, 18.1.

General procedure of Cu-mediated tandem cyclizations (Table 1 in the article). Copper iodide (100 mol%) and CsOAc (250 mol%) were added to a 1-neck rb-flask in a N₂ charged drybox, and then the vessel was taken out. To the vessel, free amine (100 mol%) in anhydrous DMSO (1~1.5 mL/0.1 mmol of starting amines) was added. The resulting mixture was heated to 90 °C for 12 h under N₂ atmosphere. After the starting material was completely consumed, the mixture was cooled to RT, and then diluted with water (10 mL) and EtOAc (10 mL). The product was extracted by EtOAc (10 mL x 3), and the combined organic layer was dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by preparative TLC or column chromatography.

Synthesis of the tricyclic DKP 27 and 28 by Cu-mediated tandem cyclization (entry 3, Table

1 in article). Using the general procedure with 25 mg (0.065 mmol) of amine **20** and stoichiometric amount of CuI, (10.0 mg, 59 %) **27**

and 28 (3.1 mg, 18 %) were obtained.

27: ¹H NMR: δ (CDCl₃): 8.01-8.00 (d, 1H, J = 8.0 Hz, Ar), 7.28-7.22 (m, 2H, Ar), 7.11-7.08 (t, 1H, J = 7.5 Hz, Ar), 4.74-4.70 (dd, 1H, J = 11.2, 9.2 Hz, α-H of Tyr.), 4.00-3.99 (d, 1H, J = 1.0 Hz, α-H of Val.), 3.40-3.28 (m, 2H, , benzylic), 3.04 (s, 3H, -NCH₃), 2.45-2.42 (m, 1H, -*CH*(CH₃)₂), 1.24-1.23 (d, 3H, J = 7.0 Hz, -CH(*CH*₃)₂), 0.94-0.92 (d, 3H, J = 7.0 Hz, -CH(*CH*₃)₂); ¹³C NMR δ (CDCl₃): 166.7, 162.8, 141.5, 130.1, 127.9, 125.2, 124.9, 116.9, 67.5, 60.1, 32.8, 32.7, 30.7, 19.5, 16.3; IR cm⁻¹ (neat): 2984, 2922, 1668, 1602, 1485, 1421, 1394, 1249, 1092.; HRMS 259.1431 ((M+H⁺⁺); 259.1447 calcd for C₁₅H₁₉N₂O₂); [α]²²_D = -71.9 (c = 0.42, CHCl₃). **28:** ¹H NMR δ (CDCl₃): 8.10-8.09 (d, 1H, J = 8.0 Hz, Ar), 7.27-7.25 (s, 2H, Ar), 7.14-7.11 (t, 1H, J = 7.2 Hz, Ar), 4.91-4.87 (t, 1H, J = 10.0 Hz, α-H of Tyr.), 3.73-3.71 (d, 1H, J = 7.5 Hz, α-H of Val.), 3.59-3.54 (dd, 1H, J = 16.2, 10.2 Hz, benzylic), 3.13 (s, 3H, -NCH₃), 2.35-2.21 (m, 1H, -C*H*(CH₃)₂), 1.20-1.19 (d, 3H, J = 7.0 Hz, -CH(*CH*₃)₂), 1.16-1.15 (d, 3H, J = 6.5 Hz, -CH(*CH*₃)₂); ¹³C NMR δ (CDCl₃): 167.4, 164.1, 141.3, 130.0, 128.0, 125.3, 125.0, 116.70, 72.0, 59.6, 35.6, 32.4, 32.1, 20.3, 19.5; IR cm⁻¹ (neat): 2962, 2924, 1713, 1672, 1601, 1483, 1464, 1390, 1242, 1149, 1049; HRMS 281.1247 ((M+Na⁺⁺); 281.1266 calcd for C₁₅H₁₈NaN₂O₂); [α]²²_D = +24.6 (c = 0.570, CHCl₃).

Synthesis of the tricyclic DKPs 27 and 28 by catalytic amount of Cu-mediated tandem

cyclization (entry 4, Table 1 in article). Using the general procedure, 11 mg (0.027 mmol) of amine **20** and catalytic amount of CuI (0.43 mg,

0.0027 mmol) gave 27 (1.2 mg, 20 %) and 28 (4.0 mg, 69 %).

Synthesis of proline-containing dipeptide 26a by an aminoacid coupling reaction, and

deprotection to 26b. To a stirred solution of *N*-Boc-*L*-proline (25 mg, 0.116 mmol), 2-bromo-phenylalanine methyl ester **23a** (20

mg, 0.0077 mmol), and DIEA (40.5 µL, 0.233 mmol) in anhydrous CH₂Cl₂ (3 mL) was added HBTU (38 mg, 0.116 mmol). The resulting solution was stirred for 12 h at RT. After the solvent was evaporated, the crude product was purified by column chromatography (20 % EtOAc in *n*-Hex.) to yield 35 mg (99 %) of the title compound **26a**. ¹H NMR δ (CDCl₃): 7.51-7.49 (d, 1H, J = 8.0 Hz, Ar), 7.20-7.18 (2H, Ar), 7.08-7.05 (t, 1H, J = 6.6 Hz, Ar), 6.59 (br s, 1H, NH), 4.93-4.86 (d, 1H, J = 6.0 Hz, α -H of Tyr.), 4.16 (br s, 1H, α -H of Pro.), 3.70 (s, 3H, OCH₃), 3.33-3.10 (m, 4H, benzylic & N(BOC)CH₂R in proline), 2.25-1.72 (m, 4H, CHCH₂CH₂ in proline), 1.43 (s, 9H, tBu); ¹³C NMR δ (CDCl₃): 171.9, 133.1, 131.4, 128.9, 125.3, 52.6, 52.3, 47.3, 28.5; $[\alpha]^{23}_{D}$ = -50.7 (c = 0.38, CHCl₃).

BOC-protected dipeptide 26a (25 mg, 0.055 mmol) was treated with 30 % TFA in CH₂Cl₂ (5 mL), and then the reaction mixture was stirred overnight at rt. After the starting material was consumed completely, the mixture was evaporated. The residue was diluted with CH₂Cl₂ (10 mL) and washed with sat. NaHCO₃ (10 mL). The organic layer was dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by column chromatography (only EtOAc) to yield 19.3 mg (> 99 %) of the desired amine **26b**. ¹H NMR δ (CDCl₃): 8.06-8.05 (d, 1H, J = 8.0 Hz, NH), 7.51-7.50 (d, 1H, J = 7.5 Hz, Ar), 7.22-7.18 (m, 2H, Ar), 7.08-7.05 (m, 1H, Ar), 4.92-4.87 (m, 1H, α-H of Tyr.), 3.71 (s, 3H, OCH₃), 3.68-3.65 (m, 1H, α -H of Pro.), 3.35-3.31 (dd, 2H, J = 14.0, 6.0 Hz, benzylic), 3.15-3.11 (dd, 2H, J = 13.8, 8.8) Hz, benzylic), 2.95-2.91 (m, 1H, NHCH₂R in proline), 2.83-2.78 (m, 1H, NHCH₂R in proline), 2.02-1.96 (m, 1H, CHCH₂CH₂ in proline) 1.64-1.47 (m, 3H, CHCH₂CH₂ in proline); ¹³C NMR δ (CDCl₃): 175.2, 172.4, 136.3, 133.1, 131.4, 128.8, 127.6, 125.3, 60.5, 52.6, 51.8, 47.4, 38.3, 30.8, 26.2; HRMS 379.0448 (($M+Na^{+*}$); 379.0458 calcd for C₁₅H₁₉BrNaN₂O₃).

Synthesis of the tetracyclic DKPs 29 and 30 by Cu-mediated tandem cyclization. The

proline amine 26b (12 mg, 0.0338 mmol) was prome anne 200 (12 - 0)cyclized to yield the title compounds 29 (3.9 mg, 100(1) = 1 + 0 mg (12%) of isomerized product 30, 48%) and 1.0 mg. (12%) of isomerized product 30,

using the general procedure (stoichiometric amount of CuI). **29**: ¹H NMR δ (CDCl₃): 8.07-8.05 (d, 1H, J = 8.0 Hz, Ar), 7.22-7.20 (2H, Ar), 7.09-7.05 (m, 1H, Ar), 4.86-4.82 (t, 1H, 9.8 Hz, α -H of Tyr.), 4.32-4.29 (t, 1H, J = 6.8 Hz, α -H of Pro.), 3.71-3.66 (dd, 1H, J = 16.8, 9.2 Hz, benzylic), 3.61-3.58 (dd, 2H, J = 8.2, 5.8 Hz, NCH₂R in proline), 3.38-3.32 (dd, 1H, J = 16.5, 9.5 Hz, benzylic), 2.40-2.32 (m, 2H, CHCH2CH2 in proline), 2.05-1.96 (m, 2H, CHCH2CH2 in proline); ¹³C NMR δ (CDCl₃): 165.8, 165.4, 140.9, 130.2, 128.0, 125.2, 125.1, 116.0, 61.6, 61.1, 45.8, 30.5, 27.9, 23.7; IR cm⁻¹ (neat) : 2959, 2925, 2855, 1666, 1601, 1485, 1462, 1410, 1245, 1215, 1131, 1087.; HRMS 265.0935 (M+Na⁺⁺; calcd for C₁₄H₁₄NaN₂O₂ 265.0953); $[\alpha]^{22}_{D} = -10.2$ (c = 0.380, CHCl₃).

30: ¹H NMR δ (CDCl₃): 8.04-8.03 (d, 1H, J = 8.0 Hz, Ar), 7.28-7.20 (2H, Ar), 7.11-7.08 (t, 1H, J = 7.5 Hz, Ar), 5.15-5.10 (m, 2H, α -H of Tyr. & α -H of Pro.), 3.85-3.81 (t, 1H, J = 9.0 Hz, benzylic), 3.61-3.54 (m, 2H, NC*H*₂R in proline), 3.39-3.33 (m, 1H, benzylic), 2.59-2.45 (m, 1H, CHC*H*₂CH₂ in proline), 3.32-2.18 (m, 2H, CHCH₂C*H*₂ in proline).

General procedure of demethylations of dimethoxy-2,5-dihydropyrazine to 2,5diketopiperazine. To a stirred solution of alkylated dimethoxy-2,5-dihydropyrazine in $CHCl_3$ was added TMSI (300 mol%) under N₂, and the resulting solution was stirred for 1 h at RT. The reaction was quenched with few drops of MeOH, and then evaporated under reduced pressure. The crude product was purified by recrystallization.

Synthesis of (3S,6R)-3-(2-bromobenzyl)-6-isopropylpiperazine-2,5-dione (31a) Using the

general demethylation procedure with 30 mg (0.0852 mmol) of dimethyl substrate **22a**, 25 mg (90 %) of the title compound **31a** was obtained. ¹H NMR δ (DMSO-d₆): 8.07 (s, 1H, N*H* of Val.), 7.89-7.88 (d, 1H, J = 2.0 Hz, N*H* of Tyr.), 7.59-7.58 (d,

1H, J = 7.5 Hz, Ar), 7.33-7.29 (m, 2H, Ar), 7.20-7.17 (m, 1H, Ar), 4.14-4.11 (m, 1H, α -H of Tyr.), 3.50 (d, 1H, J = 1.5 Hz, α -H of Val.), 3.34 (s, 3H, -NC*H*₃), 3.25-3.21 (dd, 1H, J = 14.2, 5.2 Hz, benzylic), 3.11-3.07 (dd, 1H, J = 14.0, 7.0 Hz, benzylic), 2.23-2.2.17 (m, 1H, -C*H*(CH₃)₂), 0.94-0.93 (d, 3H, J = 7.0 Hz, -CH(C*H*₃)₂), 0.83-0.82 (d, 3H, J = 7.0 Hz, -CH(C*H*₃)₂); ¹³C NMR δ (DMSO-d₆): 167.9, 167.3, 136.0, 132.5, 131.8, 128.7, 127.5, 124.6, 58.9, 54.9, 53.9, 38.5, 30.6, 18.2, 16.7; IR cm⁻¹ (KBr pellet): 3446, 3190, 3056, 2962, 2876, 1673, 1471, 1447, 1346, 1290, 1105, 1028.; HRMS 347.0352 ((M+Na⁺⁺); 347.0371 calcd for C₁₄H₁₇BrNaN₂O₂); [α]²²_D = – 19.5 (c = 0.465, MeOH).

Synthesis of (3S,6R)-3-(2-iodobenzyl)-6-isopropylpiperazine-2,5-dione (31b). Using the

general demethylation procedure with 30 mg (0.0852 mmol) of dimethyl substrate **22b**, 25 mg (90 %) of the title compound **31b** was obtained. ¹H NMR δ (DMSO-d₆): 8.09 (s, 1H, N*H* of Val.), 7.85-7.84 (2H, N*H* of Tyr. & Ar), 7.35-7.32 (t, 1H, J =

7.2 Hz, Ar), 7.29-7.27 (q, 1H, J = 6.5 Hz, Ar), 7.01-6.98 (m, 1H, Ar), 4.11-4.09 (t, 1H, J = 4.8 Hz, α -H of Tyr.), 3.55 (d, 1H, J = 2.5 Hz, α -H of Val.), 3.30 (s, 3H, -NC*H*₃), 3.20-3.16 (dd, 1H, J = 14.0, 5.0 Hz, benzylic), 3.09-3.04 (dd, 1H, J = 14.0, 7.0 Hz, benzylic), 2.22-2.2.18 (m, 1H, - C*H*(CH₃)₂), 0.95-0.94 (d, 3H, J = 7.0 Hz, -CH(C*H*₃)₂), 0.84-0.83 (d, 3H, J = 7.0 Hz, -CH(C*H*₃)₂); ¹³C NMR δ (DMSO-d₆): 167.9, 167.3, 139.2, 130.7, 128.6, 128.2, 60.0, 54.9, 42.8, 30.5, 18.2, 16.7; IR cm⁻¹ (KBr pellet): 3444, 3190, 3055, 2961, 2874, 1665, 1448, 1384, 1344, 1288, 1105, 1010.

Synthesis of tricyclic DKP 32 using stoichiometric amount of CuI. Following the general

procedure using 30 mg (0.0923 mmol) of bromide substrate **31a** 19.0 mg (84 %) of the title compound **32** and 3.0 mg of isomerized product **33** (13 %) were obtained. **32**: ¹H NMR δ (CDCl₃): 8.16-8.14 (d, 8.0 Hz, 1H, Ar), 7.29-7.26 (m, 2H,

Ar), 7.15-7.20 (t, 7.5 Hz, Ar), 7.10 (br s, 1H, NH), 4.89-4.85 (t, J = 10.2 Hz, α -H of Tyr.), 3.87-3.85 (dd, J = 6.0, 2.0 Hz, 1H, α -H of Val.), 3.50-3.46 (dd, J = 16.5, 10.5 Hz, 1H, Benzylic H), 3.42-3.37 (dd, J = 16.0, 10.2 Hz, 1H, Benzylic H), 2.38-2.33 (q, J = 6.5 Hz, 1H, CH₃C*H*RCH₃), 1.16-1.14 (d, J = 6.5 Hz, 3H, C*H*₃CHRCH₃), 1.11-1.10 (d, J = 7.0 Hz, 3H, C*H*₃CHRCH₃); ¹³C NMR δ (CDCl₃): 169.3, 164.4, 141.5, 129.5, 128.1, 125.4, 125.0, 64.2, 59.4, 33.2, 32.2, 19.4, 18.3; IR cm⁻¹ (neat) : 3237, 2965, 2931, 2874, 1681, 1601, 1463, 1417, 1284.; HRMS 267.1093 (M+Na⁺⁺; calcd for C₁₄H₁₆N₂O₂Na 267.1109); [α]²²_D = -14.6 (c = 0.600, CHCl₃).

33: ¹H NMR δ (CDCl₃): 8.12-8.11 (d, 7.5 Hz, 1H, Ar), 7.26-7.22 (m, 2H, Ar), 7.10-7.07 (m, 1H, Ar), 5.93 (br s, 1H, NH), 4.79-4.75 (t, J = 10.0 Hz, α -H of Tyr.), 4.06-4.05 (d, J = 1.5 Hz, 1H, α -H of Val.), 3.59-3.54 (dd, J = 10.0, 16.0 Hz, 1H, Benzylic H), 3.39-3.34 (dd, J = 10.0, 16.0 Hz, 1H, Benzylic H), 2.74-2.71 (m, 1H, CH₃CHRCH₃), 1.13-1.11 (d, J = 7.5 Hz, 3H, CH₃CHRCH₃), 0.99-0.97 (d, J = 7.0 Hz, 3H, CH₃CHRCH₃); ¹³C NMR δ (CDCl₃): 169.9, 141.3, 129.6, 128.1, 125.2, 116.4, 60.9, 60.1, 31.1, 28.0, 19.6, 16.4.; [α]²²_D = + 88.6 (c = 0.150, CHCl₃).

Synthesis of tricyclic DKP 32 using catalytic amount of CuI and bromo substrate 31a.

Following the general procedure using 20 mg (0.0615 mmol) of bromo-substrate **31a**, 11.9 mg (79 %) of the title compound **32** and 2.4 mg (16 %) of isomerized product **33** were obtained.

Synthesis of tricyclic DKP 32 using stoichiometric amount of CuI and iodo substrate 31b.

Following the general procedure using 11.8 mg (0.0317 mmol) of iodo-substrate **31b**, 7.8 mg (> 99 %) of the title compound **32** was obtained.

Synthesis of tricyclic DKP 32 using catalytic amount of CuI and iodo-substrate 31b.

Following the general procedure using 10 mg (0.0267 mmol) of iodo-substrate **31b**, 6.2 mg (95 %) of the title compound **32** and 0.1 mg (1.5 %) of isomerized product **33** were obtained.

Synthesis of tricyclic DKP ent-28. To a stirred solution of 32 (5.0 mg, 0.0205 mmol) and MeI

(6.2 μ L, 0.1 mmol) in THF (2 mL), was added NaH (4.0 mg, 0.1 mmol) at 0 °C. The resulting solution was stirred at RT for 1 h, and then quenched with water. The product was extracted with EtOAc (3 x 5 mL), and combined organics were dried over

MgSO₄. After the solvent was evaporated, the crude product was purified by prep. TLC to yield the title compound *ent-28* (5.3 mg, > 99 %). ¹H NMR δ (CDCl₃): 8.07-8.05 (d, 7.6 Hz, 1H, Ar), 7.22-7.21 (2H, Ar), 7.10-7.06 (t, 7.2 Hz, Ar), 4.87-4.82 (t, J = 10.0 Hz, α -H of Tyr.), 3.69-3.67 (d, 1H, J = 7.2 Hz, α -H of Val.), 3.56-3.3.50 (dd, J = 16.4, 10.0 Hz, benzylic), 3.41-3.44 (dd, J = 16.4, 10.0 Hz, 1H, Benzylic H), 3.08 (s, 3H, NCH₃), 2.32-2.25 (m, 1H, CH₃CHRCH₃), 1.16-1.14 (d, J = 7.2 Hz, 3H, CH₃CHRCH₃), 1.12-1.11 (d, J = 6.8 Hz, 3H, CH₃CHRCH₃; ¹³C NMR δ (CDCl₃): 167.2, 163.8, 141.1, 129.8, 127.8, 125.1, 124.8, 116.5, 71.9, 67.1, 59.4, 35.3, 32.2, 32.0, 20.1, 19.3; IR cm⁻¹ (neat) : 2930, 2922, 1667, 1601, 1483, 1402, 1241, 1110, 1050.; HRMS 281.1248 ((M+Na⁺⁺); 281.1266 calcd for C₁₅H₁₈NaN₂O₂); [α]²²_D = -49.1 (c = 0.285, CHCl₃).

REFERENCES

- Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993, 115, 10125.
- (2) Chen, J.; Corbin, S. P.; Holman, N. J. Org. Proc. Res. Dev. 2005, 9, 185.
- (3) (a) [bis-2,5-diphenylphosphinohexane]Rh⁺ (Supporting Information, Table 1):Yan, Y. Y.;

RajanBabu, T. V. *Org. Lett.* **2000**, *2*, 4137. [**D**-Glucose derived ligand]Rh⁺ (Scheme 3, Supporting Information Table 3): (b) T. V. RajanBabu, T. A. Ayers, G. A. Halliday, K. K. You, J. C. Calabrese, *J. Org. Chem.* **1997**, *62*, 6012.

- (4) Xia, Z.; Smith, C. D. J. Org. Chem. 2001, 66, 3459
- (5) (a) Buck, R. T.; Clarke, P. A.; Coe, D. M.; Drysdale, M. J.; Ferris, L.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Swann, E. *Chem. Eur. J.* 2000, *6*, 2160. (b) Bentley, D. J.; Slawin, A. M. Z.; Moody, C. J. *Org. Lett.* 2006, *8*, 1975.
- (6) Schmidt, U.; Griesser, H.; Leitenberger, V.; Lieberknecht, A.; Mangold, R.; Meyer, R.; Riedl, B. *Synthesis* 1992, 487.
- (7) (a) Schöllkopf, U.; Groth, U.; Deng, C. Synthesis, 1981, 737. (b) Hinterding, K.; Albert, R.;
 Cottens, S. Tetrahedron Lett. 2002, 43, 8095.

S40

S66

¹H NMR spectrum of 30

ORTEP Diagram of Tetracyclic Adduct 14 (see CIF for details)

