Supporting Information

Sequential Reaction of Arynes *via* Insertion into the π -Bond of Amides and Trapping Reaction with Dialkylzincs

Eito Yoshioka, Shigeru Kohtani, and Hideto Miyabe *

School of Pharmacy, Hyogo University of Health Sciences, Minatojima, Chuo-ku, Kobe 650-8530, Japan.

miyabe@huhs.ac.jp

Table of contents

Results of calculation studies on possible intermediates A-C: S2.

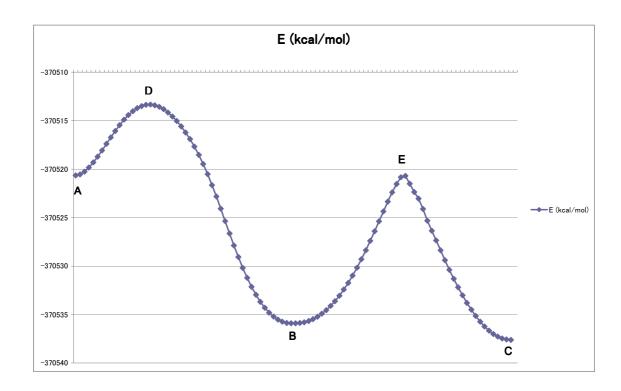
Experimental procedure for reaction of aryne precursor 1 with DMF or DMA: S4.

Characterization data of obtained compounds 2-4: S5.

General procedure for trapping reaction using dialkylzincs: S6.

Experimental procedure for trapping reaction using 1-formylpiperidine 7: S6.

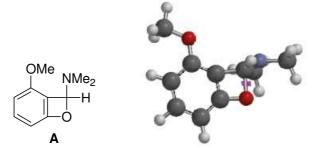
Characterization data of obtained compounds 5a-c, 6, 5a-d, 8, 10, 12a, 12b, 14, and 15: S7.

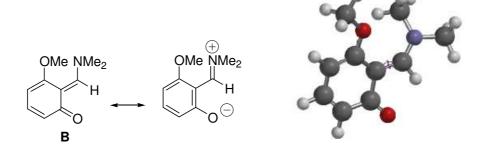

Characterization data of compound 6 and corresponding alcohol 16: S10.

References: S11.

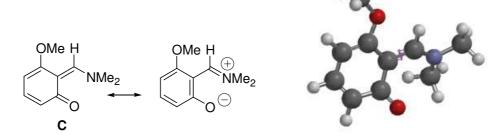
¹H and ¹³C NMR of obtained compounds **2-4**, **5a-c**, **6**, **5a-d**, **8**, **10**, **12a**, **12b**, **14**, and **16**: S12.

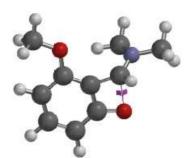
Results of Calculation Studies on Possible Intermediates A-C.


Calculation studies were performed on Hartree-Fock 6-311G* by using Spartan'08 Essential Edition (WAVEFUNCTION, INC).


$$\begin{array}{c|c} OMe & OMe \\ \hline C3 & C2 & C2' \\ \hline \hline C1 & C2' \\ \hline \end{array}$$

System	Bond Length	Dihedral Angle	Energy (au)
	(C2' and O atom at C1)	(C3-C2 and C2'-N)	
A	1.501 Å		-590.461743
В	2.675 Å	-21.41°	-590.486051
C	2.906 Å	-163.29°	-590.488774
D	1.908 Å		-590.450099
E		-93.80°	-590.461818
3-Methoxybenzyne			-343.343682
DMF			-247.045380


The four-membered intermediate A


The quinone methide E-form **B**

The quinone methide Z-form C

Transition state **D**

Transition state ${\bf E}$

Experimental Section

General. Melting points were taken on a BUCHI B-540 or Yanaco MP-J3 and are uncorrected. Infrared spectra were measured on a JASCO FT/IR-4100. ¹H-NMR spectra were measured on a JEOL ECX-400 PSK (400 MHz) or Varian NMRS 600 (600 MHz). ¹³C-NMR spectra were measured on a JEOL ECX-400 PSK (101 MHz) or Varian NMRS 600 (126 MHz) with CDCl₃ or CD₃OD as an internal standard (77.0 or 49.0 ppm, respectively). ¹⁹F-NMR spectra were measured on a JEOL ECX-400 PSK (376 MHz) with C₆F₆ as an internal standard (-162.2 ppm). Low and high resolution mass spectra (EI-MS, CI-MS, ESI-MS and HRMS) were obtained by use of a Hitachi M-4100 GC/MS spectrometer or Thermo Fisher Scientific Exactive LC/MS spectrometer. Elemental analyses were measured on Yanaco CHN CORDER MT-5. For silica gel column chromatography, SiliCycle Inc. SiliaFlash F60 was used. The anhydrous TBAF was prepared from TBAF·3H₂O by heating the hydrate at 40 °C for 6 hours, at 60 °C for 12 hours, at 80 °C for 6 hours, and then at 120 °C for 12 hours under reduced pressure. The prepared anhydrous TBAF was used as a solution by addition of appropriate solvent such as DMF, CH₃CN, and so on. Products 2, ¹¹ 3, ²¹ 10, ³¹ 15, ⁴¹ and 16⁵¹ are known compounds.

1. Experimental Procedure for Reaction of Aryne Precursor 1 with DMF (Table 1).

- (1) For the reactions using the 3.0 or 10 equiv. of DMF, see: To a solution of 3-methoxy-2-(trimethylsilyl)phenyl triflate 1 (53 μ L, 0.20 mmol) and DMF (0.60 mmol or 2.0 mmol) in CH₃CN, THF, CH₂Cl₂, or CH₃OH (1.4 mL) was added TBAF (1.0 M solution in corresponding solvent, 0.60 mL, 0.60 mmol) under argon atmosphere at room temperature. After stirring at the same temperature for 3 hours, H₂O (0.1 mL) was added to the reaction mixture. The reaction mixture was concentrated under reduced pressure. Purification of the residue by flash silica gel column chromatography (AcOEt:hexane =1:20–1:8 with 2% CH₂Cl₂) afforded the product 2.
- (2) For the reactions using DMF as a solvent, see: To a solution of TBAF, CsF, TBAHF₂, or **TBAT** (0.60)**DMF** (1.2)mmol) in mL) was added solution of 3-methoxy-2-(trimethylsilyl)phenyl triflate 1 (53 μL, 0.20 mmol) in DMF (0.8 mL) under argon atmosphere at room temperature. After stirring at the same temperature for 3 hours, H₂O (0.1 mL) was added to the reaction mixture. The reaction mixture was concentrated under reduced pressure. Purification of the residue by flash silica gel column chromatography (AcOEt:hexane =1:20–1:8 with 2% CH₂Cl₂) afforded the product 2.

2. Reaction of Aryne Precursor 1 with DMA (Scheme 1).

To a solution of TBAF (157 mg, 0.60 mmol) in DMA (1.2 mL) was added a solution of 3-methoxy-2-(trimethylsilyl)phenyl triflate **1** (53 μ L, 0.20 mmol) in DMA (0.8 mL) under argon atmosphere at room temperature. After stirring at the same temperature for 3 hours, H₂O (0.1 mL) was added to the reaction mixture. The reaction mixture was concentrated under reduced pressure. Purification of the residue by flash silica gel column chromatography (AcOEt:hexane =1:20–1:8 with 2% CH₂Cl₂) afforded the products **2** (11.3 mg, 34%) and **4** (3.8 mg, 10%).

3. Characterization Data of Obtained Compounds 2-4:

Aldehyde (2) 1)

Colorless crystals. mp 73.5-74.5 °C (AcOEt-hexane). IR (CHCl₃) 1646 cm⁻¹. ¹H NMR (CDCl₃) δ 11.97 (1H, s), 10.34 (1H, s), 7.41 (1H, dd, J = 8.0, 8.5 Hz), 6.52 (1H, d, J = 8.5 Hz), 6.38 (1H, d, J = 8.0 Hz), 3.89 (3H, s); ¹³C NMR (CDCl₃) δ 194.5, 163.6, 162.5, 138.4, 110.8, 109.9, 101.0, 55.8; MS (EI⁺) m/z 84 (100), 153 (M+H⁺, 9); HRMS (EI⁺) calcd for C₈H₉O₃ (M+H⁺): 153.0552. Found: 153.0553; Elemental analysis (%) calcd for C₈H₈O₃: C, 63.15; H, 5.30; O, 31.55, found: C, 63.14, H, 5.32.

Ketone (**3**) ²⁾

Colorless crystals. mp 57-57.5 °C (AcOEt-hexane). IR (CHCl₃) 1623 cm⁻¹. ¹H NMR (CDCl₃) δ 13.23 (1H, s), 7.33 (1H, t, J = 8.0 Hz), 6.56 (1H, dd, J = 8.0, 1.0 Hz), 6.39 (1H, dd, J = 8.0, 1.0 Hz), 3.90 (3H, s), 2.67 (3H, s); ¹³C NMR (CDCl₃) δ 205.1, 164.6, 161.5, 136.0, 111.3, 110.7, 101.1, 55.6, 33.7; MS (EI⁺) m/z 83 (100), 166 (M⁺, 3); HRMS (EI⁺) calcd for C₉H₁₀O₃ (M⁺): 166.0630. Found: 166.0646.

Ketone (4)

Colorless oil. IR (CHCl₃) 1702 cm⁻¹. ¹H NMR (CDCl₃) δ 7.23 (1H, br t, J = 8.0 Hz), 6.67 (1H, br d, J = 8.0 Hz), 6.56 (1H, br d, J = 8.0 Hz), 3.78 (3H, s), 2.72 (6H, s), 2.50 (3H, s); ¹³C NMR (CDCl₃) δ 205.2, 156.2, 151.8, 130.2, 125.3, 111.0, 104.7, 55.8, 44.8, 31.8; MS (EI⁺) m/z 83 (100), 193 (M⁺, 0.4); HRMS (EI⁺) calcd for C₁₁H₁₅NO₂ (M⁺): 193.1103. Found: 193.1121.

4. General Procedure for Trapping Reaction Using Dialkylzincs.

To a suspension of CsF (91 mg, 0.60 mmol) in DMF (1.2 mL) was added a solution of aryne precursor **1**, **9**, **11**, or **13** (0.20 mmol) in DMF (0.8 mL) under argon atmosphere at room temperature. After stirring at the same temperature for 15 minutes, Et₂Zn (1.05 M in hexane, 0.95 mL, 1.0 mmol), Me₂Zn (1.0 M in hexane, 1.0 mL, 1.0 mmol), or Ph₂Zn (220 mg, 1.0 mmol) was added to the reaction mixture at room temperature. After stirring at the same temperature for 12 hours, H₂O (0.1 mL) was added to the reaction mixture. The reaction mixture was concentrated under reduced pressure. Purification of the residue by flash silica gel column chromatography (AcOEt:hexane =1:20–1:0 with 2% CH₂Cl₂) afforded the products **5a-c**, **5a-d**, **10**, **12a**, **12b**, **14**, and **15**.

5. Experimental Procedure for Trapping Reaction Using 1-Formylpiperidine 7.

To a solution of TBAF (157 mg, 0.60 mmol) and 1-formylpiperidine 7 in CH₃CN (1.2 mL) was added a solution of 3-methoxy-2-(trimethylsilyl)phenyl triflate 1 (53 μ L, 0.20 mmol) in CH₃CN (0.8 mL) under argon atmosphere at room temperature. After stirring at the same temperature for 15 minutes, Et₂Zn (1.05 M in hexane, 0.95 mL, 1.0 mmol) was added to the reaction mixture. After stirring at the same temperature for 12 hours, H₂O (0.1 mL) was added to the reaction mixture. The reaction mixture was concentrated under reduced pressure. Purification of the residue by flash silica gel column chromatography (AcOEt:hexane =1:20–1:0 with 2% CH₂Cl₂) afforded the product 8 (20.1 mg, 40%).

6. Characterization Data of Obtained Compounds 5a-c, 5a-d, 8, 10, 12a, 12b, 14, and 15.

Ethylated Product (5a)

Colorless oil. ¹H NMR (CDCl₃) δ 7.06 (1H, t, J = 8.0 Hz), 6.44 (1H, dd, J = 8.0, 1.0 Hz), 6.35 (1H, dd, J = 8.0, 1.0 Hz), 3.76 (3H, s), 3.74 (1H, m), 2.33 (6H, s), 1.88-1.72 (2H, m), 0.76 (3H, t, J = 7.5 Hz); The exchangeable proton peak of OH group was not clearly detected. ¹³C NMR (CDCl₃) δ 158.7, 157.9, 128.1, 113.7, 109.6, 101.1, 64.4, 55.3, 43.3 (br s), 24.9, 9.5; MS (EI⁺) m/z 153 (100), 209 (M⁺, 13); HRMS (EI⁺) calcd for $C_{12}H_{19}NO_2$ (M⁺): 209.1416. Found: 209.1421.

Methylated Product (5b)

Colorless oil. ¹H NMR (CDCl₃) δ 7.04 (1H, t, J = 8.0 Hz), 6.44 (1H, dd, J = 8.0, 1.0 Hz), 6.34 (1H, dd, J = 8.0, 1.0 Hz), 3.84 (1H, t, J = 6.5 Hz), 3.78 (3H, s), 2.33 (6H, br s), 1.33 (3H, d, J = 6.5 Hz); The exchangeable proton peak of OH group was not clearly detected. ¹³C NMR (CDCl₃) δ 158.3, 157.0, 128.0, 116.1, 109.7, 101.2, 59.4, 55.5, 43.4 (br s), 18.7; MS (EI⁺) m/z 180 (100), 195 (M⁺, 51); HRMS (EI⁺) calcd for C₁₁H₁₇NO₂ (M⁺): 195.1259. Found: 195.1275.

Phenylated Product (5c)

Colorless crystals. mp 150-151 °C (AcOEt-hexane). ¹H NMR (CDCl₃) δ 7.48 (2H, br d, J = 7.0 Hz), 7.27-7.17 (3H, m), 7.03 (1H, t, J = 8.0 Hz), 6.49 (1H, dd, J = 8.0, 1.0 Hz), 6.26 (1H, dd, J = 8.0, 1.0 Hz), 4.69 (1H, s), 3.70 (3H, s), 2.27 (6H, br s); The exchangeable proton peak of OH group was not clearly detected. ¹³C NMR (CDCl₃) δ 157.9, 157.4, 141.2, 128.4 (2C), 127.4, 114.8, 109.9, 101.5, 70.2, 55.5, 44.2 (br s); One carbon peak was missing due to overlapping. MS (EI⁺) m/z 211 (100), 257 (M⁺, 37); HRMS (EI⁺) calcd for C₁₆H₁₉NO₂ (M⁺): 257.1416. Found:

257.1431; Elemental analysis (%) calcd for $C_{16}H_{19}NO_2$: C, 74.68; H, 7.44; N, 5.44; O, 12.44, found: C, 74.68, H, 7.44, N, 5.44.

Deuterated Product (5a-d)

Colorless oil. ¹H NMR (CDCl₃) δ 7.07 (1H, t, J = 8.0 Hz), 6.45 (1H, br d, J = 8.0 Hz), 6.35 (1H, br d, J = 8.0 Hz), 3.76 (3H, s), 1.88-1.78 (2H, m), 0.76 (3H, t, J = 7.5 Hz); The exchangeable proton peak of OH group was not clearly detected. ¹³C NMR (CDCl₃) δ 158.8, 158.0, 128.1, 113.6, 109.6, 101.2, 63.9 (t, J = 18 Hz), 55.3, 24.8, 9.5; One carbon peak of N(CD₃)₂ group was not clearly detected due to the presence of rotamer and D-C coupling. MS (EI⁺) m/z 187 (100), 216 (M⁺, 16); HRMS (EI⁺) calcd for C₁₂H₁₂D₇NO₂ (M⁺): 216.1848. Found: 216.1856.

Piperidine derivative (8)

Colorless oil. ¹H NMR (CD₃OD) δ 7.02 (1H, t, J = 8.0 Hz), 6.40 (1H, br dd, J = 8.0, 1.0 Hz), 6.32 (1H, br dd, J = 8.0, 1.0 Hz), 3.92 (1H, dd, J = 8.0, 4.0 Hz), 3.74 (3H, s), 2.65-2.45 (4H, br m), 1.89-1.52 (8H, m), 0.74 (3H, t, J = 7.5 Hz); The exchangeable proton peak of OH group was not clearly detected. ¹³C NMR (CD₃OD) δ 160.0, 159.7, 129.4, 114.5, 110.5, 102.4, 64.6, 55.8, 52.8 (br s), 27.1, 25.2, 24.9, 9.8; MS (EI⁺) m/z 83 (100), 249 (M⁺, 0.1); HRMS (EI⁺) calcd for C₁₅H₂₃NO₂ (M⁺): 249.1729. Found: 249.1738.

Adduct (10) 3)

Colorless oil. ¹H NMR (CDCl₃) δ 7.18 (1H, dt, J = 8.0, 2.0 Hz), 6.96 (1H, dd, J = 7.5, 2.0 Hz), 6.87 (1H, dd, J = 8.0, 1.0 Hz), 6.81 (1H, dt, J = 7.5, 1.0 Hz), 3.43 (1H, br dd, J = 9.5, 4.0 Hz), 2.47 (6H, s), 2.09-1.83 (2H, m), 0.79 (3H, t, J = 7.5 Hz); The exchangeable proton peak of OH group was not clearly detected. ¹³C NMR (CDCl₃) δ 156.5, 129.2, 129.1, 123.3, 119.1, 116.7,

71.7, 42.6, 23.5, 10.8; MS (EI⁺) m/z 84 (100), 179 (M⁺, 0.1); HRMS (EI⁺) calcd for C₁₁H₁₇NO (M⁺): 179.1310. Found: 179.1329.

Isomer (12a)

Colorless oil. ¹H NMR (CDCl₃) δ 6.75-6.68 (2H, m), 6.49 (1H, d, J = 3.0 Hz), 3.74 (3H, s), 3.05 (1H, dd, J = 9.5, 4.0 Hz), 2.33 (6H, s), 1.94-1.84 (1H, m), 1.81-1.69 (1H, m), 0.78 (3H, t, J = 7.5 Hz); The exchangeable proton peak of OH group was not clearly detected. ¹³C NMR (CDCl₃) δ 152.0, 150.8, 126.2, 116.6, 115.3, 112.7, 72.7, 55.7, 43.1, 24.4, 10.9; MS (EI⁺) m/z 84 (100), 209 (M⁺, 8); HRMS (EI⁺) calcd for C₁₂H₁₉NO₂ (M⁺): 209.1416. Found: 209.1431.

Isomer (12b)

Colorless oil. ¹H NMR (CDCl₃) δ 6.88 (1H, d, J = 9.0 Hz), 6.81 (1H, dd, J = 9.0, 3.0 Hz), 6.62 (1H, d, J = 3.0 Hz), 3.77 (3H, s), 3.74 (1H, m), 2.62 (6H, s), 2.01 (2H, m), 0.84 (3H, t, J = 7.5 Hz); The exchangeable proton peak of OH group was not clearly detected. ¹³C NMR (CDCl₃) δ 153.1, 149.4, 121.8, 117.7, 115.0, 114.7, 70.4, 55.8, 42.1, 22.3, 10.8; MS (ESI⁺) m/z 210 (M+H⁺); HRMS (ESI⁺) calcd for C₁₂H₁₉NO₂ (M+H⁺): 210.1494. Found: 210.1491.

Adduct (14)

Yellow solid. mp 85-86 °C (CH₂Cl₂-hexane). Sublimation (ca.80 °C). ¹H NMR (CDCl₃) δ 7.67 (2H, br d, J = 8.5 Hz), 7.34-7.39 (2H, m), 7.26 (1H, m), 7.16 (1H, br s), 3.28 (1H, dd, J = 10.0, 4.0 Hz), 2.38 (6H, s), 2.05-1.95 (1H, m), 1.87-1.76 (1H, m), 0.77 (3H, t, J = 7.5 Hz); The exchangeable proton peak of OH group was not clearly detected. ¹³C NMR (CDCl₃) δ 155.4, 134.2, 128.2, 128.0, 127.6, 127.3, 126.0, 125.8, 122.9, 110.5, 73.2, 43.2, 24.3, 11.2; MS (EI⁺) m/z 200 (100), 229 (M⁺, 21); HRMS (EI⁺) calcd for C₁₅H₁₉NO (M⁺): 229.1467. Found: 229.1454.

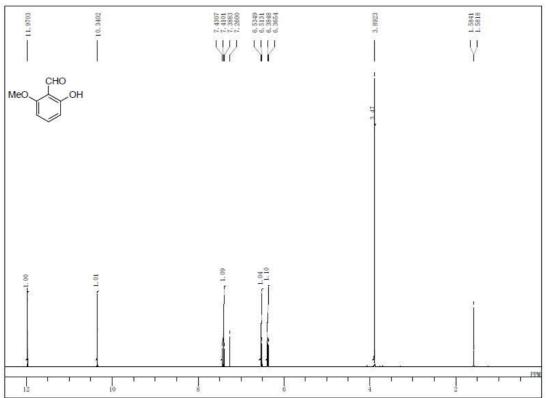
Rearrangement product (15) 4)

Yellow crystals. mp 120-121 °C (benzene-hexane). Sublimation (ca.102 °C). ¹H NMR (CDCl₃) δ 8.44 (1H, s), 7.96 (1H, s, offset by D2O), 7.89 (1H, d, J = 8.0 Hz), 7.76 (1H, d, J = 8.0 Hz), 7.64 (1H, ddd, J = 1.5, 1.5, 7,5 Hz), 7.46 (2H, m); ¹³C NMR (CDCl₃) δ 151.8, 139.5, 135.7, 131.5, 129.6, 127.3, 126.7, 125.8, 119.8 (q, J = 327 Hz),115.1, 114.6; ¹⁹F NMR (CDCl₃) δ -79.3; MS (EI⁺) m/z 115 (100), 276 (M⁺, 87); HRMS (EI⁺) calcd for $C_{11}H_7F_3O_3S$ (M⁺): 276.0068. Found: 276.0068.

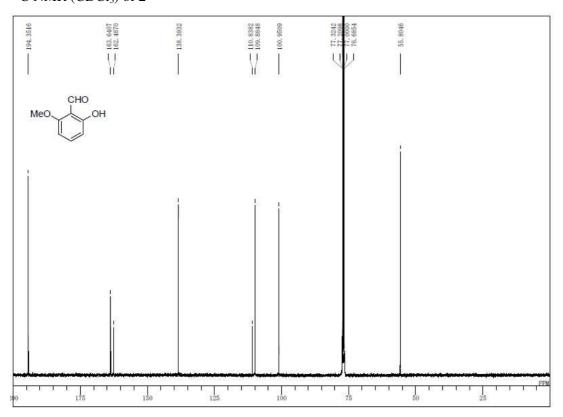
6. Characterization Data of Compound 6 and Corresponding Alcohol 16

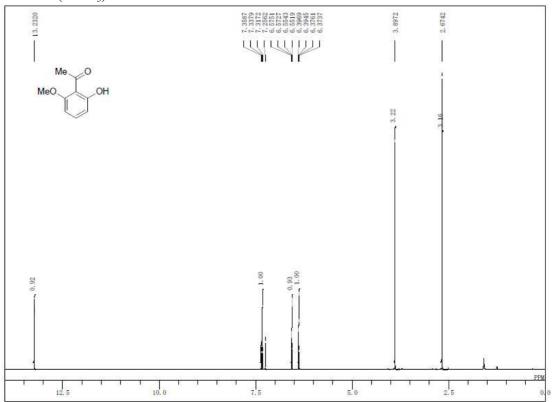
The unstable adduct **6** was easily hydrolyzed into the corresponding alcohol **16** during purification by column chromatography. Thus, the structure of unstable adduct **6** was confirmed by ¹H NMR and low resolution mass. The characterization of alcohol **16** also supported the formation of **6**.

Adduct (6)

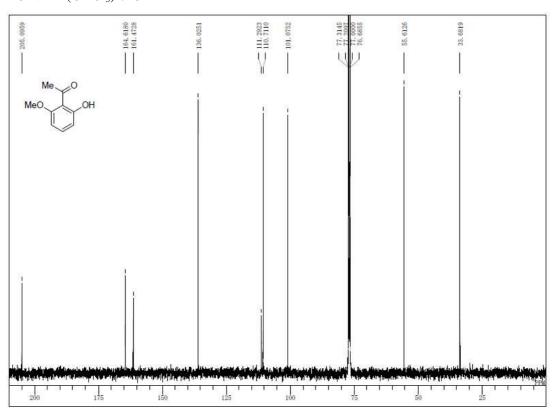

Colorless oil. ¹H NMR (CDCl₃) δ 7.13 (1H, t, J = 8.0 Hz), 6.56 (2H, br t, J = 8.0 Hz), 5.19 (1H, dd, J = 6.5, 3.5 Hz), 3.80 (3H, s), 1.90-1.67 (2H, m), 1.03-0.86 (8H, m); MS (EI⁺) m/z 191 (100), 220 (M⁺, 14).

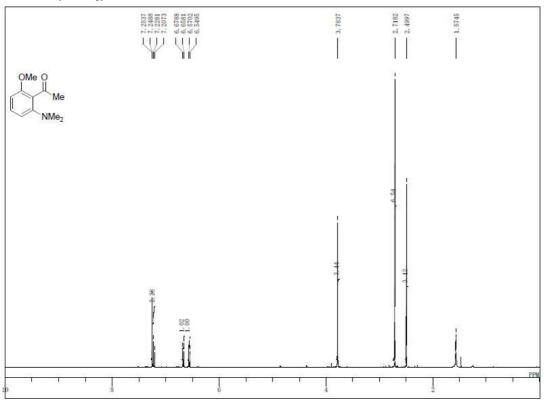
Alcohol (16)⁵⁾

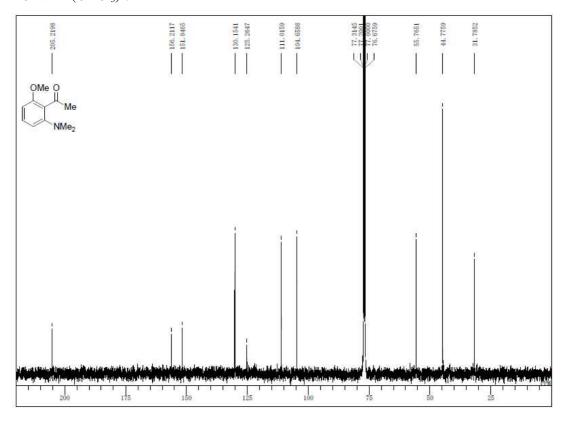

Colorless oil. ¹H NMR (CDCl₃) δ 8.59 (1H, s), 7.09 (1H, t, J = 8.0 Hz), 6.51 (1H, d, J = 8.0 Hz), 6.39 (1H, d, J = 8.0 Hz), 5.32 (1H, t, J = 6.5 Hz), 3.77 (3H, s), 2.49 (1H, br s), 1.92-1.75 (2H, m), 0.99 (3H, t, J = 7.5 Hz); ¹³C NMR (CDCl₃) δ 157.1, 156.6, 128.7, 115.4, 110.2, 101.9, 71.8, 55.5, 29.3, 10.0; MS (EI⁺) m/z 153 (100), 182 (M⁺, 54); HRMS (EI⁺) calcd for C₁₀H₁₄O₃ (M⁺): 182.0943. Found: 182.0962.

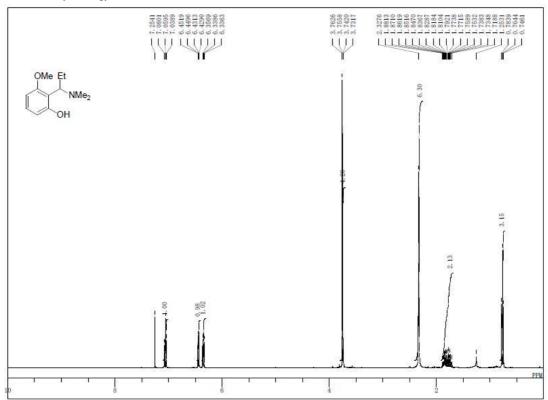

References

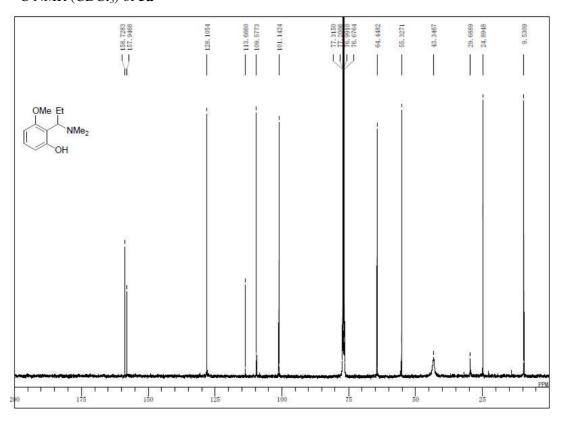
- Haight, A. R.; Bailey, A. E.; Baker, W. S.; Cain, M. H.; Copp, R. R.; DeMattei, J. A.; Ford, K. L.; Henry, R. F.; Hsu, M. C.; Keyes, R. F.; King, S. A.; McLaughlin, M. A.; Melcher, L. M.; Nadler, W. R.; Oliver, P. A.; Parekh, S. I.; Patel, H. H.; Seif, L. S.; Staeger, M. A.; Wayne, G. S.; Wittenberger, S. J.; Zhang, W. Org. Proc. Res. Dev. 2004, 8, 897-902.
- 2) Lau, C. K.; Belanger, Patrice C.; Dufresne, C.; Scheigetz, J. J. Org. Chem. 1987, 52, 1670-1673.
- 3) Davies, R. E.; Haworth, R. D.; Jones, B.; Lamberton, A., H. *J. Chem. Soc.* **1947**, 191-196.
- Dyke, A. M.; Gill, D. M.; Harvey, J. N.; Hester, A. J.; Lloyd-Jones, G. C.; Muñoz, M. P.; Shepperson, I. R. Angew. Chem. Int. Ed. 2008, 47, 5067-5070.
- 5) Revenko, Y. M.; Shamshurin, A. A. Izv. Akad. Nauk Mold. SSR., Ser. Khim. Biol. Nauk 1965, 58-61.

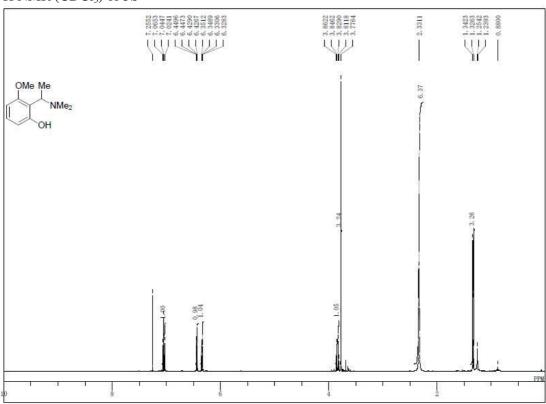


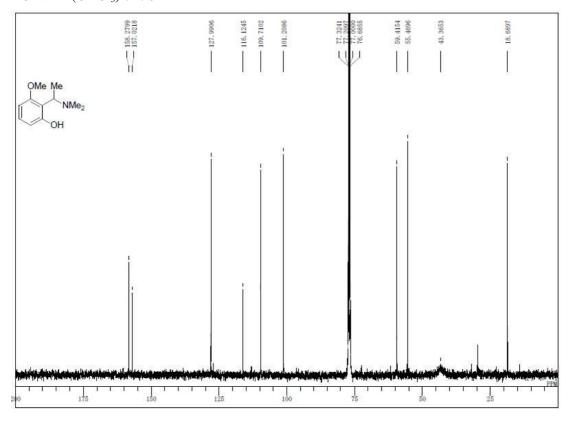

¹³C NMR (CDCl₃) of 2

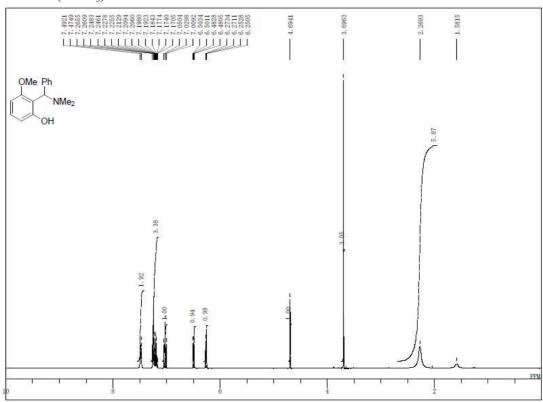


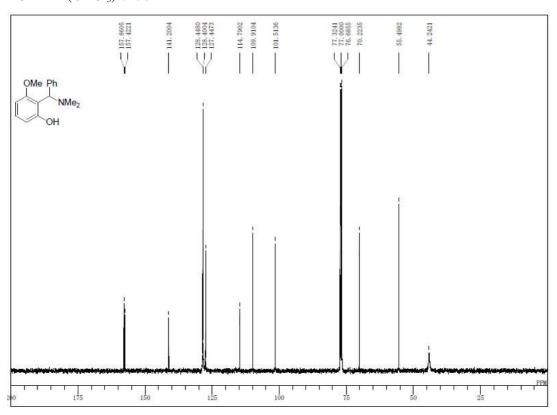

13 C NMR (CDCl₃) of 3

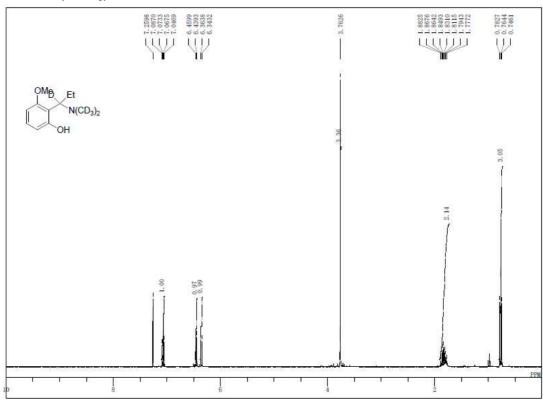


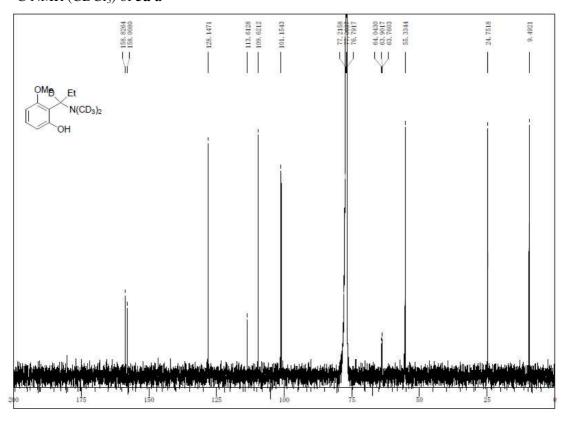

¹³C NMR (CDCl₃) of 4

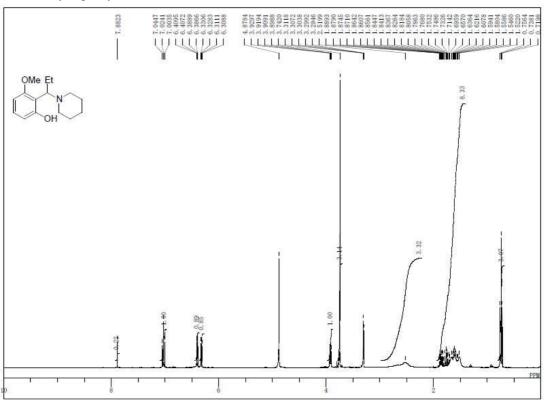


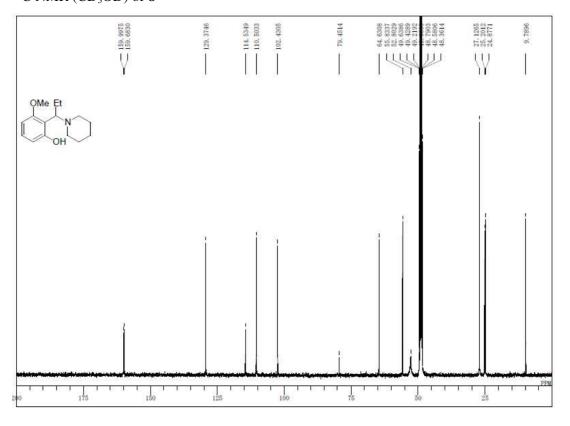

¹³C NMR (CDCl₃) of **5a**

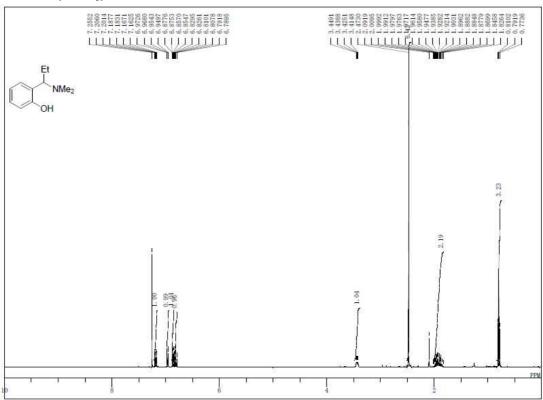


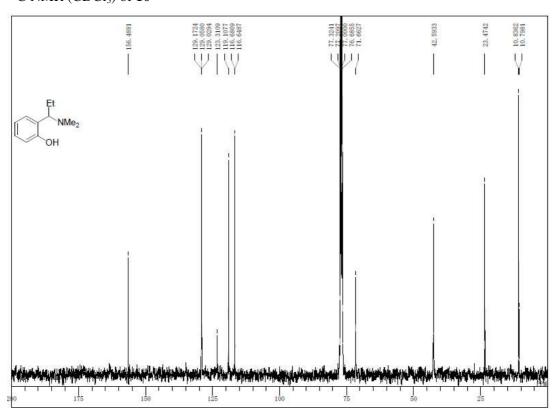

¹³C NMR (CDCl₃) of **5b**

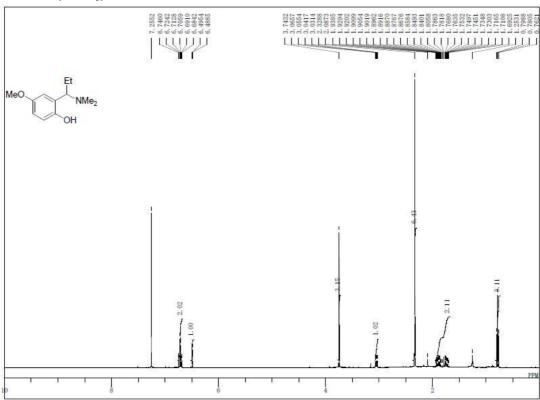



¹³C NMR (CDCl₃) of **5c**

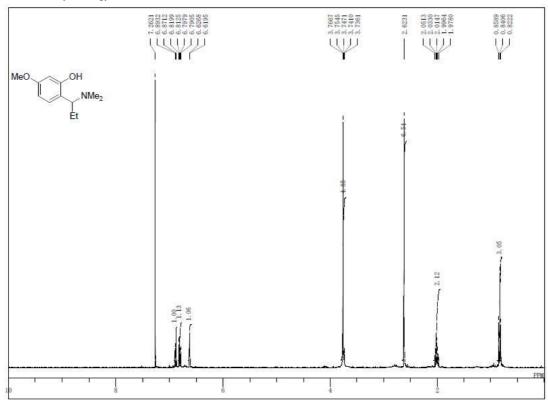


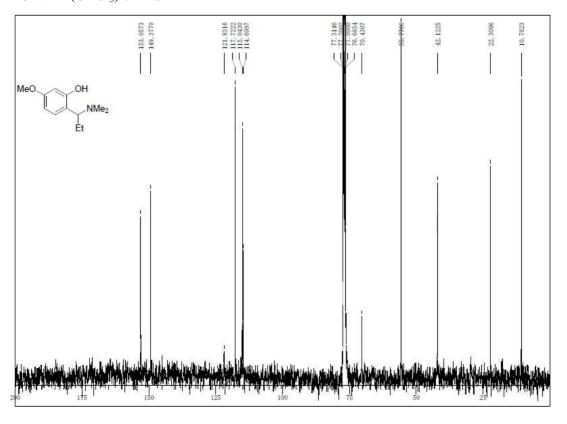

¹³C NMR (CDCl₃) of **5a-d**

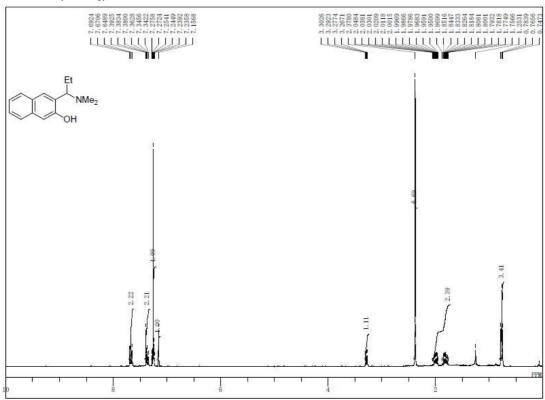


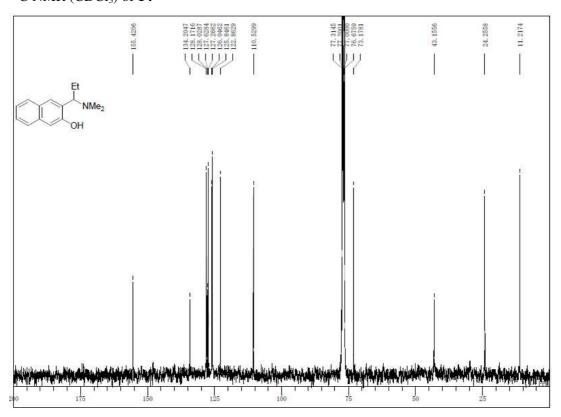

¹³C NMR (CD₃OD) of **8**



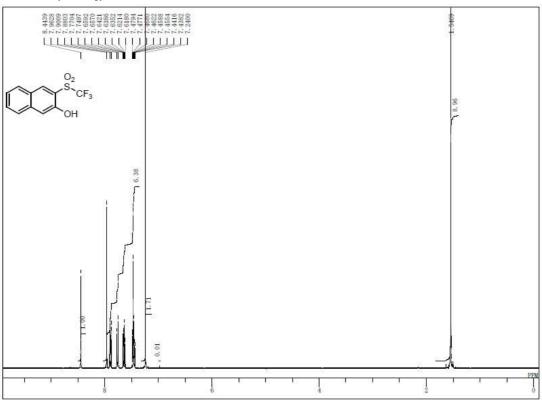

13 C NMR (CDCl₃) of $\mathbf{10}$



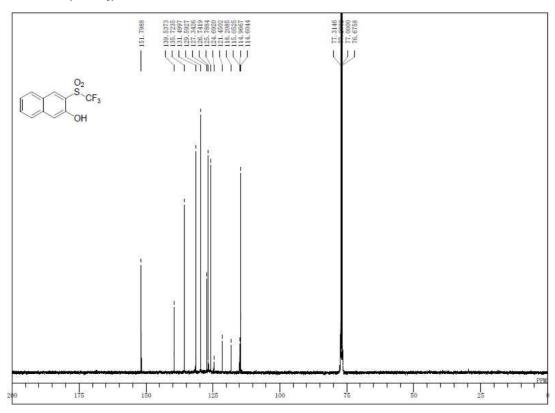

¹³C NMR (CDCl₃) of **12a**

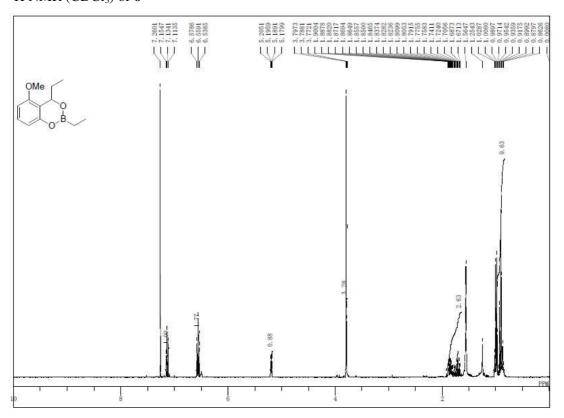


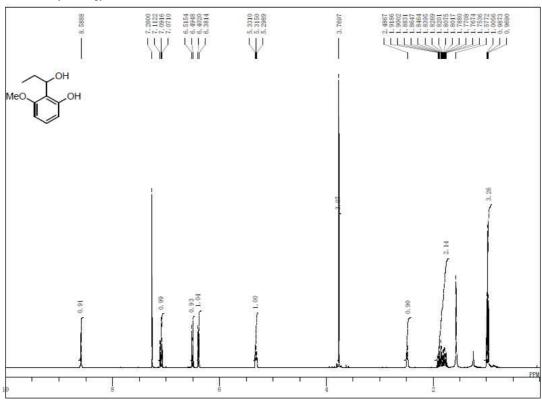
¹³C NMR (CDCl₃) of **12b**



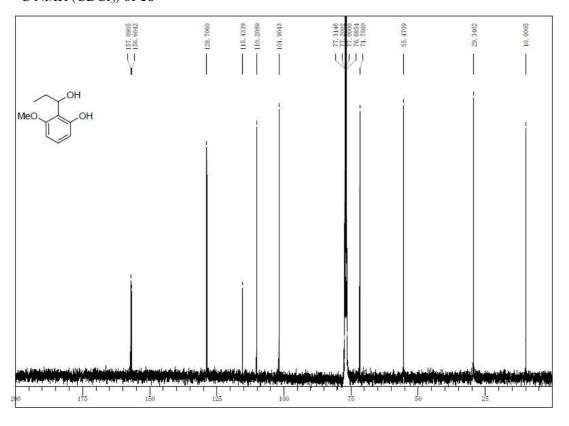
13 C NMR (CDCl₃) of **14**


¹H NMR (CDCl₃) of **15**


 1 H NMR (CDCl₃) of **15** + D₂O



¹³C NMR (CDCl₃) of **15**



¹H NMR (CDCl₃) of **6**

¹³C NMR (CDCl₃) of **16**

