SUPPORTING INFORMATION

Annulated Diketopiperazines from Dipeptides or Schöllkopf Reagents via Tandem Cyclization-Intramolecular \boldsymbol{N}-Arylation
Department of Chemistry, The Ohio State University, Columbus, OH 43210 USA

Table of Contents

General Information S3
Synthesis of 4,7-dibromo- 1 H -indole (5) S3
Synthesis of 4,7-dibromo- 1 H -indole-3-carboxaldehyde (6) S3
Synthesis of 4,7-dibromo- N -Boc-indole carboxaldehyde (7) S4
Synthesis of N-Boc, N-Me- L-valine amide (9) S4
Synthesis of ethyl 2-diazo-2-(diethoxyphosphoryl)acetate (10) S5
Synthesis of Schmidt's phosphonate 11 S5
Synthesis of enamide $\mathbf{1 2}$ using Horner-Emmons reaction S5General procedure for Rh-catalyzed asymmetric hydrogenation (Table 1).Synthesis of 13aS6
Use of $\{[(S S) \text {-Et-DuPhos }] \operatorname{Rh}[\mathrm{COD}]\}^{+} \mathrm{BF}_{4}$-catalyzed asymmetric hydrogenation(entry 5, Table 1) S6
Table 1. $\mathrm{Rh}(\mathrm{I})$-Catalyzed Hydrogenation of the Dehydro-dipeptide 12 S7
Attempts to prepare indolyl N-BOC protected NHMe dipeptide 13cby selective deprotection of the BOC group in Valine S7
Synthesis of the dipeptide 13b by deprotection of both BOC groups S7
Synthesis of indolyl N-BOC protected dipeptide 13c by selectivedeprotection of the BOC group in valine S8General procedure of Buchwald-Hartwig amination formacrocyclization (Table 2)S9
Table 2. Attempted Pd-catalyzed Intramolecular N-Arylation Reactions S9
Synthesis of tetracyclic DKP 14 by the Cu-mediated tandem cyclization S9
Synthesis of (S)-N-BOC-valinyl 2-bromophenylalanyl ethyl ester (19)
using Horner-Emmons reaction followed by hydrogenation S10
(a) Synthesis of dehydrodipeptide substrate $\mathbf{1 8}$ S10
(b) Synthesis of dipeptide 19 using Rh-catalyzed asymmetric hydrogenation of 18 (entry 3, Table 3) S11
Table 3. Rh-catalyzed asymmetric hydrogenations of Z-dehydro-dipeptide 18 S12
Dipeptide N-Val-2-Br-Phe-OEt (20) via deprotection of the BOC group from 19 S12
Synthesis of 2-bromophenylalanine (23a) using Schöllkopf reagent S13
Synthesis of o-iodo phenylalanine (23b) using Schöllkopf reagent S14
Synthesis of dipeptide $\mathbf{2 5 b}$ using a peptide coupling reaction,
followed by deprotection S14
General procedure of Cu -mediated tandem cyclizations (Table 1 in the article) S15
Synthesis of the tricyclic DKP 27 and $\mathbf{2 8}$ by Cu-mediated tandem cyclization S16
Synthesis of the tricyclic DKPs 27 and 28 by catalytic amount of Cu -mediatedtandem cyclizationS16
Synthesis of proline-containing dipeptide 26a by an aminoacid coupling reaction, and deprotection to $\mathbf{2 6 b}$ S16
Synthesis of the tetracyclic DKPs 29 and $\mathbf{3 0}$ by Cu-mediated tandem cyclization S17
General procedure of demethylations of dimethoxy-2,5-dihydropyrazine
to 2,5-diketopiperazine S18
Synthesis of (3S,6R)-3-(2-bromobenzyl)-6-isopropylpiperazine-2,5-dione (31a) S18
Synthesis of (3S,6R)-3-(2-iodobenzyl)-6-isopropylpiperazine-2,5-dione (31b) S18
Synthesis of tricyclic DKP 32 using stoichiometric amount of CuI S19
Synthesis of tricyclic DKP 32 using catalytic amount of CuI and bromo-substrate 31a S19
Synthesis of tricyclic DKP 32 using stoichiometric amount of CuI and iodo-substrate 31b S20
Synthesis of tricyclic DKP 32 using catalytic amount of CuI and iodo-substrate 31b S20
Synthesis of tricyclic DKP ent-28 S20
REFERENCES S20
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of key compounds S22

General Information. All solvents were dried by standard methods prior to use. Methylene chloride was distilled from calcium hydride under nitrogen and stored over molecular sieves. Tetrahydrofuran was distilled under nitrogen from sodium/benzophenone ketyl. Reactions requiring air-sensitive manipulations were conducted under an inert atmosphere of nitrogen by using Schlenk techniques or a Vacuum Atmospheres glovebox. Analytical TLC was performed on E. Merck precoated (0.25 mm) silica gel 60 F254 plates. Flash column chromatography was carried out on silica gel 40 (Scientific Adsorbents Incorporated, Microns Flash). NMR experiments were performed using CDCl_{3} with $\mathrm{CHCl}_{3}(\delta 7.24)$ as an internal standard. Optical rotations were recorded on a Perkin-Elmer Model 241 polarimeter at the sodium D line in chloroform. Rhodium catalysts for asymmetric hydrogenation, CuI , and CsOAc were stored in a Vacuum Atomspheres drybox. CuI and CsOAc were purchased from Sigma-Aldrich Inc. Both $\operatorname{Rh}(\mathrm{COD})(S, S-\mathrm{MeDuPhos}) \mathrm{BF}_{4}$ and ethyl analogue were either purchased from Strem Chemicals or prepared by known routes. ${ }^{1} \quad(R)$-Schöllkopf reagent ${ }^{2}$ and other Rh-hydrogenation catalysts (Tables 1 and 3) ${ }^{3}$ were prepared according to procedures published before. For pressurized hydrogenation reaction, Parr Pressure Reactor was used.
Synthesis of 4,7-dibromo- $\mathbf{H} \boldsymbol{H}$-indole (5). Under N_{2} atmosphere, 1 M vinyl magnesium bromide
 ($160.5 \mathrm{~mL}, 16.05 \mathrm{mmol}$) in anhydrous THF (320 mL) was added to a stirred solution of 2,5-dibromonitrobenzene (15 g , 5.34 mmol) at $-70{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred additional 20 min at $-50^{\circ} \mathrm{C}$, and then poured into sat. $\mathrm{NH}_{4} \mathrm{Cl}$. After the crude product was extracted with EtOAc ($300 \mathrm{~mL} \times 3$), combined organics were dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by column chromatography (10% EtOAc in hexane.) to yield $6.95 \mathrm{~g}(47 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 8.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} 2,5$, and 6), 6.73-6.71 (dd, $1 \mathrm{H}, \mathrm{J}=$ $3.2,2.4 \mathrm{~Hz}, \operatorname{Ar} 3) ;{ }^{13} \mathrm{C} \operatorname{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 134.6,129.5,125.5,125.1,123.1,104.4,103.9$.
Synthesis of 4,7-dibromo-1H-indole-3-carboxaldehyde (6). To an ice-cooled reaction vessel
 containing DMF (50 mL) under N_{2} atmosphere, $\mathrm{POCl}_{3}(2.6$ $\mathrm{mL}, 27.2 \mathrm{mmol})$ was added dropwise. Indole $5(6.8 \mathrm{~g}, 24.7$ $\mathrm{mmol})$ in DMF (100 mL) was slowly added to the mixture. The resulting solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then for 5 h at RT. After the starting indole was consumed completely, the solution was poured into
crushed ice. The mixture was treated with 1 M NaOH to adjust pH to $10 \sim 11$, followed by quick heating to boil for 5 min . The mixture was cooled to $0^{\circ} \mathrm{C}$, and then acidified with 3 M HCl . The desired aldehyde was collected by filtration, and washed with water and hexane to get 5.9 g (79 $\%$) of the title compound. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right): 10.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} 2), 7.40$ (s, 2H, Ar 5 and 6); ${ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{DMSO}_{6}\right): 146.1,144.3,136.7,135.8,135.6,128.5,121.4$, 114.7.

Synthesis of 4,7-dibromo- \boldsymbol{N}-Boc-indole carboxaldehyde (7). To a stirred solution of 4,7-
 dibromo- 1 H -indole-3-carboxaldehyde 6 ($10 \mathrm{~g}, 33.0 \mathrm{mmol}$) in THF (500 mL) was added $\mathrm{NaH}(3.4 \mathrm{~g}, 83.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ portionwise. After H_{2} gas evolution ceased, $(\mathrm{BOC})_{2} \mathrm{O}(8.8$ $\mathrm{g}, 44.0 \mathrm{mmol}$) in THF (200 mL) was added slowly. The resulting mixture was stirred overnight at RT, and then the reaction was quenched by slow addition of water (500 mL). The crude product was extracted by ether (500 mL x 3) and the combined organic layers was dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by column chromatography (10% EtOAc in hexane.) to get $11.1 \mathrm{~g}(83 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 10.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.43-7.37(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=12.8,8.4 \mathrm{~Hz}, \mathrm{Ar}), 1.65$ (s, 9H, tBu); ${ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 186.5,147.1,135.4,135.3,131.2,129.9,129.7,121.0,113.0$, 107.5, 87.1, 28.0; $\mathrm{IR} \mathrm{cm}^{-1}(\mathrm{KBr}): 3142,2978,2937,2887,1764,1668,1544,1534,1470,1374$, 1310, 1235, 1144, 1021.
Synthesis of \boldsymbol{N}-Boc, \boldsymbol{N}-Me- \boldsymbol{L}-valine amide (9). ${ }^{4}$ To a stirred solution of N-Boc, N-Me- L-valine
 $(5 \mathrm{~g}, 21.6 \mathrm{mmol})$ and N-methyl morpholine (2.38 mL , $21.6 \mathrm{mmol})$ in anhydrous DME (100 mL) was added isobutyl chloroformate ($2.82 \mathrm{~mL}, 21.65 \mathrm{mmol}$) dropwise at $-15^{\circ} \mathrm{C}$. After 0.5 h of stirring, NH_{3} gas was bubbled into the reaction mixture for 15 min at $-15{ }^{\circ} \mathrm{C}$ and, for additional 15 min at rt . After addition of water $(100 \mathrm{~mL})$, the crude product was extracted by chloroform $(100 \mathrm{~mL} \times 3)$ and the combined organics were dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by recrystallization (10% EtOAc in hexane.) to yield $3.9 \mathrm{~g}(78 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right) ; 6.14\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}_{2}\right), 5,35\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}_{2}\right), 4.07-4.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}, \alpha-$ H), $2.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, 2.27-2.18 (m, $\left.1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.45(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 0.96-0.94(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ 6.4 Hz, $\left.-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.86-0.84\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 173.2$,
$157.0,80.3,64.0,30.2,28.5,26.1,19.8,18.6$.
Synthesis of ethyl 2-diazo-2-(diethoxyphosphoryl)acetate (10). ${ }^{5}$ To a stirred solution of $\underset{\mathrm{PO}(\mathrm{OEt})_{2}}{\mathrm{CO}_{2} \mathrm{Et}} \longrightarrow \begin{aligned} & \mathrm{N}_{2} \underset{\mathrm{PO}(\mathrm{OEt})_{2}}{\mathrm{CO}_{2} \mathrm{Et}} \begin{array}{l}\text { triethyl phosphonate }(2.5 \mathrm{~g}, 11.15 \mathrm{mmol}) \text { in anhydrous }\end{array} \\ & \text { THF was added a mixture of } \mathrm{NaH}(0.54 \mathrm{~g}, 13.38 \mathrm{mmol})\end{aligned}$ and p-toluenesulfonyl azide ($2.64 \mathrm{~g}, 13.38 \mathrm{mmol}$) in THF (5 mL) slowly at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at the same temperature for 10 min , and then stirred additional 10 min at RT. After ether (10 mL) and water (10 mL) were added, the crude product was extracted by ether (10 $\mathrm{mL} x$ 3). The combined organic layers was dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by column chromatography (25% EtOAc in hexane.) to get $2.35 \mathrm{~g}(84 \%)$ of the title compound. ${ }^{1} \mathrm{H} \mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 4.24-4.10\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 1.32-1.23 (m, $\left.6 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 163.6,163.4,63.7,61.8,16.3,14.5$.

Synthesis of Schmidt's phosphonate 11. ${ }^{5}$ To a single-necked rb flask, triethyl

mmol) were added. After the solution was treated with rhodium acetate ($19 \mathrm{mg}, 0.087 \mathrm{mmol}$), the mixture was heated to refluxed temperature until the starting diazo-compound was completely consumed. The solvent was evaporated, and the crude product was purified by column chromatography (10% EtOAc in hexane) to get $11.1 \mathrm{~g}(83 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 4.30-4.05\left(\mathrm{~m}, 8 \mathrm{H}, 3 \mathrm{OCH}_{2} \mathrm{CH}_{3}, 2 \alpha-\mathrm{H}\right), 2.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.30-2.14(\mathrm{~m}, 1 \mathrm{H}$, $i \operatorname{Pr}), 1.43(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.35-1.20\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{OCH}_{2} \mathrm{CH}_{3}\right),{ }^{13} \mathrm{C} \operatorname{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 167.5,166.3,80.2$, $68.5,64.5,63.6,61.7,51.2,49.7,30.0,28.3,19.7,18.9,18.4,16.3,14.9,14.1 ;{ }^{31} \mathrm{P}$ NMR δ $\left(\mathrm{CDCl}_{3}\right): 15.9,14.4 ; \mathrm{IR} \mathrm{cm}^{-1}$ (KBr pellet): 3372, 3195, 2973, 1743, 1677, 1471, 1444, 1366, 1311, 1255, 1166, 1028.

Synthesis of enamide $\mathbf{1 2}$ using Horner-Emmons reaction. ${ }^{6}$ After the aldehyde 7 (2.3 g, 5.71
 $(0.94 \mathrm{~mL}, 5.80 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, the resulting mixture was stirred for 1 d at RT. The solvent was evaporated, and the crude product (12) was purified by column chromatography (20% to 50% EtOAc in hexane) to get $2.7 \mathrm{~g}(71 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 8.23(\mathrm{~s}, 1 \mathrm{H}$,
enamide), $7.76(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar} 2), 7.34-7.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \operatorname{Ar}), 7.28-7.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{Ar})$, 4.30-4.20 (m, 3H, $-\mathrm{OCH}_{2} \mathrm{CH}_{3} \& \alpha-\mathrm{H}$ of Val.), $2.82\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 2.29\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.65(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 1.43(\mathrm{~s}, 9 \mathrm{H}, \mathrm{tBu}), 1.33-1.30\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.01-0.99(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}$ $\left.=6.4 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.87-0.85\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 169.8$, $164.6,157.3,147.6,134.9,131.0,130.7,130.5,129.1,125.6,124.0,114.5,113.5,107.5,85.9$, 80.6, 61.5, 30.6, 28.4, 27.9, 25.9, 20.2, 18.6, 14.4; $\mathrm{IR} \mathrm{cm}^{-1}$ (KBr pellet) : 3423, 3256, 2969, 2921, 2873, 1755, 1666, 1468, 1367, 1241, 1146; HRMS $724.1034\left(\mathrm{M}+\mathrm{Na}^{+\bullet}\right.$; calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{Br}_{2} \mathrm{NaN}_{3} \mathrm{O}_{7}$ 724.1029).
General procedure for Rh-catalyzed asymmetric hydrogenation (Table 1). Synthesis of
 13a. ${ }^{1,3}$ To a high-pressure Parr reactor, brought out of the box, and set up in a fume hood. The reactor was evacuated and refilled with H_{2}-gas three times and finally pressurized to 90 psi . The mixture was stirred for 4 d at RT. After the pressure was released, the solvent was evaporated, and the crude product was purified by column chromatography. Hydrogenation of $\mathbf{1 2}$ was conducted using the following complexes and the results are recorded in Table 1: $\{[(R R)-2,5 \text {-diphenylphosphinohexane }] \operatorname{Rh}[\mathrm{NBD}]\}^{+} \mathrm{BF}_{4}{ }^{-}$, $\{[(R R) \text {-3,6-diphenylphosphino-2.7-dimethyloctane }] \operatorname{Rh}[\mathrm{NBD}]\}^{+} \mathrm{BF}_{4}{ }^{-}$(Table 1, entries 1, 2); $[(S S)-\mathrm{Me}-\mathrm{DuPhos}] \mathrm{Rh}[\mathrm{NBD}]\}^{+} \mathrm{BF}_{4}$ (entries 3 and 4).

Use of $[(S S) \text {-Et-DuPhos] } \mathrm{Rh}[\mathrm{COD}]\}^{+} \mathbf{B F}_{4}$-catalyzed asymmetric hydrogenation (entry 5, Table 1). ${ }^{1}$ Following the general procedure, enamide $12(0.5 \mathrm{~g}, 0.73 \mathrm{mmol})$ was hydrogenated using $\mathrm{Rh}[\mathrm{COD}](E t-S, S-D u p h o s){ }^{+} \mathrm{BF}_{4}{ }^{-}(44.0 \mathrm{mg}, 0.073 \mathrm{mmol})$ and degassed $\mathrm{MeOH}(10 \mathrm{~mL})$ under 90 psi for 4 d at RT. The crude product was purified by column chromatography (20% EtOAc in hexane) to get 0.5 g (conv. $90 \%, S: R=8.5: 1$) of the title compound with 10% of the unreacted starting enamide. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 7.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.34-7.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}$, Ar), 7.28-7.24 (t, 1H, J = 8.0 Hz, Ar), 4.9 (br s, $\alpha-\mathrm{H}$ of Typ.), 4.18-4.09 (m, 2H, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 4.03-4.00 (d, $1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Val.), $3.55-3.50\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,5.6 \mathrm{~Hz},-\mathrm{CH}_{2}-\right), 3.38-3.32$ (dd, $\left.1 \mathrm{H}, \mathrm{J}=14.8,8.8 \mathrm{~Hz},-\mathrm{CH}_{2}-\right), 2.70\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 2.25\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.64(\mathrm{~s}, 9 \mathrm{H}$, $t \mathrm{Bu}), 1.36(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.33-1.30\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.94-0.93(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.85-0.84\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 171.1,170.5,147.6$;
$135.5,131.2,130.3,129.2,128.4,113.3,107.4,84.9,80.2,61.4,60.4,28.2,27.9,21.0,18.5$, 14.2; $\mathrm{IR} \mathrm{cm}^{-1}$ (neat) : 3322, 3119, 3057, 2976, 2873, 1746, 1693, 1530, 1469, 1392, 1315, 1242, 1153; HRMS $726.1192\left(\left(\mathrm{M}+\mathrm{Na}^{+\bullet}\right)\right.$; 726.1186 calcd for $\left.\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{Br}_{2} \mathrm{NaN}_{3} \mathrm{O}_{7}\right)$.

Table 1. Rh(I)-Catalyzed Hydrogenation of the Dehydro-dipeptide 12

entry	ligand	conditions ${ }^{\text {a }}$	yield \% (dr) ${ }^{\text {b }}$
1		$\begin{aligned} & \mathrm{R}=\mathrm{Me} \quad(10 \\ & \mathrm{mol} \%), 90 \mathrm{psi}, 3 \mathrm{~d} \end{aligned}$	> 99 (3.2:1.0)
2		$\begin{aligned} & \mathrm{R}=i-\mathrm{Pr}(10 \\ & \mathrm{mol} \%), 90 \mathrm{psi}, 3 \mathrm{~d} \end{aligned}$	92 (2.9:1.0)
3		$\begin{aligned} & \mathrm{R}=\mathrm{Me} \quad(10 \\ & \mathrm{mol} \%), 70 \mathrm{psi}, 4 \mathrm{~d} \end{aligned}$	85 (4.6:1.0)
4		$\begin{aligned} & \mathrm{R}=\mathrm{Me} \quad(10 \\ & \mathrm{mol} \%), 90 \mathrm{psi}, 2 \mathrm{~d} \end{aligned}$	88 (4.6:1.0)
5		$\begin{aligned} & \mathrm{R}=\mathrm{Et}(10 \mathrm{~mol} \%), \\ & 90 \mathrm{psi}, 4 \mathrm{~d} \end{aligned}$	90 (8.5:1.0)

${ }^{\text {a }}$ Reactions done using $\left\{[\mathrm{Rh}(\text { ligand })(\mathbf{L})]^{+} \mathrm{BF}_{4}^{-} \quad(\mathbf{L}=\right.$ NBD entries 1,2; or COD (entries 3-5) $\}$ in deoxygenated MeOH in a high pressure Parr hydrogenator. ${ }^{\mathrm{b}} \mathrm{dr}=$ diastereomeric ratio, determined by ${ }^{1} \mathrm{H}$ NMR.

Attempts to prepare indolyl N-BOC protected NHMe dipeptide 13c by selective
 deprotection of the BOC group in Valine. Di-BOC-protected dipeptide 13a was treated with 3 M HCl or only formic acid at $0^{\circ} \mathrm{C}$, and then the reaction mixture was stirred at rt for 12 h . After, the solvent was evaporated, the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and evaporated under reduced pressure. Only starting dipeptide compound 13a was recovered.

Synthesis of the dipeptide 13b by deprotection of both BOC groups. Di-BOC-protected
 dipeptide 13a ($91 \mathrm{mg}, 0.132 \mathrm{mmol}$) was treated with $30 \% \mathrm{TFA}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and then the reaction mixture was stirred for

1 h at RT. After the starting 13a was consumed completely, the mixture was evaporated. The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to get $66 \mathrm{mg}(99 \%)$ of the desired amine 13b. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 8.38$ (br s, $1 \mathrm{H}, \mathrm{NH}$ of indole), 7.69-7.66 (d, $1 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{NH}$ of amide), 7.22-7.21 (d, 1H, J = 1.0 Hz, Ar), 7.13 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}$), 4.99-4.95 (m, 1H, $\alpha-\mathrm{H}$ of Typ.), 4.20-4.12 (m, $2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.65-3.40 (m, 2H, benzylic H), 2.70-2.68 (d, 1H, J = 5.0 Hz, $\alpha-\mathrm{H}$ of Val.), 2.32 (s, $3 \mathrm{H},-\mathrm{NCH}_{3}$), 1.91-1.72 (m, 1H, - $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.23-1.17\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.86-$ $0.83\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.63-0.60\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR δ $\left(\mathrm{CDCl}_{3}\right): 173.8,172.4,136.0,126.6,125.3,125.2,113.9,113.6,104.4,75.9,71.1,61.5,53.1$, 36.1, 34.3, 31.4, 29.9, 28.8, 19.5, 17.9, 14.3; $\mathrm{IR} \mathrm{cm}^{-1}$ (neat) : 3323, 2959, 2922, 2852, 1737, 1659, 1517, 1478, 1371, 1335, 1247, 1170, 1070, 1029.; HRMS $526.0117\left(\mathrm{M}+\mathrm{Na}^{+\bullet}\right) ; 526.0141$ calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{Br}_{2} \mathrm{NaN}_{3} \mathrm{O}_{3}\right) ;[\alpha]^{22}{ }_{\mathrm{D}}=-8.3\left(\mathrm{c}=0.405, \mathrm{CHCl}_{3}\right)$
Synthesis of indolyl N-BOC protected dipeptide 13 c by selective deprotection of the BOC
 group in valine. Di-BOC-protected dipeptide 13a ($0.36 \mathrm{~g}, 0.52 \mathrm{mmol}$) was treated with 20% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and then the reaction mixture was stirred for 12 h at the same temperature. The solvent was evaporated, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with sat. NaHCO_{3} $(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to get the mono-protected amine 13c ($0.21 \mathrm{~g}, 67 \%$) along with some 13b ($71 \mathrm{mg}, 30 \%$). 13c: ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)$: 7.72-7.70 (d , $1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{NH}$ of amide), $7.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 7.35-7.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0, \mathrm{Ar}), 7.28-7.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=8.0 \mathrm{~Hz}, \mathrm{Ar}), 5.06\left(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}\right.$ of Typ.), 4.23-4.17(q, 2H, J = 7.2 Hz, $\left.-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.65-3.60$ (dd, $1 \mathrm{H}, \mathrm{J}=14.0$, 5.2 Hz , benzylic H), 3.42-3.36 (dd, $1 \mathrm{H}, \mathrm{J}=15.6,9.6 \mathrm{~Hz}$, benzylic H), 2.76$2.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}, \alpha-\mathrm{H}\right.$ of Val.), $2.39\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 1.97-1.86\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.65$ $(\mathrm{s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.25-1.22\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.85-0.83\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $0.73-0.72\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 173.5,172.0,147.6,131.3$, $130.4,129.3,128.4,115.8,113.33,107.3,84.86,70.8,61.4,52.1,36.0,31.3,27.9,19.4,17.8$, 14.1; $\mathrm{IR} \mathrm{cm}^{-1}$ (KBr pellet) : 3326, 2971, 2794, 1737, 1659, 1515, 1459, 1376, 1315, 1238, 1143, 1088, 1016.; HRMS $604.0840\left(\left(\mathrm{M}+\mathrm{H}^{+\bullet}\right) ; 604.0841\right.$ calcd for $\left.\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}\right)$.

General procedure of Buchwald-Hartwig amination for macrocyclization (Table 2). To a sealable pressure tube, the Pd source (e. g., $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}, 5-10 \mathrm{~mol} \%$), phosphine ligand (10 $\mathrm{mol} \%$), and a strong base like $\mathrm{NaO} t \mathrm{Bu}(200 \mathrm{~mol} \%)$ were added to a solution of the starting amine 13c in toluene or 1,4-dioxane. The vessel was heated to $80-100^{\circ} \mathrm{C}$ for $4-20 \mathrm{~h}$. The mixture was cooled to RT, and then diluted with water (10 mL) and EtOAc (10 mL). The product was extracted by EtOAc ($10 \mathrm{~mL} x 3$), and the combined organic layers were dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by column chromatography. Results are tabulated in Table 2.
Table 2. Attempted Pd-catalyzed Intramolecular N-Arylation Reactions

entry	conditions	$\begin{aligned} & \text { temp. }\left({ }^{\circ} \mathrm{C}\right) \\ & \text { time (h) } \end{aligned}$	result
1	$\operatorname{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, DPPP (10 mol\%), $\mathrm{NaO}^{t} \mathrm{Bu}$ (200 mol\%), toluene ${ }^{\text {a }}$	$80^{\circ} \mathrm{C}, 14 \mathrm{~h}$	--b
2	$\mathrm{Pd}_{2} \mathrm{dba}_{3} . \mathrm{CHCl}_{3}(5 \mathrm{~mol} \%)$, 3$(\text { tol })_{3} \mathrm{P}(10 \mathrm{~mol} \%),{ }^{t} \mathrm{BuONa}$ ($200 \mathrm{~mol} \%$), toluene	rt, 4 d	-- b
3	$\mathrm{Pd}(\mathrm{OAc})_{2}(3.3 \mathrm{~mol} \%)$, MOP (10 mol\%), $\mathrm{Cs}_{2} \mathrm{CO}_{3} \quad$ (200 mol\%), toluene ${ }^{\text {a }}$	$100^{\circ} \mathrm{C}, 20 \mathrm{~h}$	sm recovered
4	$\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3} \quad(10 \mathrm{~mol} \%)$, BINAP (10 mol\%), ${ }^{t} \mathrm{BuOK}$ (200 mol\%), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (200 mol\%), toluene ${ }^{\text {a }}$	$90^{\circ} \mathrm{C}, 14 \mathrm{~h}$	-- b
5	$\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3} \quad(8 \mathrm{~mol} \%)$, BINAP ($9 \mathrm{~mol} \%$), ${ }^{t} \mathrm{BuONa}$ ($200 \mathrm{~mol} \%$), dioxane	$100^{\circ} \mathrm{C}, 5 \mathrm{~h}$	-- b

${ }^{\text {a }}$ Reaction was performed in sealed tube.
${ }^{\mathrm{b}}$ No desired product without any starting material.

Synthesis of tetracyclic DKP 14 by the Cu-mediated tandem cyclization. CuI ($62 \mathrm{mg}, 0.123$

mL) was added. The resulting mixture was heated to $90^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. After
the starting material was completely consumed, the mixture was cooled to RT, and then diluted with water $(10 \mathrm{~mL})$ and EtOAc (10 mL). The product was extracted by EtOAc ($10 \mathrm{~mL} x$ 3), and the combined organic layer was dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by preparative TLC (67% EtOAc in n-Hex.) to get 29.3 mg (63%) of 14 and $4.8 \mathrm{mg}(10 \%)$ of an unidentified compound. Pure major product $\mathbf{1 4}$ was crystallized under ether/EtOAc (2:1) for X-ray crystallography. 14: ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 8.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ of indole), 7.78-7.74 (d, $\mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}$), 7.33-7.29 (d, J = 8.3 Hz, Ar), 6.97 (s, 1H, Ar), 4.50-4.44 (dd, 1H, J = 12.2, 3.0 Hz, Benzylic), 4.04-4.03 (d, 1H, J = 3.7 Hz, $\alpha-\mathrm{H}$ of Typ.), 3.80-3.72 (dd, $1 \mathrm{H}, \mathrm{J}=15.7,3.2 \mathrm{~Hz}$, Benzylic), 3.16-3.08 (m, 4H, $-\mathrm{NCH}_{3} \& \alpha-\mathrm{H}$ of Val.), 2.35-2.28 (m, 1H, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16-1.13\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.88-0.86\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 165.5,163.6,133.6,130.5,125.6,122.0,118.7,113.8,110.1,100.3,68.4$, $60.2,34.5,32.4,29.1,19.8,18.2$; $\mathrm{IR} \mathrm{cm}^{-1}$ (KBr pellet): 3299, 2922, 1650, 1494, 1402, 1344, 1292, 1260, 1080.; HRMS $376.0644\left(\left(\mathrm{M}+\mathrm{H}^{+\bullet}\right) ; 376.0661\right.$ calcd for $\left.\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{2}\right)$; $[\alpha]^{22}{ }_{\mathrm{D}}=-$ $51.1\left(\mathrm{c}=0.355, \mathrm{CHCl}_{3}\right)$

Synthesis of (S)-N-BOC-valinyl 2-bromophenylalanyl ethyl ester (19) using HornerEmmons reaction followed by hydrogenation. (a) Synthesis of dehydrodipeptide substrate

18. After 2-bromobenzladehyde $(0.5 \mathrm{~g}, 2.7 \mathrm{mmol})$ and Schmidt's phosphonate $\mathbf{1 1}(1.25 \mathrm{~g}, 2.7 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were treated with DBU ($0.41 \mathrm{~mL}, 0.54 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, the resulting mixture was stirred for 1 d at RT . The solvent was evaporated, and the crude product was purified by column chromatography (10% to $20 \% \mathrm{EtOAc}$ in hexane.) to get $0.85 \mathrm{~g}(65 \%)$ of the dehydrodipeptide $\mathbf{1 8} .{ }^{1} \mathrm{H} \operatorname{NMR} \delta\left(\mathrm{CDCl}_{3}\right)$: 7.76 (br s, $1 \mathrm{H}, \mathrm{CH}$ in enamide), $7.54-7.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.33-7.32(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Ar}), 7.17-7,14(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \operatorname{Ar}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 4.27-4.22(\mathrm{q}, 2 \mathrm{H}$, $6.8 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 4.09-4.06 (d, $1 \mathrm{H}, \mathrm{J}=11.2 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Val.), $2.65\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 2.20-2.06$ $\left(\mathrm{m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.41(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.30-1.27\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.85-0.83(\mathrm{~d}$, $\left.3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.79-0.77\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)$: $168.6,164.5$; 157.1, 134.9, 133.0, 130.2, 130.1, 129.5, 127.1, 126.1, 124.4, 80.6, 64.5, 61.9, $30.2,28.5,25.9,19.6,18.5,14.3$; IR cm ${ }^{-1}$ (neat): 3277, 2973, 2932, 2874, 1725, 1666, 1480, 1392, 1368, 1296, 1256, 1153, 1100, 1026.; HRMS $483.1472\left(\left(\mathrm{M}+\mathrm{H}^{+\bullet}\right) ; 483.1495\right.$ calcd for
$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{BrN}_{2} \mathrm{O}_{5}$).
(b) Synthesis of dipeptide 19 using Rh-catalyzed asymmetric hydrogenation of 18 (entry 3,
 were added in N_{2} charged drybox. The reactor was brought out, and set up in a fume hood. The reactor was evacuated and refilled 3 times, and finally pressurized to 90 psi . The mixture was stirred for 4 d at RT. After the pressure was released, the solvent was evaporated, and the crude product was purified by column chromatography ($20 \% \mathrm{EtOAc}$ in n-Hex.) to yield 0.36 g (conv. $>99 \%, S S: R S=6.8: 1$, based on ${ }^{1} \mathrm{H}$ NMR) of the 2 -Br-Phe-Val derivative 19. ${ }^{1} \mathrm{H}$ NMR δ $\left(\mathrm{CDCl}_{3}\right): 7.47-7.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.04-7.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 6.58$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 4.85-4.84 (br d, $1 \mathrm{H}, 6.8 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Tyr.), 4.13-3.99 (m, $3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}$, \& $\alpha-\mathrm{H}$ of Val.), 3.29-3.24 (dd, 1H, J = 14.0, 5.6 Hz, benzylic), 3.06-2.98 (br m, 1H, Benzylic), 2.67 (s, $3 \mathrm{H},-\mathrm{NCH}_{3}$, minor isomer), $2.53\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right.$, major isomer), , 2.17-2.06 (m, $\left.1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.42(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.19-1.14\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.85-0.83(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.77-0.75\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 171.1,170.1,156.7$, $136.1,132.9,131.2,128.5,127.3,124.9,80.1,64.4,61.4,60.3,51.7,38.4,29.9,28.4,26.0,21.0$, 19.7, 18.4, 14.0; IR cm ${ }^{-1}$ (neat): 3330, 3058, 2964, 2870, 1740, 1677, 1510, 1469, 1442, 1369, 1333, 1307, 1155, 1030.; HRMS $485.1630\left(\left(\mathrm{M}+\mathrm{H}^{+}\right) ; 485.1651\right.$ calcd for $\left.\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{5}\right) ;[\alpha]^{22}{ }_{\mathrm{D}}$ $589 \mathrm{~nm}=-79.3\left(\mathrm{c}=0.75, \mathrm{CHCl}_{3}\right)$.

Results of hydrogenation using other catalysts are summarized in Table 3.

Table 3. Rh-catalyzed asymmetric hydrogenations of Z-dehydro-dipeptide $\mathbf{1 8}^{\text {a }}$

entry	ligand	condition	yield (dr) ${ }^{\text {b }}$
1		$\begin{gathered} \text { cat. } 5 \mathrm{~mol} \% \text {, } \\ \mathrm{MeOH} \\ 60 \mathrm{psi}, \mathrm{rt}, 24 \mathrm{~h} \end{gathered}$	$\begin{gathered} 100 \% \\ (S S / S R= \\ 3.6: 1.0) \end{gathered}$
2	$\mathrm{Ar}=3,5$ dimethylphenyl	$\begin{gathered} \text { cat. } 5 \mathrm{~mol} \% \text {, } \\ \text { THF } \\ 40 \mathrm{psi}, \mathrm{rt}, 24 \mathrm{~h} \end{gathered}$	$\begin{gathered} 38 \% \\ (S S / S R= \\ 10: 1.0) \end{gathered}$
3		cat. $5 \mathrm{~mol} \%$, THF $60 \mathrm{psi}, \mathrm{rt}, 48 \mathrm{~h}$	$\begin{gathered} 100 \% \\ (S S / S R= \\ 6.8: 1.0) \end{gathered}$

${ }^{\text {a }}$ High pressure Paar hydrogenator was used.
${ }^{\mathrm{b}}$ Selectivities were determined by ${ }^{1} \mathrm{H}$ NMR.

Dipeptide N-Val-2-Br-Phe-OEt (20) via deprotection of the BOC group from 19. N-BOC-

protected dipeptide $19(0.16 \mathrm{~g}, 0.33 \mathrm{mmol})$ was treated with $30 \% \mathrm{TFA}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and then the reaction mixture was stirred overnight at RT. After the starting BOC-derivative was consumed completely, the mixture was evaporated. The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mL})$ and washed with sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to get $0.13 \mathrm{~g}(>99 \%)$ of the desired dipeptide (20). ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 7.66-7.64(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{NH}), 7.52-7.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.28-7.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.23-$ $7.19(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Ar}), 7.08-7.05(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Ar}), 4.96-4.93(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}$ of Tyr.), 4.19-4.14 (q, 2H, J = 7.2 Hz, $-\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.35-3.30 (dd, $1 \mathrm{H}, \mathrm{J}=14.0,5.6 \mathrm{~Hz}$, benzylic), 3.193.13 (dd, 1H, J = 14.4, 10.0 Hz, Benzylic), 2.73-2.72 (d, 1H, J = $4.8 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Val.), 2.34 (s , $\left.3 \mathrm{H},-\mathrm{NCH}_{3}\right), 1.95-1.83\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.94-0.93\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, minor isomer $(R S)), 0.88-0.86\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, minor isomer $\left.(R S)\right), 0.80-0.78(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ $\left.6.8 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, major isomer $\left.(\mathrm{SS})\right), 0.73-0.71\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, major isomer $(S S)) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 173.5,171.8,136.4,133.0,131.3,128.7,127.6,125.1,70.9,70.5$, $61.6,53.6,51.9,38.1,36.1,35.9,31.3,19.4,18.1,14.2$; $\mathrm{IR} \mathrm{cm}^{-1}$ (neat): $3319,3055,2964,2801$, 1736, 1655, 1513, 1473, 1437, 1366, 1199, 1133, 1026.

Synthesis of 2-bromophenylalanine (23a) using Schöllkopf reagent. ${ }^{7} \quad n-\mathrm{BuLi}(3.7 \mathrm{ml}, 5.43$ mmol, 1.47 M in hexane) was added
 dropwise to the solution of Schöllkopf reagent $(1.0 \mathrm{~g}, 5.43 \mathrm{mmol})$ in anhydrous THF (5 mL) at $-78{ }^{\circ} \mathrm{C}$ under N_{2}. The resulting solution was stirred additional 20 min . A solution of 2-bromobenzyl bromide $(1.29 \mathrm{~g}, 5.43 \mathrm{mmol})$ was added to the mixture over 5 min periods, and the resulting mixture was stirred for 3 h at $-78{ }^{\circ} \mathrm{C}$. After the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, the reaction was warmed up to RT , and diluted with EtOAc (20 mL) and water $(10 \mathrm{~mL})$. The crude product was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), and combined organic phase was dried over MgSO_{4}. After volatiles were evaporated, the crude product was purified by column chromatography ($5 \% \mathrm{EtOAc}$ in hexane.). 1.7 g (93%) of desired alkylated compound 22a was obtained. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 7.51-7.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5$ $\mathrm{Hz}, \mathrm{Ar}), 7.21-7.16$ (m, 2H, Ar), 7.05-7.02 (m, 1H, Ar), 4.33-4.30 (m, 1H, $\alpha-\mathrm{H}$ of Tyr.), 3.71 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.66-3.65 (t, 1H, J = 3.5 Hz, $\alpha-\mathrm{H}$ of Val.), $3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.47-3.43(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $=13.8,4.8 \mathrm{~Hz}$, benzylic), 2.95-2.90 (dd, $1 \mathrm{H}, \mathrm{J}=13.8,8.2 \mathrm{~Hz}$, benzylic), 2.21-2.18 ($\mathrm{m}, 1 \mathrm{H},-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.00-0.99\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.65-0.63\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 163.8,163.1,137.9,132.6,131.9,127.9,126.8,125.4,60.5,55.9,52.5$, $40.3,31.4,19.1,16.6 ; \mathrm{IR} \mathrm{cm}^{-1}$ (neat): 3056, 2962, 2870, 1685, 1587, 1461, 1458, 1374, 1239, 1109, 1026.

The alkylated compound $\mathbf{2 2 a}(0.5 \mathrm{~g}, 1.42 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was treated with 0.3 $\mathrm{N} \mathrm{HCl}(10 \mathrm{~mL})$, and the resulting solution was stirred at rt for 30 min . The solution was made basic with sat. NaHCO_{3}, and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. After drying and evaporation, the product was purified by column chromatography (EtOAc) to yield 0.34 g (92 \%) of 2-bromo-L-phenylalanine methyl ester 23a. All spectral data were matched with reported data. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 7.58-7.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar})$, 7.28-7.24 (m, $\left.2 \mathrm{H}, \mathrm{Ar}\right)$, 7.15-7.10 (m, 1H, Ar), 3.90 (br s, 1H, $\alpha-\mathrm{H}$ of Tyr.), 3.73 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.30-3.26 (dd, $1 \mathrm{H}, \mathrm{J}=$ $13.4,5.4 \mathrm{~Hz}$, benzylic), 2.97-2.92 (dd, $1 \mathrm{H}, \mathrm{J}=13.6,8.8 \mathrm{~Hz}$, benzylic).

Synthesis of \boldsymbol{o}-iodo phenylalanine (23b) using Schöllkopf reagent. ${ }^{7}$ Using the same procedure
 as in the previous experiment, but with 2iodobenzyl bromide ($0.385 \mathrm{~g}, 1.3 \mathrm{mmol}$), $0.388 \mathrm{~g}(75 \%)$ of desired alkylated compound 22b was obtained. ${ }^{1}$ H NMR δ
$\left(\mathrm{CDCl}_{3}\right): 7.80-7.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 4.30-$ $4.27\left(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{H}\right.$ of Tyr.), 3.72-3.71 (4H, $\mathrm{OCH}_{3} \& \alpha-\mathrm{H}$ of Val.), $3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.44-3.40$ (dd, 1H, J = 13.8, 4.8 Hz , benzylic), 2.95-2.91 (dd, 1H, J = 13.8, 7.8 Hz, benzylic), 2.22-2.19 (m, $\left.1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.01-1.00\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.66-0.64(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz},-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 163.9,163.2,141.4,139.5,131.1,128.2,127.9,102.0,60.7$, $56.3,52.8,52.7,45.0,31.6,19.3,16.8 ; \mathrm{IR} \mathrm{cm}^{-1}$ (neat): 3222, 2969, 1722, 1681, 1585, 1462, 1373, 1342, 1215, 1168, 1014.

The alkyated compound $\mathbf{2 2 b}(0.24 \mathrm{~g}, 0.601 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was treated with $0.3 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$, and the resulting solution was stirred at rt for 30 min . The solution was made basic with sat. NaHCO_{3}, and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$). After drying and evaporation, the product was purified by column chromatography (EtOAc) to get 0.184 g of the mixture of 2-iodo-L-phenylalanine methyl ester 23b (85%) with valine methyl ester (15%). This mixture was used for a coupling reaction without further purification. All spectral data were matched with reported data. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)$: $7.86-7.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}), 7.31-$ 7.28 (m, 1H, Ar), 7.24-7.22 (dd, 1H, J = 7.8, 1.8 Hz, Ar), 6.96-6.92 (m, 1H, Ar), 3.86-3.83 (dd, $1 \mathrm{H}, \mathrm{J}=8.2,4.2 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Tyr.), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.27-3.23(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.8,4.2 \mathrm{~Hz}$, benzylic), 2.95-2.90 (dd, $1 \mathrm{H}, \mathrm{J}=13.5,8.0 \mathrm{~Hz}$, benzylic); ${ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 175.4,140.5$, 139.9, 130.9, 128.8, 128.4, 101.1, 54.8, 52.2, 45.9.

Synthesis of dipeptide 25b using a peptide coupling reaction, followed by deprotection. To
 a stirred solution of N-Boc, N-Me-L-valine ($52 \mathrm{mg}, 0.224 \mathrm{mmol}$), 2-iodo- L-phenylalanine methyl ester ($57 \mathrm{mg}, 0.187 \mathrm{mmol}$), and DIEA ($79 \mu \mathrm{~L}, 0.449 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $\mathrm{HBTU}(72 \mathrm{mg}, 0.224 \mathrm{mmol}$), and the resulting solution was stirred for 12 h at RT. After the solvent was evaporated, the crude product was purified by column chromatography (10 to 20% EtOAc in hexane) to get 95 mg (98
\%) of the dipeptide 24b. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)$: 7.79-7.77 ($\left.\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}\right), 7.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, Ar), 7.11-7.09 (d, 1H, J = 7.2 Hz, Ar), 6.90-6.86 (t, 1H, J = 7.6 Hz, Ar), 6.55 (br s, 1H, NH), 4.88 (br s, 1H, α-H of Tyr.), 4.10-3.99 (d, 1H, J = $10.8 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Val.), 3.69 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH} \mathrm{H}_{3}$) 3.30-3.25 (dd, 1H, J = 14.0, 5.6 Hz , benzylic), 3.06-2.98 (br d, 1H, J = 6.0 Hz, Benzylic), 2.54 (s, $\left.3 \mathrm{H},-\mathrm{NCH}_{3}\right), 2.20-2.10\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.44(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 0.87-0.85(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.79-0.78\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 171.7,170.3,157.0$, $139.9,139.4,130.5,128.8,128.4,101.1,80.36,64.7,52.6,51.9,43.1,30.2,28.6,26.1,19.8$, $18.6 ;[\alpha]^{22}{ }_{\mathrm{D} 589 \mathrm{~nm}}=-74.4\left(\mathrm{c}=1.285, \mathrm{CHCl}_{3}\right)$.

The resulting compound $\mathbf{2 4 b}(85 \mathrm{mg}, 0.164 \mathrm{mmol})$ was treated with by 30% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and then the reaction mixture was stirred at RT for 8 h . After the starting BOC derivative was consumed completely, the mixture was evaporated. The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to yield $67.2 \mathrm{mg}(98 \%)$ of the desired amine 25b. ${ }^{1} \mathrm{H}$ NMR δ $\left(\mathrm{CDCl}_{3}\right): 7.78-7.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.59-7.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{~N} H), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}$, Ar), 6.89-6.85 (m, 1H, Ar), 4.95-4.91 (m, 1H, $\alpha-\mathrm{H}$ of Tyr.), 3.71 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$), 3.34-3.30 (dd, $1 \mathrm{H}, \mathrm{J}=14.0,6.0 \mathrm{~Hz}$, benzylic), 3.14-3.09 (dd, $1 \mathrm{H}, \mathrm{J}=14.0$, 10.0 Hz , Benzylic), 2.69-2.68 (d, $1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Val.), $2.33\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 1.88-1.84\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.77-0.76(\mathrm{~d}$, $\left.3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.69-0.67\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)$: $173.7,172.4,139.8,130.4,128.9,128.6,101.4,71.1,52.6,52.1,42.7,36.1,31.5,19.5,18.1$.

General procedure of $\mathbf{C u}$-mediated tandem cyclizations (Table 1 in the article). Copper iodide ($100 \mathrm{~mol} \%$) and $\operatorname{CsOAc}\left(250 \mathrm{~mol} \%\right.$) were added to a 1-neck rb-flask in a N_{2} charged drybox, and then the vessel was taken out. To the vessel, free amine ($100 \mathrm{~mol} \%$) in anhydrous DMSO ($1 \sim 1.5 \mathrm{~mL} / 0.1 \mathrm{mmol}$ of starting amines) was added. The resulting mixture was heated to $90^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. After the starting material was completely consumed, the mixture was cooled to RT, and then diluted with water (10 mL) and EtOAc (10 mL). The product was extracted by EtOAc ($10 \mathrm{~mL} x \mathrm{3}$), and the combined organic layer was dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by preparative TLC or column chromatography.

Synthesis of the tricyclic DKP 27 and 28 by Cu-mediated tandem cyclization (entry 3, Table

1 in article). Using the general procedure with 25 mg (0.065 mmol) of amine $\mathbf{2 0}$ and stoichiometric amount of CuI, ($10.0 \mathrm{mg}, 59 \%) 27$
and $28(3.1 \mathrm{mg}, 18 \%)$ were obtained.
27: ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right): 8.01-8.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.11-7.08(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar}$), 4.74-4.70 (dd, $1 \mathrm{H}, \mathrm{J}=11.2,9.2 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Tyr.), 4.00-3.99 (d, 1H, J = 1.0 $\mathrm{Hz}, \alpha-\mathrm{H}$ of Val.), 3.40-3.28 (m, 2H, , benzylic), $3.04\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 2.45-2.42(\mathrm{~m}, 1 \mathrm{H},-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.24-1.23\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.94-0.92\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 166.7,162.8,141.5,130.1,127.9,125.2,124.9,116.9,67.5,60.1,32.8$, $32.7,30.7,19.5,16.3$; $\mathrm{IR} \mathrm{cm}^{-1}$ (neat): 2984, 2922, 1668, 1602, 1485, 1421, 1394, 1249, 1092 .; HRMS $259.1431\left(\left(\mathrm{M}+\mathrm{H}^{+\bullet}\right) ; 259.1447\right.$ calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\right) ;[\alpha]^{22}{ }_{\mathrm{D}}=-71.9\left(\mathrm{c}=0.42, \mathrm{CHCl}_{3}\right)$.
28: ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 8.10-8.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar})$, 7.27-7.25 ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}\right)$, 7.14-7.11 (t, $1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{Ar}), 4.91-4.87(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.0 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Tyr.), 3.73-3.71(d,1H,J=7.5Hz, $\alpha-$ H of Val.), 3.59-3.54 (dd, $1 \mathrm{H}, \mathrm{J}=16.2,10.2 \mathrm{~Hz}$, benzylic), $3.13\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 2.35-2.21(\mathrm{~m}$, $\left.1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.20-1.19\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16-1.15(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz},-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 167.4,164.1,141.3,130.0,128.0,125.3,125.0,116.70,72.0$, $59.6,35.6,32.4,32.1,20.3,19.5$; IR cm${ }^{-1}$ (neat): 2962, 2924, 1713, 1672, 1601, 1483, 1464, 1390, 1242, 1149, 1049; HRMS $281.1247\left(\left(\mathrm{M}+\mathrm{Na}^{+\bullet}\right) ; 281.1266\right.$ calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaN}_{2} \mathrm{O}_{2}\right) ;[\alpha]^{22}{ }_{\mathrm{D}}$ $=+24.6\left(\mathrm{c}=0.570, \mathrm{CHCl}_{3}\right)$.

Synthesis of the tricyclic DKPs 27 and 28 by catalytic amount of Cu-mediated tandem
 cyclization (entry 4, Table 1 in article). Using the general procedure, 11 mg (0.027 mmol) of amine 20 and catalytic amount of $\mathrm{CuI}(0.43 \mathrm{mg}$, 0.0027 mmol) gave $27(1.2 \mathrm{mg}, 20 \%)$ and $28(4.0 \mathrm{mg}, 69 \%)$.

Synthesis of proline-containing dipeptide 26a by an aminoacid coupling reaction, and

$\mathrm{mg}, 0.0077 \mathrm{mmol}$), and DIEA ($40.5 \mu \mathrm{~L}, 0.233 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added HBTU ($38 \mathrm{mg}, 0.116 \mathrm{mmol}$). The resulting solution was stirred for 12 h at RT. After the solvent was evaporated, the crude product was purified by column chromatography (20% EtOAc in n-Hex.) to yield $35 \mathrm{mg}(99 \%)$ of the title compound 26a. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)$: 7.517.49 (d, 1H, J = 8.0 Hz, Ar), 7.20-7.18 (2H, Ar), 7.08-7.05 (t, 1H, J = 6.6 Hz, Ar), 6.59 (br s, 1H, NH), 4.93-4.86 (d, 1H, J = 6.0 Hz, $\alpha-\mathrm{H}$ of Tyr.), 4.16 (br s, $1 \mathrm{H}, \alpha-\mathrm{H}$ of Pro.), 3.70 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.33-3.10 (m, 4H, benzylic \& $\mathrm{N}(\mathrm{BOC}) \mathrm{CH}_{2} \mathrm{R}$ in proline), 2.25-1.72 (m, $4 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}$ in proline), $1.43(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 171.9,133.1,131.4,128.9,125.3,52.6,52.3$, 47.3, 28.5; $[\alpha]^{23}{ }_{\mathrm{D}}=-50.7\left(\mathrm{c}=0.38, \mathrm{CHCl}_{3}\right)$.

BOC-protected dipeptide 26 ($25 \mathrm{mg}, 0.055 \mathrm{mmol}$) was treated with 30% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and then the reaction mixture was stirred overnight at rt. After the starting material was consumed completely, the mixture was evaporated. The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and evaporated under reduced pressure. The crude product was purified by column chromatography (only EtOAc) to yield $19.3 \mathrm{mg}(>99 \%)$ of the desired amine 26b. ${ }^{1} \mathrm{H}$ NMR δ $\left(\mathrm{CDCl}_{3}\right): 8.06-8.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{NH}), 7.51-7.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}$, Ar), 7.08-7.05 (m, 1H, Ar), 4.92-4.87 (m, 1H, $\alpha-\mathrm{H}$ of Tyr.), 3.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.68-3.65 (m, $1 \mathrm{H}, \alpha-\mathrm{H}$ of Pro.), 3.35-3.31 (dd, 2H, J = 14.0, 6.0 Hz , benzylic), 3.15-3.11 (dd, 2H, J = 13.8, 8.8 Hz , benzylic), 2.95-2.91 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{R}$ in proline), 2.83-2.78 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{R}$ in proline), 2.02-1.96 (m, 1H, CHCH ${ }_{2} \mathrm{CH}_{2}$ in proline) 1.64-1.47 (m, 3H, $\mathrm{CHCH}_{2} \mathrm{CH}_{2}$ in proline); ${ }^{13} \mathrm{C}$ NMR δ $\left(\mathrm{CDCl}_{3}\right): 175.2,172.4,136.3,133.1,131.4,128.8,127.6,125.3,60.5,52.6,51.8,47.4,38.3$, 30.8, 26.2; HRMS $379.0448\left(\left(\mathrm{M}+\mathrm{Na}^{+\bullet}\right) ; 379.0458\right.$ calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrNaN}_{2} \mathrm{O}_{3}\right)$.

Synthesis of the tetracyclic DKPs 29 and 30 by Cu-mediated tandem cyclization. The
 proline amine 26b ($12 \mathrm{mg}, 0.0338 \mathrm{mmol}$) was cyclized to yield the title compounds 29 (3.9 mg , 48%) and 1.0 mg . (12%) of isomerized product $\mathbf{3 0}$, using the general procedure (stoichiometric amount of CuI). 29: ${ }^{1} \mathrm{H} \operatorname{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 8.07-8.05$ (d, 1H, J = 8.0 Hz, Ar), 7.22-7.20 ($2 \mathrm{H}, \mathrm{Ar}$), 7.09-7.05 (m, 1H, Ar), 4.86-4.82 (t, $1 \mathrm{H}, 9.8 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Tyr.), 4.32-4.29 (t, $1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Pro.), 3.71-3.66 (dd, $1 \mathrm{H}, \mathrm{J}=16.8,9.2 \mathrm{~Hz}$, benzylic), 3.61-3.58 (dd, $2 \mathrm{H}, \mathrm{J}=8.2,5.8 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{R}$ in proline), 3.38-3.32 (dd, $1 \mathrm{H}, \mathrm{J}=16.5,9.5$ Hz , benzylic), 2.40-2.32 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}$ in proline), 2.05-1.96 (m, $2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}$ in
proline $) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 165.8,165.4,140.9,130.2,128.0,125.2,125.1,116.0,61.6,61.1$, 45.8, 30.5, 27.9, 23.7; $\mathrm{IR} \mathrm{cm}^{-1}$ (neat) : 2959, 2925, 2855, 1666, 1601, 1485, 1462, 1410, 1245, 1215, 1131, 1087.; HRMS $265.0935\left(\mathrm{M}+\mathrm{Na}^{+\bullet}\right.$; calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NaN}_{2} \mathrm{O}_{2} 265.0953\right)$; $[\alpha]^{22}{ }_{\mathrm{D}}=-$ $10.2\left(\mathrm{c}=0.380, \mathrm{CHCl}_{3}\right)$.
30: ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right):$ 8.04-8.03 (d, $\left.1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}\right)$, 7.28-7.20 (2H, Ar), 7.11-7.08 (t, 1H, J $=7.5 \mathrm{~Hz}, \mathrm{Ar}), 5.15-5.10(\mathrm{~m}, 2 \mathrm{H}, \alpha-\mathrm{H}$ of Tyr. \& $\alpha-\mathrm{H}$ of Pro.), $3.85-3.81(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}$, benzylic), 3.61-3.54 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{R}$ in proline), 3.39-3.33 ($\mathrm{m}, 1 \mathrm{H}$, benzylic), 2.59-2.45 ($\mathrm{m}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2}$ in proline), $3.32-2.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right.$ in proline).
General procedure of demethylations of dimethoxy-2,5-dihydropyrazine to 2,5diketopiperazine. To a stirred solution of alkylated dimethoxy-2,5-dihydropyrazine in CHCl_{3} was added TMSI ($300 \mathrm{~mol} \%$) under N_{2}, and the resulting solution was stirred for 1 h at RT. The reaction was quenched with few drops of MeOH , and then evaporated under reduced pressure. The crude product was purified by recrystallization.
Synthesis of (3S,6R)-3-(2-bromobenzyl)-6-isopropylpiperazine-2,5-dione (31a) Using the
 general demethylation procedure with $30 \mathrm{mg}(0.0852 \mathrm{mmol})$ of dimethyl substrate 22a, 25 mg (90%) of the title compound 31a was obtained. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{DMSO}_{6}\right): 8.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$ of Val.), 7.89-7.88 (d, 1H, J = 2.0 Hz, NH of Tyr.), 7.59-7.58 (d, $1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar})$, 7.33-7.29 (m, 2H, Ar), 7.20-7.17 (m, 1H, Ar), 4.14-4.11 (m, $1 \mathrm{H}, \alpha-\mathrm{H}$ of Tyr.), $3.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}, \alpha-\mathrm{H}\right.$ of Val.), $3.34\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 3.25-3.21(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.2,5.2$ Hz , benzylic), 3.11-3.07 (dd, 1H, J = 14.0, 7.0 Hz , benzylic), 2.23-2.2.17 (m, $\left.1 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $0.94-0.93\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.83-0.82\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR δ (DMSO- d_{6}): 167.9, 167.3, 136.0, 132.5, 131.8, 128.7, 127.5, 124.6, 58.9, 54.9, 53.9, 38.5, 30.6, 18.2, 16.7; $\mathrm{IR} \mathrm{cm}^{-1}$ (KBr pellet): 3446, 3190, 3056, 2962, 2876, 1673, 1471, 1447, 1346, 1290, 1105, 1028.; HRMS $347.0352\left(\left(\mathrm{M}+\mathrm{Na}^{+\bullet}\right) ; 347.0371\right.$ calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNaN}_{2} \mathrm{O}_{2}\right) ;[\alpha]^{22}{ }_{\mathrm{D}}=-19.5$ ($\mathrm{c}=0.465, \mathrm{MeOH}$).

Synthesis of (3S,6R)-3-(2-iodobenzyl)-6-isopropylpiperazine-2,5-dione (31b). Using the
 general demethylation procedure with $30 \mathrm{mg}(0.0852 \mathrm{mmol})$ of dimethyl substrate $\mathbf{2 2 b}, 25 \mathrm{mg}(90 \%)$ of the title compound 31b was obtained. ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{DMSO}_{\left.-\mathrm{d}_{6}\right): ~}^{8.09}(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$ of Val.), 7.85-7.84 (2H, NH of Tyr. \& Ar), 7.35-7.32 (t, 1H, J =
7.2 Hz, Ar), 7.29-7.27 (q, 1H, J = 6.5 Hz, Ar), 7.01-6.98 (m, 1H, Ar), 4.11-4.09 (t, 1H, J = 4.8 $\mathrm{Hz}, \alpha-\mathrm{H}$ of Tyr.), 3.55 (d, 1H, J = $2.5 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Val.), $3.30\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 3.20-3.16$ (dd, $1 \mathrm{H}, \mathrm{J}$ $=14.0,5.0 \mathrm{~Hz}$, benzylic), 3.09-3.04 (dd, $1 \mathrm{H}, \mathrm{J}=14.0,7.0 \mathrm{~Hz}$, benzylic), 2.22-2.2.18 (m, $1 \mathrm{H},-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.95-0.94\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.84-0.83\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta\left(\right.$ DMSO-d $\left._{6}\right): 167.9,167.3,139.2,130.7,128.6,128.2,60.0,54.9,42.8,30.5,18.2$, 16.7; $\mathrm{IR} \mathrm{cm}^{-1}$ (KBr pellet): 3444, 3190, 3055, 2961, 2874, 1665, 1448, 1384, 1344, 1288, 1105, 1010.

Synthesis of tricyclic DKP 32 using stoichiometric amount of CuI. Following the general
 procedure using 30 mg (0.0923 mmol) of bromide substrate 31a $19.0 \mathrm{mg}(84 \%)$ of the title compound 32 and 3.0 mg of isomerized product 33 (13%) were obtained. 32: ${ }^{1} \mathrm{H}$ NMR δ $\left(\mathrm{CDCl}_{3}\right): 8.16-8.14(\mathrm{~d}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}$, Ar), 7.15-7.20 (t, 7.5 Hz, Ar), 7.10 (br s, 1H, NH), 4.89-4.85 (t, J = 10.2 Hz, $\alpha-\mathrm{H}$ of Tyr.), 3.873.85 (dd, J = 6.0, 2.0 Hz, 1H, $\alpha-\mathrm{H}$ of Val.), 3.50-3.46 (dd, J = 16.5, $10.5 \mathrm{~Hz}, 1 \mathrm{H}$, Benzylic H), 3.42-3.37 (dd, J = 16.0, 10.2 Hz, 1H, Benzylic H), 2.38-2.33 (q, J = 6.5 Hz, 1H, CH CHRCH_{3}), 1.16-1.14 (d, J = $\left.6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHRCH}_{3}\right), 1.11-1.10\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHRCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 169.3,164.4,141.5,129.5,128.1,125.4,125.0,64.2,59.4,33.2,32.2,19.4$, 18.3; $\mathrm{IR} \mathrm{cm}^{-1}$ (neat) : 3237, 2965, 2931, 2874, 1681, 1601, 1463, 1417, 1284.; HRMS 267.1093 $\left(\mathrm{M}+\mathrm{Na}^{+\bullet}\right.$; calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na} 267.1109\right) ;[\alpha]^{22}{ }_{\mathrm{D}}=-14.6\left(\mathrm{c}=0.600, \mathrm{CHCl}_{3}\right)$.
33: ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 8.12-8.11(\mathrm{~d}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}$, Ar), 5.93 (br s, $1 \mathrm{H}, \mathrm{NH}$), 4.79-4.75 (t, J = $10.0 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Tyr.), 4.06-4.05 ($\mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-$ H of Val.), 3.59-3.54 (dd, $\mathrm{J}=10.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}$, Benzylic H), 3.39-3.34 (dd, J = 10.0, 16.0 Hz , 1 H , Benzylic H), 2.74-2.71 (m, 1H, $\mathrm{CH}_{3} \mathrm{CHRCH}_{3}$), 1.13-1.11 (d, J = 7.5 Hz, 3H, CH CHRCH_{3}), 0.99-0.97 (d, J = 7.0 Hz, 3H, CH3 CHRCH_{3}); ${ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right): 169.9,141.3,129.6,128.1$, $125.2,116.4,60.9,60.1,31.1,28.0,19.6,16.4 . ;[\alpha]^{22}{ }_{D}=+88.6\left(c=0.150, \mathrm{CHCl}_{3}\right)$.
Synthesis of tricyclic DKP 32 using catalytic amount of CuI and bromo substrate 31a.

Following the general procedure using $20 \mathrm{mg}(0.0615 \mathrm{mmol})$ of bromo-substrate 31a, $11.9 \mathrm{mg}(79 \%)$ of the title compound 32 and 2.4 mg (16%) of isomerized product 33 were obtained.

Synthesis of tricyclic DKP 32 using stoichiometric amount of $\mathbf{C u I}$ and iodo substrate 31b.

Following the general procedure using $11.8 \mathrm{mg}(0.0317 \mathrm{mmol})$ of iodo-substrate 31b, 7.8 mg ($>99 \%$) of the title compound 32 was obtained.

Synthesis of tricyclic DKP 32 using catalytic amount of CuI and iodo-substrate 31b.

 Following the general procedure using $10 \mathrm{mg}(0.0267 \mathrm{mmol})$ of iodo-substrate 31b, $6.2 \mathrm{mg}(95 \%)$ of the title compound 32 and $0.1 \mathrm{mg}(1.5 \%)$ of isomerized product 33 were obtained.

Synthesis of tricyclic DKP ent-28. To a stirred solution of $32(5.0 \mathrm{mg}, 0.0205 \mathrm{mmol})$ and MeI
 ($6.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) in THF (2 mL), was added $\mathrm{NaH}(4.0 \mathrm{mg}$, 0.1 mmol) at $0{ }^{\circ} \mathrm{C}$. The resulting solution was stirred at RT for 1 h , and then quenched with water. The product was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), and combined organics were dried over MgSO_{4}. After the solvent was evaporated, the crude product was purified by prep. TLC to yield the title compound ent-28 $(5.3 \mathrm{mg},>99 \%) .{ }^{1} \mathrm{H} \operatorname{NMR} \delta\left(\mathrm{CDCl}_{3}\right): 8.07-8.05(\mathrm{~d}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, 7.22-7.21 (2H, Ar), 7.10-7.06 (t, 7.2 Hz, Ar), 4.87-4.82 (t, J = $10.0 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Tyr.), 3.69-3.67 $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \alpha-\mathrm{H}$ of Val.), 3.56-3.3.50 (dd, $\mathrm{J}=16.4,10.0 \mathrm{~Hz}$, benzylic), 3.41-3.44 (dd, $\mathrm{J}=$ $16.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}$, Benzylic H), 3.08 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $2.32-2.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHRCH}_{3}\right.$), 1.16-1.14 $\left(\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHRCH}_{3}\right), 1.12-1.11\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHRCH}_{3} ;{ }^{13} \mathrm{C}\right.$ NMR δ $\left(\mathrm{CDCl}_{3}\right): 167.2,163.8,141.1,129.8,127.8,125.1,124.8,116.5,71.9,67.1,59.4,35.3,32.2$, 32.0, 20.1, 19.3; $\mathrm{IR} \mathrm{cm}^{-1}$ (neat) : 2930, 2922, 1667, 1601, 1483, 1402, 1241, 1110, 1050.; HRMS $281.1248\left(\left(\mathrm{M}+\mathrm{Na}^{+\bullet}\right) ; 281.1266\right.$ calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaN}_{2} \mathrm{O}_{2}\right) ;[\alpha]^{22}{ }_{\mathrm{D}}=-49.1\left(\mathrm{c}=0.285, \mathrm{CHCl}_{3}\right)$.

REFERENCES

(1) Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993, 115, 10125.
(2) Chen, J.; Corbin, S. P.; Holman, N. J. Org. Proc. Res. Dev. 2005, 9, 185.
(3) (a) [bis-2,5-diphenylphosphinohexane] Rh^{+}(Supporting Information, Table 1):Yan, Y. Y.;

RajanBabu, T. V. Org. Lett. 2000, 2, 4137. [D-Glucose derived ligand]Rh ${ }^{+}$(Scheme 3, Supporting Information Table 3): (b) T. V. RajanBabu, T. A. Ayers, G. A. Halliday, K. K. You, J. C. Calabrese, J. Org. Chem. 1997, 62, 6012.
(4) Xia, Z.; Smith, C. D. J. Org. Chem. 2001, 66, 3459
(5) (a) Buck, R. T.; Clarke, P. A.; Coe, D. M.; Drysdale, M. J.; Ferris, L.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Swann, E. Chem. Eur. J. 2000, 6, 2160. (b) Bentley, D. J.; Slawin, A. M. Z.; Moody, C. J. Org. Lett. 2006, 8, 1975.
(6) Schmidt, U.; Griesser, H.; Leitenberger, V.; Lieberknecht, A.; Mangold, R.; Meyer, R.; Riedl, B. Synthesis 1992, 487.
(7) (a) Schöllkopf, U.; Groth, U.; Deng, C. Synthesis, 1981, 737. (b) Hinterding, K.; Albert, R.; Cottens, S. Tetrahedron Lett. 2002, 43, 8095.

Curront E.203 рросsio	Data Paranotors h1Im- $227-401$ 1 1
F2 - hoquialtion paramoters	
	20060512
T19se	13.
	5 mentinua
DROESD	$5 \mathrm{mmoltinuo1}$
${ }_{\text {ID }}$	\% 2530
SoLnem	duso
	16
FIDDE	
	3.9594243 500
DG	
cr	
IE	
$\mathrm{DL}_{\text {coest }}$	0000000 50 c
CrRR	0.01500000 50c
P1	7.50 us0
SFO1	200.1324710 MHz
F2 - Drocossing paramera	
${ }_{\text {SF }}^{\text {SI }}$	
SSB 0	
$\frac{1 E}{I_{E}}$	
$D C$	1.00

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30

\qquad

$\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

$\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^0]

	180	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50

$\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

	$\begin{array}{r} \text { Data Daranotors } \\ \text { h11m-A153-B01-C } \\ 3 \end{array}$
F2- Aoquisition Pat	
${ }_{\text {TIISTRIM }}$	
DICEEAD	5 mmond in/13
LDROG	
SoLy	CDCL^{6}
N3	
	23980
FIDCR	0.365918
	36
[${ }^{20.950} 6.00$ ues
$\stackrel{\text { LE }}{\text { LE }}$	${ }_{298}^{69}$
celta	1.839
MEK	
DL_{1}	10.50 ¢00
Sor	228298 mhz
--- Chamel f2 ---	
	vait 716
PCPD 2	80.00 use
	${ }_{\text {d }}$
	B
R113	20.00 dB

	180	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

$\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 0}$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

ORTEP Diagram of Tetracyclic Adduct 14 (see CIF for details)

\square

[^0]: $\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

