Enantioselective α-Amination of 1,3-Dicarbonyl Compounds Using Squaramide Derivatives as Hydrogen Bonding Catalysts

Hideyuki Konishi, Tin Yiu Lam, Jeremiah P. Malerich, and Viresh H. Rawal*
Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637
Email: vrawal@uchicago.edu

Supporting Information Table of Contents

S2 General methods and materials
S2 Preparation of squaramide catalysts
S4 General experimental procedure of α-hydrazination reactions
S4 Analytical data of α-hydrazination products
S10 Synthesis of azodicarboxylate 7
S11 Determination of the absolute stereochemistry of hydrazination products $\mathbf{6 b}$ and $\mathbf{6 e}$ (a) Discussion

S15 Determination of the absolute stereochemistry of hydrazination products $\mathbf{6 b}$ and $\mathbf{6 e}$ (b) Experimental procedures

S16 X-ray crystal structure of $\mathbf{2 2}$
S17 References
S19 NMR spectra
S39 HPLC traces
S57 X-ray crystal structure data for 22

General. All reactions were performed in oven dried or flame dried glassware under N_{2} atmosphere. Reactions were monitored by TLC on Whatman silica gel $60 \AA$ F254 plates visualized by anisaldehyde and ceric ammonium molybdate staining solutions. Flash column chromatography was performed on Dynamic Adsorbents 32-63 $\mu \mathrm{m}$ Flash silica gel. NMR spectra were measured on Bruker DRX and DMX spectrometers at 500 MHz for ${ }^{1} \mathrm{H}$ spectra and 125 MHz for ${ }^{13} \mathrm{C}$ spectra and calibrated from residual solvent signal (chloroform at 7.26 ppm and DMSO at 2.50 ppm for ${ }^{1} \mathrm{H}$ spectra; chloroform at 77.0 ppm and DMSO at 39.51 ppm for ${ }^{13} \mathrm{C}$ spectra). Infrared spectra were measured on a Nicolet 6700 FT-IR spectrometer on NaCl plates. Mass spectral analysis was performed by the CUNY Mass Spectrometry Facility at Hunter College (New York, NY) directed by Dr. Clifford Soll. Enantiomeric excesses (ee) were determined by HPLC analysis using an Agilent 1100 Series instrument with Daicel Chiralpak IA or Chiralpak OD-H columns, as indicated. Melting point was measured using a Laboratory Devices MELTEMP Apparatus or a Thomas Hoover Uni-Melt Capillary Melting Point Apparatus. Optical rotation was measured on a Jasco DIP-1000 Digital Polarimeter at the indicated concentration with units $\mathrm{g} / 100 \mathrm{~mL}$.

Materials. All commercially available reagents were used as received unless otherwise stated. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, tetrahydrofuran (THF), and toluene were purified by passage over activated alumina. MeOH (99.8%, extra dry) was purchased from Acros Organics. 3,4-Dimethoxy-3-cyclobutene-1,2-dione (dimethyl squarate) is a generous gift from Professor Leo A. Paquette (Ohio State University). β-Ketoesters 1a, 1b, 1c, 1g, and 1,3-diketone $\mathbf{1 h}$ were purchased from Aldrich and distilled prior to use. 1,3-Dicarbonyl compounds $\mathbf{1 d},{ }^{1} \mathbf{1 e},{ }^{2} \mathbf{1 f},{ }^{3} \mathbf{1 i},{ }^{4} \mathbf{1 j} \mathbf{- 1 k},{ }^{5} \mathbf{1 1},{ }^{6} \mathbf{1 m},{ }^{7} \mathbf{1 n},{ }^{8}$ and $\mathbf{1 0}{ }^{9}$ were synthesized according to precedent literature. Azodicarboxylates 2 and $\mathbf{5}$ were purchased from Aldrich. Pyridine was AcroSeal ${ }^{\text {TM }}$ anhydrous grade. N-Bromosuccinimide was recrystallized from $\mathrm{H}_{2} \mathrm{O} . \mathrm{Et}_{3} \mathrm{~N}$ was distilled from CaH_{2}.

Preparation of squaramide catalysts. Squaramide catalysts 3a-31 were synthesized according to previous reports ${ }^{10,11}$ or by a representative experimental procedure shown below.

Squaramide 3e. To a solution of 3,4-dimethoxy-3-cyclobutene-1,2-dione ($2.00 \mathrm{~g}, 14.1 \mathrm{mmol}$) in MeOH $(20 \mathrm{~mL})$ was added $3,5-$ bis(trifluoromethyl)aniline ($2.40 \mathrm{~mL}, 15.5 \mathrm{mmol}, 1.1$ equiv). The mixture was
stirred at rt for 2d (yellow precipitate was generated). The reaction mixture was filtered with the aid of MeOH . Obtained yellow solid was dried in vacuo to give 10 ($4.59 \mathrm{~g}, 13.5 \mathrm{mmol}, 96 \%$).
To a suspension of (R, R)-1,2-diaminocyclohexanes L-tartrate ($857 \mathrm{mg}, 3.24 \mathrm{mmol}, 1.1$ equiv) in MeOH $(10 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(896 \mathrm{mg}, 6.49 \mathrm{mmol}, 2.2$ equiv). The reaction mixture was stirred at rt for 1 h and then $\mathbf{1 0}(1.00 \mathrm{~g}, 2.95 \mathrm{mmol})$ was added. The resulting mixture was stirred at rt for 2 h , diluted with $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ and then filtered through a pad of Celite with the aid of CHCl_{3}. The filtrate and washings were combined and concentrated in vacuo to give the crude amine.
To a solution of the crude amine in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added 37% aqueous $\mathrm{HCHO}(5 \mathrm{~mL}, 67 \mathrm{mmol}, 23$ equiv) and $\mathrm{HCO}_{2} \mathrm{H}(5 \mathrm{~mL}, 133 \mathrm{mmol}, 45$ equiv) at rt . The reaction mixture was stirred under reflux for 12 h , then basified by 6 M aq NaOH to pH 12 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4} and then concentrated. Obtained residue was purified by recrytallization from i PrOH and $\mathrm{H}_{2} \mathrm{O}$ to give squaramide catalyst $3 \mathrm{e}(663 \mathrm{mg}, 1.48 \mathrm{mmol}, 50 \%)$ as a white solid: Mp 196$198{ }^{\circ} \mathrm{C}$ (Decomp.); ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.36$ (br s, 1H), $8.07(\mathrm{~s}, 2 \mathrm{H}$), 7.85 (br s, 1 H), 7.65 $(\mathrm{s}, 1 \mathrm{H}), 3.78-3.93(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 2.04-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.71-$ $1.79(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.70(\mathrm{~m}, 1 \mathrm{H})$, and 1.13-1.41 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 184.4,179.9$, $169.4,162.2,141.2,131.7,131.4,131.1,130.9,126.4,124.2,122.0,119.9,117.9,114.5,66.1,54.7,39.9$, 34.4, 24.3, and 21.2; IR (film) 3207, 3149, 2944, 2866, 2788, 1790, 1671, 1654, 1579, 1531, 1488, 1473, 1454, 1379, 1276, 1174, and $1121 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}$: 450.1611; found 450.1605; $[\alpha]^{28}{ }_{\mathrm{D}}-50.76$ (c 1.00, DMSO).

Squaramide 3j: Prepared according to published procedure ${ }^{11}$ in 65% yield. Yellow solid. Mp 136$138{ }^{\circ} \mathrm{C}$ (Decomp.); ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.22$ (br s, 1 H), $8.06(\mathrm{~s}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.61$ (br $\mathrm{s}, 1 \mathrm{H}), 3.82-4.00(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.37(\mathrm{~m}, 3 \mathrm{H}), 1.98-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.91(\mathrm{~m}, 1 \mathrm{H})$, 1.63-1.79 (m, 2H), and 1.17-1.43 (m, 10H); ${ }^{13}$ C NMR (125 MHz , DMSO- d_{6}) δ 184.6, 180.0, 170.1, 161.6, $141.2,131.7,131.4,131.2,130.9,126.4,124.2,122.1,119.9,117.8,114.5,68.2,54.4,49.4,33.8,26.3$, 24.7, 24.4, 24.3, and 23.3; IR (film) 3245, 3084, 2934, 2859, 2805, 1794, 1673, 1593, 1558, 1473, 1452, 1379, 1278, 1181, and $1134 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}: 490.1924$; found 490.1930; $[\alpha]^{28}{ }_{\mathrm{D}}-18.62$ (c 0.43, DMSO).

Typical experimental procedure for α-hydrazination reaction of 1,3-dicarbonyl compound using squaramide catalyst at room temperature. To a solution of squaramide catalyst $3(0.1-2 \mathrm{~mol} \%)$ in toluene (0.500 mL) was added azodicarboxylate 2 or 5 ($0.500 \mathrm{mmol}, 1.0$ equiv) and 1,3-dicarbonyl compound $\mathbf{1}$ ($0.750 \mathrm{mmol}, 1.5$ equiv or $0.550 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred at rt until TLC analysis showed that $\mathbf{2}$ or $\mathbf{5}$ was completely consumed. The reaction mixture was directly purified by silica gel chromatography to afford the desired product $\mathbf{4}$ or $\mathbf{6}$. Enantiomeric excess was determined by HPLC analysis using IA or OD-H column.

Representative experimental procedure for α-hydrazination reaction of 1,3-dicarbonyl compound using squaramide catalyst at low temperature (Table 2, entry 14). To a solution of squaramide catalyst $\mathbf{3 j}$ ($2.45 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%$) in toluene $(0.200 \mathrm{~mL}$) was added azodicarboxylate $\mathbf{5}(127 \mathrm{mg}$, $0.500 \mathrm{mmol}, 1.0$ equiv) and the reaction mixture was cooled to the indicated temperature. A solution of β-ketoester 11 ($115 \mathrm{mg}, 0.550 \mathrm{mmol}$, 1.1 equiv) in toluene $(0.200 \mathrm{~mL}$) was slowly added to the reaction mixture, followed by a rinse with toluene $(0.100 \mathrm{~mL})$. The mixture was stirred at the indicated temperature until TLC analysis showed that $\mathbf{5}$ was completely consumed. The reaction mixture was directly purified by column chromatography on silica gel (hexaness/EtOAc $15 / 1$ to $4 / 1$) to afford the desired product $6 \mathbf{l}$ ($217 \mathrm{mg}, 0.501 \mathrm{mmol}$, quant. yield). Enantiomeric excess was determined by HPLC analysis using IA column and found to be 90% ee.

Note on spectroscopic data. Due to restricted rotation around the carbamate $\mathrm{C}-\mathrm{N}$ bonds, the hydrazination products exist as mixtures of rotamers at room temperature. As a result, complex ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra with broad and/or multiple signals are obtained. Therefore, instead of listing the chemical shifts in the characterization data, the actual spectra reproduced below are indicated.

Diethyl 1-(1-(methoxycarbonyl)-2-oxocyclohexyl)hydrazine-1,2-dicarboxylate (4): Purification by column chromatography on silica gel (hexaness/EtOAc $15 / 1$ to $8 / 1$); colorless oil; ${ }^{1}$ H NMR (500 MHz , CDCl_{3}) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) $3296,2952,1728,1444,1375,1326$, $1278,1219,1120,1093,1061,762,567 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7}: 331.1500$; found 331.1304; $[\alpha]^{25}{ }_{\mathrm{D}}+12.92$ (c 1.00, $\mathrm{CHCl}_{3}, 92 \%$ ee); HPLC (CHIRALPAC IA, $0.46 \mathrm{cmø} \times 25 \mathrm{cmL}$, hexanes $/ 2$-propanol $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 220 nm) $t_{R}=22.4 \mathrm{~min}($ minor $), t_{R}=$ $25.9 \min$ (major), 95% ee.

Di-tert-butyl 1-(1-(methoxycarbonyl)-2-oxocyclopentyl)hydrazine-1,2-dicarboxylate
(6b):
Purification by column chromatography on silica gel (hexaness to hexaness/EtOAc 4/1); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) $3328,2978,1734$, 1456, 1367, 1244, 1154, 998, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}: 395.1789$; found 395.1790; $[\alpha]^{29}{ }_{\mathrm{D}}+5.74$ (c 1.44, $\mathrm{CHCl}_{3}, 96 \%$ ee); HPLC (CHIRALPAC IA, $0.46 \mathrm{cmø} \times 25 \mathrm{cmL}$, hexanes $/$ ethanol $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}$ detection at 210 nm) $t_{R}=7.1 \mathrm{~min}($ minor $), t_{R}=7.9 \mathrm{~min}$ (major).

Di-tert-butyl 1-(1-(ethoxycarbonyl)-2-oxocyclopentyl)hydrazine-1,2-dicarboxylate (6c) ${ }^{12}$: Purification by column chromatography on silica gel (hexaness to hexaness/EtOAc 9/1); colorless oil. Analytical data matched previously reported values. ${ }^{12}[\alpha]^{30}{ }_{\mathrm{D}}+3.52$ (c 1.20, $\mathrm{CHCl}_{3}, 96 \%$ ee); Lit. ${ }^{12}[\alpha]^{32}{ }_{\mathrm{D}}-3.47$ (c 1.09, $\mathrm{CHCl}_{3}, 97 \%$ ee); HPLC (CHIRALPAC IA, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexanes/ethanol $=95 / 5$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}$, UV detection at 210 nm) $t_{R}=6.0 \mathrm{~min}($ minor $), t_{R}=6.5 \mathrm{~min}($ major $)$.

Di-tert-butyl 1-(1-(isopropoxycarbonyl)-2-oxocyclopentyl)hydrazine-1,2-dicarboxylate (6d): Purification by column chromatography on silica gel (hexaness to hexaness/EtOAc 9/1); colorless oil that solidified to white solid on standing at $4{ }^{\circ} \mathrm{C}$; Mp $68-70{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) 3331, 2979, 1725, 1457, 1367, 1241, 1155, 1104, 1033, 979, 918, 852, 758, $534 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}$: 423.2102; found 423.2104; $[\alpha]_{\mathrm{D}}^{28}+1.63^{\circ}\left(c 1.10, \mathrm{CHCl}_{3}, 96 \%\right.$ ee); HPLC (CHIRALPAC IA, $0.46 \mathrm{cmø} \times 25 \mathrm{cmL}$, hexanes $/ 2-$ propanol $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 210 nm) $t_{R}=7.9 \mathrm{~min}(\operatorname{minor}), t_{R}=11.1 \mathrm{~min}$ (major).

Di-tert-butyl 1-(1-(tert-butoxycarbonyl)-2-oxocyclopentyl)hydrazine-1,2-dicarboxylate (6e) ${ }^{13}$: Purification by column chromatography on silica gel (hexaness to hexaness/EtOAc 9/1); colorless oil. Analytical data matched previously reported values. ${ }^{13}[\alpha]^{29}{ }_{\mathrm{D}}+2.40\left(c 0.91, \mathrm{CHCl}_{3}, 94 \%\right.$ ee); Lit. ${ }^{13}[\alpha]^{\text {tr }} \mathrm{D}$ -2.7 (c 1.0, $\mathrm{CHCl}_{3}, 89 \%$ ee); HPLC (CHIRALPAC IA, $0.46 \mathrm{cmø} \times 25 \mathrm{cmL}$, hexanes $/ 2$-propanol $=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 210 nm) $t_{R}=14.9 \mathrm{~min}$ (minor), $t_{R}=19.4 \mathrm{~min}$ (major).

Di-tert-butyl 1-(1-(phenoxycarbonyl)-2-oxocyclopentyl)hydrazine-1,2-dicarboxylate (6f): Purification by column chromatography on silica gel (hexaness to hexaness/EtOAc 4/1); white flakes; Mp 35-37 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) 3342, 2978, 2933, 1747, 1711, 1592, 1492, 1457, 1368, 1245, and $1160 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7}: 457.1945$; found 457.1954; $[\alpha]^{27}{ }_{\mathrm{D}}+1.83$ (c 1.00, $\mathrm{CHCl}_{3}, 95 \%$ ee); HPLC (CHIRALPAC IA, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexanes $/ 2$-propanol $=97 / 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 210 nm) $t_{R}=18.2$ \min (minor), $t_{R}=27.1 \mathrm{~min}$ (major).

Di-tert-butyl 1-(1-(methoxycarbonyl)-2-oxocycloheptyl)hydrazine-1,2-dicarboxylate (6g): Purification by column chromatography on silica gel (hexaness to hexaness/EtOAc 9/1); white flakes; Mp 45-46 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) 3306, 2978, 2934, 1723, 1477, 1456, 1368, 1238, and $1152 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}: 423.2102$; found $423.2106 ;[\alpha]^{30}{ }_{\mathrm{D}}+11.67$ (c 1.02, $\mathrm{CHCl}_{3}, 94 \%$ ee); HPLC (CHIRALPAC OD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexanes $/ 2$-propanol $=97 / 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 210 nm) t_{R} $=5.9 \mathrm{~min}$ (major), $t_{R}=7.9 \mathrm{~min}$ (minor).

Diethyl 1-(1-acetyl-2-oxocyclopentyl)hydrazine-1,2-dicarboxylate (6h): Purification by column chromatography on silica gel (hexaness/EtOAc 4/1 to 2/1); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) $3298,2982,1750,1717,1510,1404,1377$, 1335, and $1235 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}: 323.1214$; found 323.1214; [$\left.\alpha\right]^{30}{ }_{\mathrm{D}}$ -119.29 (c 0.54, $\mathrm{CHCl}_{3}, 91 \%$ ee); HPLC (CHIRALPAC OD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexanes/ethanol $=$ $95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 210 nm) $t_{R}=9.2 \mathrm{~min}$ (major), $t_{R}=10.8 \mathrm{~min}$ (minor).

Di-tert-butyl 1-(2-(methoxycarbonyl)-1-oxo-2,3-dihydro-1H-inden-2-yl)hydrazine-1,2-dicarboxylate (6i): Purification by column chromatography on silica gel (hexaness/EtOAc $15 / 1$ to $4 / 1$); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) 3328,2978 , 1728, 1608, 1477, 1367, 1247, 1151, 1082, 1007, 853, $752 \mathrm{~cm}^{-1}$; HRMS (ESI) [M + Na] calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}$: 443.1789; found 443.1793; $[\alpha]^{25}{ }_{\mathrm{D}}+93.64$ (c 1.00, $\mathrm{CHCl}_{3}, 88 \%$ ee); HPLC (CHIRALPAC IA, $0.46 \mathrm{~cm} \varnothing \times$ 25 cmL , hexanes $/ 2$-propanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 220 nm) $t_{R}=12.3 \mathrm{~min}$ (minor), $t_{R}=15.8 \mathrm{~min}$ (major).

Di-tert-butyl 1-(5-methoxy-2-(methoxycarbonyl)-1-ox0-2,3-dihydro-1H-inden-2-yl)hydrazine-1,2dicarboxylate (6j): Purification by column chromatography on silica gel (hexaness/EtOAc 20/1); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) 2978, 1717, 1600, 1490, 1367, 1257, 1151, 1082, 1007, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{8}$: 473.1894; found 473.1904; $[\alpha]^{25}{ }_{\mathrm{D}}+116.28$ (c 1.00, $\mathrm{CHCl}_{3}, 90 \%$ ee); HPLC (CHIRALPAC IA, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexanes $/ 2$-propanol $=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 220 nm) $t_{R}=$ 35.5 min (minor), $t_{R}=40.8 \mathrm{~min}$ (major).

Di-tert-butyl 1-(5-chloro-2-(methoxycarbonyl)-1-oxo-2,3-dihydro-1H-inden-2-yl)hydrazine-1,2-

 dicarboxylate (6k): Purification by column chromatography on silica gel (hexaness/EtOAc 40/1 to 4/1); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$).see below; IR (neat) $3329,2979,1732,1600,1456,1368,1248,1205,1151,1070,1008,901,851,756 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{7}: 477.1399$; found 477.1403; $[\alpha]^{25}{ }_{\mathrm{D}}+88.96$ (c 1.00, $\mathrm{CHCl}_{3}, 88 \%$ ee); HPLC (CHIRALPAC IA, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexanes $/ 2$-propanol $=97 / 3$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}$, UV detection at 220 nm) $t_{R}=29.9 \mathrm{~min}$ (major), $t_{R}=41.9 \mathrm{~min}$ (minor).

Di-tert-butyl 1-(2-(methoxycarbonyl)-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)hydrazine-1,2dicarboxylate (61): Purification by column chromatography on silica gel (hexaness/EtOAc $15 / 1$ to $4 / 1$); white needles; $\mathrm{Mp} 120-121{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) 2978, 1721, 1602, 1481, 1455, 1368, 1298, 1238, 1155, 1054, 853, 756, $573 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7}$: 457.1945; found 457.1950; $[\alpha]^{23}{ }_{\mathrm{D}}+24.04$ (c 1.00, CHCl_{3}, 90% ee); HPLC (CHIRALPAC IA, $0.46 \mathrm{cmø} \times 25 \mathrm{cmL}$, hexanes $/ 2$-propanol $=80 / 20$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}$, UV detection at 220 nm) $t_{R}=8.8 \mathrm{~min}$ (major), $t_{R}=12.8 \mathrm{~min}$ (minor).

Di-tert-butyl 1-(3-(methoxycarbonyl)-2-oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (6m): Purification by column chromatography on silica gel (hexaness/EtOAc 15/1 to 9/1); white solid; Mp 151$152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) 3385 , 2977, 1786, 1741, 1495, 1456, 1367, 1246, 1164, 1020, 853, $757 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8}$: 397.1581; found 397.1583; [$\left.\alpha\right]^{24}{ }_{\mathrm{D}}+48.00$ (c 1.00, $\mathrm{CHCl}_{3}, 98 \%$ ee); HPLC (CHIRALPAC OD-H, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexanes $/ 2$-propanol $=97 / 3$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, UV detection at 220 nm) t_{R} $=16.7 \mathrm{~min}$ (minor), $t_{R}=19.1 \mathrm{~min}$ (major).

Di-tert-butyl 1-(3-(ethoxycarbonyl)-2-oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (6n): Purification by column chromatography on silica gel (hexaness/EtOAc 9/1 to 4/1); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) $3332,2979,1789,1739$, 1480, 1368, 1260, 1155, 1091, 1027, $802 \mathrm{~cm}^{-1}$; HRMS (ESI) [M + Na] ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}$: 411.1738; found 411.1741; $[\alpha]^{25}{ }_{\mathrm{D}}+37.10$ (c $0.63, \mathrm{CHCl}_{3}, 95 \%$ ee); HPLC (CHIRALPAC IA, $0.46 \mathrm{cmø} \times 25 \mathrm{cmL}$, hexanes $/ 2$-propanol $=97 / 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 220 nm) $t_{R}=13.4 \mathrm{~min}($ minor $), t_{R}=$ 15.7 min (major).

Di-tert-butyl 1-(1-cyano-2-oxocyclopentyl)hydrazine-1,2-dicarboxylate (60): Purification by column chromatography on silica gel (hexaness/EtOAc 15/1); white needles; Mp 139-140 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) $3310,2979,1772,1711,1506,1369$, 1257, 1153, 955, 848, $759 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}: 362.1686$; found 362.1692; $[\alpha]^{24}+8.96$ (c 1.00, $\mathrm{CHCl}_{3}, 90 \%$ ee); HPLC (CHIRALPAC IA, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexanes $/ 2$-propanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 220 nm) $t_{R}=7.7 \mathrm{~min}$ (major), $t_{R}=$ 10.9 min (minor).

2-tert-Butyl 1-methyl 1-(1-(methoxycarbonyl)-2-oxocyclopentyl)hydrazine-1,2-dicarboxylate (8) and 1-tert-Butyl 2-methyl 1-(1-(methoxycarbonyl)-2-oxocyclopentyl)hydrazine-1,2-dicarboxylate (9): Purification by column chromatography on silica gel (hexaness/EtOAc 9/1 to 4/1); colorless oil; a 66:34 mixture of two regioisomers (determined by HPLC analysis, see below); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) see below; IR (neat) $3328,2978,1734,1456,1367,1244,1154,998$, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7}$: 353.1319; found 353.1326; HPLC (CHIRALPAC IA, $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{cmL}$, hexanes $/$ ethanol $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, UV detection at 210 nm) major regioisomer: $t_{R}=10.3 \mathrm{~min}$ (minor), $t_{R}=13.3 \mathrm{~min}$ (major); minor regioisomer: : $t_{R}=11.3$ \min (minor), $t_{R}=18.8 \mathrm{~min}$ (major).

Synthesis of tert-butyl methyl azodicarboxylate (7). ${ }^{14}$ A solution of tert-butyl carbazate ($1.0 \mathrm{~g}, 7.6$ mmol, 1.0 equiv) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled at $-78^{\circ} \mathrm{C}$ while methyl chloroformate ($0.70 \mathrm{~mL}, 0.86 \mathrm{~g}$, $9.1 \mathrm{mmol}, 1.2$ equiv) was added dropwise over 5 min . Sodium carbonate ($0.802 \mathrm{~g}, 7.6 \mathrm{mmol}, 1.0$ equiv) was then added in one portion. The reaction mixture was allowed to warm to rt and stirred for 24 h , then filtered through a pad of Celite with the aid of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated to give $1.297 \mathrm{~g}(90 \%$ yield $)$ of tert-butyl methyl hydrazinedicarboxylate ${ }^{15}$ as a white solid: Mp 102-104 ${ }^{\circ} \mathrm{C}$ (Lit. ${ }^{15}$ 101-101.5 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, and $1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,155.9,81.4,52.7$, and 27.9; IR (neat) $3307,2979,1715,1508,1368,1245,1161$, and $1062 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}: 213.0846$; found 213.0847. To a solution of tert-butyl methyl hydrazinedicarboxylate ($0.476 \mathrm{~g}, 2.50 \mathrm{mmol}, 1.0$ equiv) and pyridine ($0.20 \mathrm{~mL}, 0.20$ $\mathrm{g}, 2.5 \mathrm{mmol}, 1.0$ equiv) in 6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added N -bromosuccinimide ($0.445 \mathrm{~g}, 2.50 \mathrm{mmol}, 1.0$ equiv). The reaction mixture was stirred at rt for 20 min and then diluted with 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This was then washed with two $40-\mathrm{mL}$ portions of $\mathrm{H}_{2} \mathrm{O}, 40 \mathrm{~mL}$ of 1 M NaOH solution, 40 mL of sat NaCl solution, dried over MgSO_{4}, filtered, and then concentrated to 0.394 g (84% yield) of tert-butyl methyl azodicarboxylate (7) as an orange oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.07(\mathrm{~s}, 3 \mathrm{H})$, and $1.63(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.9,158.9,87.1,55.3$, and 27.6; IR (neat) 2986, 1778, 1458, 1438, 1398, 1373, 1249, and $1150 \mathrm{~cm}^{-1}$; HRMS (ESI) [2M +Na$]^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}: 399.1486$; found 399.1468.

Determination of the absolute stereochemistry of hydrazination products $\mathbf{6 b}$ and $\mathbf{6 e}$.

 (a) DiscussionWe are interested in the determination of the absolute stereochemistry of our hydrazination products to aid our study on the mechanism of asymmetric induction by the squaramide catalysts. A survey of the literature showed that a number of X-ray crystal structures have been solved to assign absolute configurations of these types of compounds. These reports are the following: (a) Jørgensen et al. ${ }^{16}$ reported (R) configuration for compound $\mathbf{1 1}$ by solving the X-ray crystal structure of derivative $\mathbf{1 2}$. In the same work, cyclic β-keto esters were also used as substrates but the absolute stereochemistry of those products was not discussed; (b) Ma et al. ${ }^{17}$ analyzed the X-ray crystal structure of pyrazolidine derivative 13, of which the stereochemistry at C-3 was controlled by the same Lewis acid catalyst as in Jørgensen's work, to get to the same conclusion of (R) configuration at the aminated carbon ($3 R$); (c) Vallribera et al. ${ }^{18}$ examined these reactions with related catalysts and cyclic β-keto esters as substrates. Absolute stereochemistry of (R) for compound 6e was assigned based on X-ray crystal structure of hydrazone 14. In the same paper, the authors also studied reaction of β-keto ester 15 and the X-ray crystal structure of the hydrazination product was reported to show (R) configuration at the amino center.

A number of papers have since assigned the absolute stereochemistry of these amination products from their respective studies by correlation of optical rotation. Of these reports two showed the detail of their analysis including optical rotation data. The work of Terada et al. ${ }^{12}$ used both acyclic and cyclic β -
keto esters as substrates and the absolute stereochemistry of both types of products was assigned. For product $\mathbf{6 c}$ from a cyclic substrate, derivative $\mathbf{1 6}$ was synthesized for the assignment of stereochemistry. To obtain the optical rotation value for compound $\mathbf{1 6}$ of known absolute stereochemistry, compound $\mathbf{1 8}$ was independently synthesized from amination product 17 , which was assigned (R) configuration by comparison of optical rotation data reported by Jørgensen et al.. This assignment is based on the assumption that acyclic and cyclic β-keto esters received the same sense of asymmetric induction in Jørgensen's work. This assignment for compound 17 allowed the amino center of derivative 16 to be assigned (R) configuration by correlation and similarly for compound $\mathbf{6 c}$. Intriguingly, product 19 from an acyclic β-keto ester substrate was converted to derivative 20 and assigned (S) configuration based on correlation with compound $\mathbf{1 2}$ in Jørgensen's report. As a result, Terada et al. reported that acyclic and cyclic β-keto esters provided products with opposite enantioselection under chiral guanadine catalysis, whereas this conclusion was based on the assumption that acyclic and cyclic β-keto esters produced products with the same enantioselection under chiral Lewis acid catalysis. Maruoka et al. ${ }^{19}$ later reported both compounds 6c and 6e and their optical rotation data. Compound $\mathbf{6 c}$ generated from chiral phosphonium salt PTC conditions was assigned (S) configuration by correlation to Terada's results.

The relevant optical rotation data from literature and our work is summarized in Table 1. This comparison suggests (S) configuration for compound $\mathbf{6 c}$ and (R) configuration for compound $\mathbf{6 e}$ in the squaramide catalyzed reactions. We are skeptical that the steric difference of the ester groups should result in opposite enantioselection. Furthermore, there are uncertainties in both of the reported assignments. For the assignment of compound $\mathbf{6 c}$ there was the assumption of analogy for fundamentally different substrate types (acyclic and cyclic). The assignment of compound 6e relied on the X-ray
structure analysis of compound $\mathbf{1 4}$ which contains $\mathrm{C}, \mathrm{H}, \mathrm{N}$, and O atoms but no heavy atoms at all. In view of these questions, we decided to assign the absolute stereochemistry of our products unambiguously.

Table 1. Comparison of Optical Rotation Data

$\lceil 0]$ and assignment Compound	Terada	Vallribera	Maruoka	Rawal
 6c	$\begin{aligned} & 97 \% \mathrm{ee},(R) \\ & {[\alpha]_{\mathrm{D}}=-3.47} \\ & \left(c 1.09, \mathrm{CHCl}_{3}\right) \end{aligned}$	NA	$\begin{aligned} & \hline 73 \% \text { ee, } \quad(S) \text { by } \\ & \text { correlation } \\ & {[\alpha]_{\mathrm{D}}=+2.25} \\ & \left(c 1.22, \mathrm{CHCl}_{3}\right) \end{aligned}$	$\begin{aligned} & 96 \% \text { ee } \\ & {[\alpha]^{30} \mathrm{D}+3.52} \\ & \left(c 1.20, \mathrm{CHCl}_{3}\right) \end{aligned}$
	NA	$\begin{aligned} & \hline>95 \% \mathrm{ee},(R) \\ & {[\alpha]_{\mathrm{D}}=+11.3} \\ & \left(c 1.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \end{aligned}$	$\begin{aligned} & 95 \% \text { ee } \\ & {[\alpha]_{\mathrm{D}}=+2.42} \\ & \left(c 0.88, \mathrm{CHCl}_{3}\right) \end{aligned}$	$\begin{aligned} & 94 \% \text { ee } \\ & {[\alpha]^{29}{ }_{\mathrm{D}}+2.40} \\ & \left(c 0.91, \mathrm{CHCl}_{3}\right) \\ & {[\alpha]^{31}{ }^{\mathrm{D}}+1.62} \\ & \left(c 1.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \\ & \hline \end{aligned}$

We have synthesized hydrazination products $\mathbf{6 b}$ from the methyl ester and $\mathbf{6 e}$ from the tert-butyl ester in high ee's. In preliminary work, samples of $\mathbf{6 b}$ with 94% ee were obtained in reactions of β-keto ester $\mathbf{1 b}$ with 1.1 equivalence of azodicarboxylate $\mathbf{5}$ in the presence of $0.5-1.0 \mathrm{~mol} \%$ of catalyst $\mathbf{3 e}$ in toluene at room temperature. These were used in the studies of absolute stereochemistry assignment. Initially, we attempted derivatization of $\mathbf{6 b}$ by well-known chiral agents including 10 -camphorsulfonyl chloride, Mosher's acid chloride, and camphanic chloride (Scheme 1). These agents are known to form crystalline (sulfonyl)esters or (sulfonyl)amides to aid the assignment of absolute configuration by X-ray crystal structure analysis. However, the synthesis and crystallization of these desired products have proven difficult.

Scheme 1. Initial Studies for the Assignment of Absolute Stereochemistry

Eventually, we converted $\mathbf{6 b}$ to amine 21, then to amide $\mathbf{2 2}$ with (1S)-camphanic chloride. The X-ray crystal structure of amide $\mathbf{2 2}$ revealed (S) configuration at the quaternary amino center of $\mathbf{6 b}$. The optical rotation of amine 21 is correlated to Terada's report and thus confirms their assignment of (R) configuration for their product (-)-6c (which then affirms (S) configuration for (+)-6c from our squaramide catalyzed reactions, see Table 1). This also concludes that Jørgensen's hydrazination products derived from cyclic substrates indeed have (R) stereochemistry (from correlation of compounds 21 and 18, then extension to compound 17).

For compound (+)-6e, a similar sequence of transformation also led to amine 23. (S) configuration for $(+)-6 \mathbf{e}$ was then confirmed by correlation of derivative $\mathbf{2 3}$ to compound 21. As a result, we can conclude that in our and Maruoka's work, both the ethyl and tert-butyl ester substrates provided products with (S) configuration at the newly formed stereocenter (Table 1). We also suggest that based on the optical rotation reported for compound 6e by Vallribera et al.: $[\alpha]_{\mathrm{D}}=+11.3\left(c 1.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),{ }^{18}$ their product should have (S) instead of the reported (R) configuration.

(b) Experimental procedures

Synthesis of amide 22 from 6 b (unoptimized).

$\mathbf{6 b}(0.390 \mathrm{~g}, 1.05 \mathrm{mmol}, 94 \%$ ee) was converted to 0.217 g (69% yield) of known compound 24 via published procedure. ${ }^{12}$ To a solution of $24(0.190 \mathrm{~g}, 0.63 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added trifluoroacetic acid ($1.0 \mathrm{~mL}, 1.5 \mathrm{~g}, 13 \mathrm{mmol}$). The reaction mixture was heated at $40{ }^{\circ} \mathrm{C}$ for 5 min and then stirred at rt for 30 min . The volatile was removed and the residue was diluted with 5 mL of $\mathrm{H}_{2} \mathrm{O}$. This solution was neutralized with 10 mL of sat NaHCO_{3} solution and then extracted with five $15-\mathrm{mL}$ portions of EtOAc. The combined organic layers were washed with 15 mL of sat NaCl solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to 0.058 g of a yellow oil. This was purified by column chromatography on silica gel (hexaness/EtOAc $1 / 1$ to $2 / 3$) to afford 0.033 g (26% yield) of amine 21 as a very pale yellow oil. Analytical data matched previously reported values. ${ }^{12}[\alpha]^{24}{ }_{\mathrm{D}}+16.67$ (c 0.80, CHCl_{3}); $\mathrm{Lit}^{12}[\alpha]^{32}{ }_{\mathrm{D}}-20.5\left(c 0.80, \mathrm{CHCl}_{3}\right)$.
A solution of $21\left(0.033 \mathrm{~g}, 0.16 \mathrm{mmol}, 1\right.$ equiv) in 1.6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled at $0{ }^{\circ} \mathrm{C}$ and treated with (1 S)-(-)-camphanic chloride ($0.071 \mathrm{~g}, 0.33 \mathrm{mmol}, 2$ equiv) followed by $\mathrm{Et}_{3} \mathrm{~N}(0.046 \mathrm{~mL}, 0.033 \mathrm{~g}, 0.33$ $\mathrm{mmol}, 2$ equiv). The resulting solution was stirred at rt for 5 h , quenched with 5 mL of sat $\mathrm{NH}_{4} \mathrm{Cl}$
solution and then extracted with five $10-\mathrm{mL}$ portions of EtOAc. The combined organic phases were washed with 10 mL of sat NaCl solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to 0.088 g of a yellow paste. This was purified by column chromatography on silica gel (hexaness/EtOAc $4 / 1$ to $2 / 1$) to provide 0.036 g (57% yield) of amide 22 as a white solid: Mp 142-143 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.25(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.30(\mathrm{~m}, 3 \mathrm{H}), 1.87-2.00(\mathrm{~m}$, $5 \mathrm{H}), 1.63-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H})$, and $1.08(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.7$, 171.8, 166.9, 153.7, 91.7, 83.4, 73.5, 55.0, 54.6, 53.3, 34.4, 30.3, 28.7, 23.5, 16.3, 16.3, and 9.6; IR (film) 3296, 2967, 2881, 1784, 1740, 1707, 1497, 1446, 1397, 1317, 1284, 1243, 1125, and $1110 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}$: 381.1656; found 381.1663; $[\alpha]^{24}{ }_{\mathrm{D}}-66.54\left(c 0.80, \mathrm{CHCl}_{3}\right)$.

Synthesis of 23 from 6e (unoptimized).

Amine $23(0.010 \mathrm{~g}, 9 \%$ overall yield) was prepared from $\mathbf{6 e}(0.238 \mathrm{~g}, 0.57 \mathrm{mmol}, 93 \%$ ee) in a similar manner as the reported procedure. ${ }^{12}$ Stronger basic conditions and elevated temperature was required in step 2 for the hydrolysis of the tert-butyl ester. Analytical data matched previously reported values. ${ }^{12}$ $[\alpha]^{25}{ }_{\mathrm{D}}+15.95\left(c 1.00, \mathrm{CHCl}_{3}\right) ; \mathrm{Lit}^{12}[\alpha]^{32}{ }_{\mathrm{D}}-20.5\left(c 0.80, \mathrm{CHCl}_{3}\right)$.

X-ray crystal structure of 22. Crystallization from MeOH and $\mathrm{H}_{2} \mathrm{O}$ yielded crystals of suitable quality for X-ray diffraction analysis.

Data Collection

An irregular broken fragment ($0.40 \times 0.40 \times 0.40 \mathrm{~mm}$) was selected under a stereo-microscope while immersed in Fluorolube oil to avoid possible reaction with air. The crystal was removed from the oil using a tapered glass fiber that also served to hold the crystal for data collection. The crystal was mounted and centered on a Bruker SMART APEX system at 100 K . Rotation and still images showed the diffractions to be sharp. Frames separated in reciprocal space were obtained and provided an orientation matrix and initial cell parameters. Final cell parameters were obtained from the full data set.

A "full sphere" data set was obtained which samples approximately all of reciprocal space to a resolution of $0.75 \AA$ using 0.3° steps in ω using 10 second integration times for each frame. Data collection was made at 100 K . Integration of intensities and refinement of cell parameters were done using SAINT. ${ }^{20}$ Absorption corrections were applied using SADABS ${ }^{20}$ based on redundant diffractions.

Structure solution and refinement

The space group was determined as $\mathrm{P} 2_{1}$ based on systematic absences and intensity statistics.
Direct methods were used to locate most C atoms from the E-map. Repeated difference Fourier maps
allowed recognition of all expected C, O and N atoms. Following anisotropic refinement of all non- H atoms, ideal H -atom positions were calculated. Final refinement was anisotropic for all non-H atoms, and isotropic-riding for H atoms. No anomalous bond lengths or thermal parameters were noted. All ORTEP diagrams have been drawn with 50% probability ellipsoids.

Equations of interest:

$\mathrm{R}_{\mathrm{int}}=\Sigma\left|\mathrm{F}_{\mathrm{o}}{ }^{2}-<\mathrm{F}_{\mathrm{o}}{ }^{2}>|/ \Sigma| \mathrm{F}_{\mathrm{o}}{ }^{2}\right| \quad \mathrm{R} 1=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|$

$$
\begin{array}{cr}
\mathrm{wR} 2=\left[\Sigma\left[\mathrm{w}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right]^{1 / 2} & \mathrm{GooF}=\mathrm{S}=\left[\Sigma\left[\mathrm{w}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2-} \mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] /(\mathrm{n}-\mathrm{p})^{1 / 2}\right. \\
\text { where: } \mathrm{w}=\mathrm{q} / \sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(\mathrm{aP})^{2}+\mathrm{bP} ; & \mathrm{n}=\text { number of independent reflections; }
\end{array}
$$

References

(1) Christoffers, J.; Rößler,U.; Werner, T. Eur. J. Org. Chem. 2000, 701-705.
(2) Henderson, D.; Richardson, K. A.; Taylor, R. J. K. Synthesis 1983, 996-997.
(3) Presset, M.; Coquerel, Y.; Rodriguez, J. J. Org. Chem. 2009, 74, 415-418.
(4) Emelen, K. V.; Wit, T. D.; Hoornaert, G. J.; Compernolle, F. Tetrahedron 2002, 58, 4225-4236.
(5) Kobayashi, S.; Gustafsson, T.; Shimizu, Y.; Kiyohara, H.; Matsubara, R. Org. Lett. 2006, 8, 4923-4925.
(6) Chakrabarty,M.; Sarkar, S.; Harigaya, Y. Synthesis 2003, 2292-2294.
(7) Quesada, M. L.; Schlessinger, R. H. J. Org. Chem. 1978, 43, 346-347.
(8) Bukowska, M.; Prejzner, J. Pol. J. Chem. 1986, 60, 957-959.
(9) Liu, H.-J.; Ly, T. W.; Tai, C.-L.; Wu, J.-D.; Liang, J.-K.; Guo, J.-C.; Tseng, N.-W.; Shia, K.-S. Tetrahedron 2003, 59, 1209-1226.
(10) Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416-14417.
(11) Zhu, Y.; Malerich, J. P.; Rawal, V. H. Angew. Chem. Int. Ed. 2010, 49, 153-156.
(12) Terada, M.; Nakano, M.; Ube, H. J. Am. Chem. Soc. 2006, 126, 16044-16045.
(13) Saaby, S.; Bella, M.; Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 8120-8121.
(14) This procedure is a modification of the method reported in: Mackay, D.; McIntyre, D. D. Can. J. Chem. 1984, 62, 335-360.
(15) Zecchini, G. P.; Torrini, I.; Paradisi, M. P.; Lucente, G.; Mastropietro, G.; Spisani, S. Amino Acids 1998, 14, 301-309.
(16) Marigo, M.; Juhl, K.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2003, 42, 1367-1369.
(17) Ma, S.; Jiao, N.; Zheng, Z.; Ma, Z.; Lu, Z.; Ye, L.; Deng, Y.; Chen, G. Org. Lett. 2004, 6, 2193-2196.
(18) Comelles, J.; Pericas, À.; Moreno-Mañas, M.; Vallribera, A.; Drudis-Solé, G.; Lledos, A.; Parella, T.; Roglans, A.; García-Granda, S.; Roces-Fernández, L. J. Org. Chem. 2007, 72, 2077-2087.
(19) He, R.; Wang, X.; Hashimoto, T.; Maruoka, K. Angew. Chem. Int. Ed. 2008, 47, 9466-9468.
(20) All software and sources of scattering factors are contained in the SHELXTL (version 5.1) program library (G. Sheldrick, Bruker Analytical X-ray Systems, Madison, WI).

6b

6d

206.83
-205.23

-167.39
<-155.07
<154.33

-207.23
-204.59
-166.75
-155.12
-154.29
150.57
129.34
-126.05
121.19

6 g

204.40
-201.63

-171.13

-| 155.76 |
| ---: |
| -155.71 |
| 155.61 |

	,									
200	180	160	140	120	100	80	60	40	20	0

6h

$6 i$

용				
$\dot{m} \times$		$\bigcirc \dot{\circ}$	min No.	
$\xrightarrow{\circ} \mathrm{O}$	(1)		¢ $\sim_{\infty}^{\text {- }}$	
V	4	$V V 1$, 1	$\text { V } V / 1$

6k

61

6n

$$
\underset{\mathrm{MeO}_{2} \mathrm{C}^{-\mathrm{NH}}}{\stackrel{\mathrm{HN}^{-} \mathrm{CO}_{2}^{t} \mathrm{Bu}}{ }}
$$

[^0]

		6		12	100		1			,
200	180	160	140	120	100	80	60	40	20	0

7

8
9

22

16.36
-16.34

180	1	1	1	1	1	1	1	1	1	1
200	180	160	140	120	100	80	60	40	20	0

4

IA, hexanes/2-propanol $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

IA, hexanes $/$ ethanol $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

| | $\#$ | RT (min) | Peak Area |
| :--- | :---: | :---: | :---: | Peak Area \%

IA, hexanes/ethanol $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

| | \# | RT (\min) | Peak Area |
| :--- | :---: | :---: | :---: |\quad Peak Area \%

IA, hexanes $/ 2$-propanol $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

| | \# | RT (min) | Peak Area |
| :--- | :---: | :---: | :---: | Peak Area \%

IA, hexanes $/ 2$-propanol $=98 / 2$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

	$\#$	RT (min)	Peak Area	Peak Area \%
1	14.920	718.585	3.044	
2	19.412	22891.068	96.956	

IA, hexanes/2-propanol $=97 / 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

	$\#$	RT (min)	Peak Area Peak Area \%
	18.193	1461.093	2.571
1	27.103	55360.926	97.429
2			

6 g
OD-H, hexanes/2-propanol = 97/3, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

| | $\#$ | RT (min) | Peak Area |
| :---: | :---: | :---: | :---: | Peak Area \%

| | $\#$ | RT (min) | Peak Area |
| :--- | :---: | :---: | :---: | Peak Area \%

OD-H, hexanes/ethanol $=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

DAD1 B, Sig=210,8 Ref=360,100 (TAMMYTYL200908250001.D)

	$\#$	RT (min)	Peak Area	Peak Area \%
1	9.157	13863.753	95.510	
2	10.776	651.711	4.490	

IA, hexanes $/ 2$-propanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

| | $\#$ | RT (min) | Peak Area |
| :--- | :---: | :---: | :---: | Peak Area \%

$6 j$
IA, hexanes $/ 2$-propanol $=90 / 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

| | \# | RT (min) | Peak Area |
| :--- | :--- | :--- | :--- | Peak Area \%

IA, hexanes $/ 2$-propanol $=97 / 3$, flow rate $0.8 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

	\#	RT (min)	Peak Area	Peak Area \%
1	29.959	17347.281	93.993	
2	41.967	1108.562	6.007	

61
IA, hexanes $/ 2$-propanol $=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	Area \%
1	8.649	MM	0.3331	7035.91455	351.99857	50.2023
2	12.021	MM	0.9407	6979.21875	123.65813	49.7977

DAD1 C, Sig=220,8 雨ef=360,100 (HIDEYUKIL20090531000001.D)

6m
OD-H, hexanes $/ 2-$ propanol $=97 / 3$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

6n
IA, hexanes $/ 2$-propanol $=97 / 3$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

| | $\#$ | RT (min) | Peak Area |
| :--- | :---: | :---: | :---: | Peak Area \%

IA, hexanes/2-propanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$

	\#	RT (min)	Peak Area	Peak Area \%
1	7.509	434.034	49.734	
2	10.144	438.680	50.266	
	-	-	-	

	$\#$	RT (min)	Peak Area	Peak Area \%
1	7.731	2781.927	95.124	
2	10.905	142.608	4.876	

IA, hexanes $/ 2$-propanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

Regioisomeric Ratio

Regioisomeric Ratio

	$\#$	RT (min)	Peak Area	Peak Area \%
1	13.252	14881.391	66.199	
2	18.810	7598.236	33.801	

IA, hexanes $/ 2$-propanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

| | $\#$ | RT (min) | Peak Area |
| :--- | :---: | :---: | :---: | Peak Area \%

IA, hexanes $/ 2$-propanol $=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$

Minor Isomer

| | $\#$ | RT (min) | Peak Area |
| :--- | :---: | :---: | :---: | Peak Area \%

Minor Isomer

| | \# | RT (min) | Peak Area |
| :--- | :---: | :---: | :---: | Peak Area \%

Table 1. Crystal and structure refinement for 22.

Identification Code	Lam02
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}$
Formula weight	380.39
Temperature	100 K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space Group	P2 ${ }_{1}$
Unit cell dimensions	$a=8.8090(16) \AA \quad \alpha=90.0^{\circ}$
	$b=9.2002(17) \AA \quad \beta=92.499(3){ }^{\circ}$
	$c=11.103(2) \AA \quad \gamma=90.0^{\circ}$
Volume	899.0(3) \AA^{3}
Z	2
Density (calculated)	$1.405 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.109 \mathrm{~mm}^{-1}$
F(000)	404
Crystal size, color, habit	$0.40 \times 0.40 \times 0.40 \mathrm{~mm}$, clear, irregular
Theta range for data collection	$1.84-28.29{ }^{\circ}$
Index ranges	$-11 \leq \mathrm{h} \leq 11,-12 \leq \mathrm{k} \leq 11,-14 \leq 1 \leq 14$
Reflections collected	10,783
Independent reflections	$3,966\left(\mathrm{R}_{\text {int }}=0.0238\right)$
Reflections with $\mathrm{I}>4 \sigma\left(\mathrm{~F}_{\mathrm{o}}\right)$	4,237
Flack parameter	indeterminate
Absorption correction	SADABS based on redundant diffractions
Max. and min. transmission	1.0, 0.749
Refinement method	Full-matrix least squares on F^{2}
Weighting scheme	$\begin{aligned} & \mathrm{w}=\mathrm{q}\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)+(\mathrm{aP})^{2}+\mathrm{bP}\right]^{-1} \text { where: } \\ & \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}^{2}+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3, \mathrm{a}=0.0655, \mathrm{~b}=0.0, \mathrm{q}=1 \end{aligned}$
Data / restraints / parameters	4237 / 0 / 248
Goodness-of-fit on F^{2}	0.925
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0389, \mathrm{wR} 2=0.0934$
R indices (all data)	$\mathrm{R} 1=0.0411, \mathrm{wR} 2=0.0947$
Largest diff. peak and hole	0.308, -0.201 $\mathrm{e}^{\text {A }}{ }^{-3}$

Table 2. Atomic coordinates $\left[\mathrm{x} 10^{4}\right.$] and equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ for 22 . $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	U (eq)	SOF
C (1)	8008(2)	10379 (2)	5910 (2)	23 (1)	
C (2)	5374 (2)	10663 (2)	6263 (1)	15 (1)	
C (3)	3753 (2)	10185 (2)	5874 (1)	15 (1)	
C (4)	3600 (2)	9080 (2)	4842 (2)	18 (1)	
C (5)	2097 (2)	9472 (2)	4164 (2)	21 (1)	
C (6)	2140 (2)	11138 (2)	4185 (2)	22 (1)	
C(7)	2731(2)	11511 (2)	5459(1)	17 (1)	
C (8)	1660 (2)	10483 (2)	7132 (1)	17 (1)	
C (9)	2476 (2)	7309 (2)	7383 (1)	16 (1)	
C (10)	2839 (2)	6015 (2)	8185 (1)	15 (1)	
C (11)	2762 (2)	4531 (2)	7563 (2)	20 (1)	
C (12)	2798 (2)	3472 (2)	8645 (2)	20 (1)	
C (13)	2860 (2)	4511 (2)	9756(1)	16(1)	
C (14)	4416 (2)	5198 (2)	9697 (1)	17 (1)	
C (15)	197 (2)	5455 (2)	8991 (2)	20 (1)	
C (16)	1862 (2)	5821 (2)	9309(1)	16(1)	
C (17)	1929 (2)	7120 (2)	10170 (2)	19(1)	
C(18)	2553 (2)	3813 (2)	10956 (2)	20 (1)	
N(1)	2982 (2)	9764 (2)	6948 (1)	16(1)	
N (2)	3363 (2)	8513(1)	7576(1)	15 (1)	
O(1)	6423 (1)	10014 (1)	5616 (1)	21 (1)	
O (2)	5636(1)	11525 (1)	7056 (1)	24 (1)	
O(3)	1486 (1)	11534 (1)	6278 (1)	19(1)	
O(4)	778 (1)	10277 (1)	7907 (1)	22 (1)	
O(5)	1446 (1)	7254 (1)	6618 (1)	20 (1)	
O(6)	4377 (1)	6137 (1)	8735 (1)	17 (1)	
O(7)	5561 (1)	5011 (1)	10303 (1)	22 (1)	

Table 3. Bond lengths [Å] and angles [${ }^{\circ}$] for 22.

$\mathrm{C}(1)-\mathrm{O}(1)$	1.4595(19)	$\mathrm{C}(9)-\mathrm{N}(2)$	1.367(2)
$\mathrm{C}(2)-\mathrm{O}(2)$	1.200 (2)	C (9)-C(10)	1.512 (2)
$\mathrm{C}(2)-\mathrm{O}(1)$	1.335 (2)	$\mathrm{C}(10)-0(6)$	1.4658 (18)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.538 (2)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.531 (2)
$\mathrm{C}(3)-\mathrm{N}(1)$	1.451 (2)	$\mathrm{C}(10)-\mathrm{C}(16)$	1.556 (2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.533 (2)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.546 (2)
C (3) - C (7)	1.573 (2)	C (12)-C (13)	1.559 (2)
C (4)-C(5)	1.537 (2)	C(13) - C (14)	1.513 (2)
C (5) - C (6)	1.534 (3)	C (13) - C (18)	1.514 (2)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.525 (2)	$\mathrm{C}(13)-\mathrm{C}(16)$	1.560 (2)
C (7) -O (3)	1.454 (2)	$\mathrm{C}(14)-\mathrm{O}(7)$	$1.2003(18)$
C (8) -O (4)	1.199(2)	$\mathrm{C}(14)-\mathrm{O}$ (6)	1.373(2)
C (8) - 0 (3)	1.358 (2)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.532 (2)
$\mathrm{C}(8)-\mathrm{N}(1)$	1.363 (2)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.530 (2)
C (9) - 0 (5)	1.2172 (19)	$\mathrm{N}(1)-\mathrm{N}(2)$	1.3789(19)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{O}(1)$	125.09(14)	C (11)-C (10)-C (16)	104.12 (13)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	122.76 (15)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	102.28 (13)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.15 (13)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	103.11 (13)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	114.10 (13)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	114.37(14)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	107.90 (12)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	102.86(13)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	116.71 (13)	C (18) - C (13)-C(12)	115.74(14)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(7)$	99.52 (12)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(16)$	99.35 (13)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)$	105.38 (12)	$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(16)$	119.17(14)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)$	111.92 (13)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	102.84(12)
C (3) -C (4)-C (5)	104.84 (13)	$\mathrm{O}(7)-\mathrm{C}(14)-\mathrm{O}(6)$	121.24(14)
C (6)-C(5)-C(4)	101.94 (14)	O(7)-C(14)-C(13)	131.01(15)
C (7)-C (6)-C (5)	104.24(14)	O (6)-C (14)-C(13)	107.72 (13)
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	110.33 (13)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	109.04 (13)
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(3)$	105.42 (12)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(10)$	113.78 (13)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(3)$	105.34 (13)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(10)$	113.43 (13)
$\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{O}(3)$	123.81 (15)	C (17)-C (16)-C(13)	113.54 (13)
$\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{N}(1)$	127.96(16)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(13)$	115.12 (13)
$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{N}(1)$	108.22(14)	$\mathrm{C}(10)-\mathrm{C}(16)-\mathrm{C}(13)$	91.17(12)
$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{N}(2)$	123.18 (15)	$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{N}(2)$	121.38(14)
$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{C}(10)$	120.65(14)	$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(3)$	115.25 (13)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	116.17 (13)	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	121.74 (13)
$\mathrm{O}(6)-\mathrm{C}(10)-\mathrm{C}(9)$	110.65 (12)	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{N}(1)$	118.18 (13)
$\mathrm{O}(6)-\mathrm{C}(10)-\mathrm{C}(11)$	106.13 (13)	$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)$	117.03(13)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	115.62 (12)	$\mathrm{C}(8)-0(3)-\mathrm{C}(7)$	111.15 (12)
O (6)-C (10)-C (16)	102.01 (11)	C (14)-O(6)-C(10)	105.52(12)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(16)$	116.93(13)		

Table 4. Anisotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ for 22 . The anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a^{*} b^{*} U_{12}\right]$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C (1)	11 (1)	30 (1)	26 (1)	$3(1)$	0 (1)	-1(1)
C (2)	15 (1)	15 (1)	14(1)	4 (1)	0 (1)	0 (1)
C (3)	14(1)	15 (1)	15 (1)	1 (1)	1 (1)	0 (1)
C (4)	18 (1)	19 (1)	16 (1)	-2(1)	1 (1)	0 (1)
C (5)	18(1)	26 (1)	18(1)	-3(1)	-2 (1)	0 (1)
C (6)	21 (1)	26 (1)	18 (1)	3 (1)	-3(1)	2 (1)
C (7)	17 (1)	16 (1)	18 (1)	$3(1)$	0 (1)	1 (1)
C (8)	16 (1)	17 (1)	17 (1)	-4(1)	-3(1)	-1(1)
C (9)	15 (1)	19(1)	14(1)	0 (1)	4 (1)	-2 (1)
C (10)	15 (1)	16 (1)	15 (1)	-1 (1)	-1(1)	-1(1)
C (11)	24 (1)	18 (1)	18 (1)	-3(1)	2 (1)	0 (1)
C (12)	24 (1)	15 (1)	20 (1)	-1 (1)	2 (1)	0 (1)
C (13)	17 (1)	14 (1)	17 (1)	-2(1)	1 (1)	0 (1)
C (14)	19(1)	15 (1)	16(1)	0 (1)	2 (1)	2 (1)
C (15)	18 (1)	21 (1)	21 (1)	$2(1)$	1 (1)	-1(1)
C (16)	18(1)	14(1)	15 (1)	1 (1)	1 (1)	0 (1)
C (17)	24 (1)	17 (1)	18 (1)	-2(1)	3 (1)	2 (1)
C (18)	23 (1)	18 (1)	18 (1)	3 (1)	1 (1)	0 (1)
N(1)	16(1)	15 (1)	16(1)	$2(1)$	2 (1)	0 (1)
N (2)	16(1)	15 (1)	15 (1)	4 (1)	-3(1)	-1(1)
O(1)	13 (1)	26 (1)	24 (1)	-3(1)	0 (1)	1 (1)
O(2)	21 (1)	26 (1)	23 (1)	-5 (1)	0 (1)	-4(1)
O (3)	16(1)	20 (1)	22 (1)	0 (1)	1 (1)	4 (1)
O (4)	18 (1)	28 (1)	21 (1)	-3(1)	5 (1)	-2 (1)
O(5)	20 (1)	22 (1)	17 (1)	2 (1)	-3(1)	-5 (1)
O (6)	15 (1)	20 (1)	17(1)	$3(1)$	0 (1)	-2 (1)
O(7)	20 (1)	24 (1)	23 (1)	4 (1)	-3(1)	1 (1)

Table 5. Hydrogen coordinates $\left[\mathrm{x} 10^{4}\right]$ and isotropic displacement parameters [$\stackrel{\AA}{A}^{2} \times 10^{3}$] for 22.

	x	Y	z	U (eq)
H (1A)	8423	10926	5242	34
H (1B)	8595	9484	6043	34
H (1C)	8071	10973	6643	34
H (4A)	3566	8076	5160	21
H (4B)	4463	9163	4304	21
H (5A)	2066	9094	3328	25
H (5B)	1213	9093	4586	25
H (6A)	2831	11517	3579	26
H (6B)	1113	11549	4021	26
H (7)	3314	12444	5483	21
H (11A)	3644	4378	7055	24
H (11B)	1812	4423	7060	24
H (12A)	3706	2838	8645	23
H (12B)	1874	2858	8634	23
H (15A)	-344	5301	9733	30
H (15B)	143	4568	8501	30
H (15C)	-275	6260	8535	30
H (17A)	1471	7970	9765	29
H (17B)	2991	7332	10406	29
H (17C)	1369	6890	10889	29
H (18A)	3181	2940	11064	30
H (18B)	1477	3546	10972	30
H (18C)	2801	4502	11608	30
H (2)	4156	8490	8086	18

Table 6. Torsion angles [${ }^{0}$] for 22.

O(2) -C (2) -C (3) -N(1)	-50.3(2)	O (6) -C (10)-C (16)-C (15)	-172.07(13)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	129.97(14)	C (9) -C (10)-C (16)-C (15)	67.09 (18)
O(2)-C (2)-C (3)-C (4)	179.71(14)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(16)-\mathrm{C}(15)$	-61.81(16)
O(1)-C (2)-C (3)-C (4)	-0.03(19)	O(6)-C (10)-C (16)-C (13)	-53.93(13)
O(2)-C (2)-C (3)-C (7)	58.2 (2)	C (9) - C (10)-C (16)-C (13)	-174.77(13)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)$	-121.53(14)	C (11)-C (10)-C (16)-C (13)	56.33 (13)
N(1) -C (3) -C (4)-C (5)	85.92 (15)	C (14)-C (13)-C (16)-C (17)	-65.56(16)
C (2) -C (3) - C (4)-C (5)	-147.08(14)	C (18) -C (13)-C (16)-C (17)	59.25 (19)
C (7) -C (3)-C (4)-C (5)	-22.20(16)	C (12)-C (13)-C (16)-C (17)	-171.15(13)
C (3) -C (4)-C (5)-C (6)	39.63 (16)	C (14)-C (13)-C (16)-C (15)	167.77 (13)
C (4) -C (5) -C (6)-C (7)	-42.06(17)	C (18) -C (13)-C (16)-C (15)	-67.42(19)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(3)$	-84.93(16)	C (12)-C (13)-C (16)-C (15)	62.18 (17)
C (5) -C (6)-C (7)-C (3)	28.38 (17)	C (14)-C (13)-C (16)-C (10)	51.11 (13)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{O}(3)$	-5.47(15)	C (18) -C (13)-C (16)-C (10)	175.92(14)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{O}(3)$	112.93(13)	C (12)-C (13) -C (16)-C (10)	-54.49(13)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{O}(3)$	-119.25 (13)	$\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{N}(2)$	9.7 (3)
$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	-122.18(14)	$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{N}(2)$	-171.22(13)
C (4)-C (3)-C (7)-C (6)	-3.78(17)	$\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(3)$	175.36(16)
C (2) -C (3)-C (7)-C (6)	124.04 (14)	$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(3)$	-5.56(18)
O (5) -C (9)-C (10)-O(6)	161.13(14)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(8)$	-104.85(16)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)-0(6)$	-18.97(19)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(8)$	123.70 (15)
O (5) -C (9)-C (10)-C (11)	40.5 (2)	$\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(8)$	6.84 (17)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-139.64 (15)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{N}(2)$	60.75 (18)
O (5) -C (9)-C (10)-C (16)	-82.71(19)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{N}(2)$	-70.69(18)
N(2) -C (9) -C (10)-C (16)	97.19 (17)	$\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{N}(2)$	172.44 (13)
O(6)-C (10)-C (11)-C (12)	69.95(15)	$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{N}(1)$	6.1 (2)
C (9)-C (10)-C (11)-C (12)	-166.97(13)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{N}(1)$	-173.78(13)
C (16)-C (10)-C (11)-C (12)	-37.27(15)	$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(9)$	65.20 (19)
C (10)-C (11)-C (12)-C (13)	1.05 (16)	$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(9)$	-99.52(17)
C (11)-C (12)-C (13)-C (14)	-67.75(15)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)$	$0.6(2)$
C (11)-C (12)-C (13)-C (18)	166.80 (14)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1)$	-179.70 (13)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	35.13(16)	O(4)-C (8)-O(3)-C (7)	-179.62(15)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-0(7)$	19.8 (3)	$\mathrm{N}(1)-\mathrm{C}(8)-0(3)-\mathrm{C}(7)$	1.26 (17)
C (12)-C (13)-C (14)-0 (7)	-106.6(2)	$\mathrm{C}(6)-\mathrm{C}(7)-0(3)-\mathrm{C}(8)$	116.16(15)
C (16)-C (13)-C (14)-0 (7)	147.85(18)	$\mathrm{C}(3)-\mathrm{C}(7)-0(3)-\mathrm{C}(8)$	2.91 (16)
C (18) -C (13)-C (14)-O(6)	-162.25(13)	$\mathrm{O}(7)-\mathrm{C}(14)-\mathrm{O}(6)-\mathrm{C}(10)$	176.96(15)
C (12)-C (13)-C (14)-O(6)	71.42 (15)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(6)-\mathrm{C}(10)$	-1.26(16)
C (16)-C (13)-C (14)-O(6)	-34.16(15)	$\mathrm{C}(9)-\mathrm{C}(10)-0(6)-\mathrm{C}(14)$	161.80 (12)
$0(6)-C(10)-C(16)-C(17)$	62.52 (16)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(6)-\mathrm{C}(14)$	-72.04 (15)
C (9)-C (10)-C (16)-C (17)	-58.31(17)	$\mathrm{C}(16)-\mathrm{C}(10)-\mathrm{O}(6)-\mathrm{C}(14)$	36.70 (15)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(16)-\mathrm{C}(17)$	172.78(13)		

[^0]: ${ }_{66 \cdot}^{86 \cdot 59 T}=$

