Sequential Reaction of Arynes via Insertion into the π-Bond of Amides and Trapping Reaction with Dialkylzincs

Eito Yoshioka, Shigeru Kohtani, and Hideto Miyabe *

School of Pharmacy, Hyogo University of Health Sciences, Minatojima, Chuo-ku, Kobe 650-8530, Japan.
miyabe@huhs.ac.jp

Table of contents

Results of calculation studies on possible intermediates A-C: S2.
Experimental procedure for reaction of aryne precursor $\mathbf{1}$ with DMF or DMA: S4.
Characterization data of obtained compounds 2-4: S5.
General procedure for trapping reaction using dialkylzincs: S6.
Experimental procedure for trapping reaction using 1-formylpiperidine 7: S6.
Characterization data of obtained compounds 5a-c, 6, 5a-d, 8, 10, 12a, 12b, 14, and 15: S7.
Characterization data of compound $\mathbf{6}$ and corresponding alcohol 16: S10.
References: S11.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of obtained compounds 2-4, 5a-c, 6, 5a-d, 8, 10, 12a, 12b, 14, and 16: S12.

Results of Calculation Studies on Possible Intermediates A-C.

Calculation studies were performed on Hartree-Fock 6-311G* by using Spartan'08 Essential Edition (WAVEFUNCTION, INC).

System	Bond Length ($\mathrm{C} 2^{\prime}$ and O atom at C 1)	Dihedral Angle (C3-C2 and C2'-N)	Energy (au)
A	$1.501 \AA$		-590.461743
B	2.675 A	-21.41°	-590.486051
C	2.906 A	-163.29°	-590.488774
D	1.908 A		-590.450099
E		-93.80°	-590.461818
3-Methoxybenzyne			-343.343682
DMF			-247.045380

The four-membered intermediate \mathbf{A}

The quinone methide E-form \mathbf{B}

The quinone methide Z-form \mathbf{C}

Transition state D

Transition state \mathbf{E}

Experimental Section

General. Melting points were taken on a BUCHI B-540 or Yanaco MP-J3 and are uncorrected. Infrared spectra were measured on a JASCO FT/IR-4100. ${ }^{1}$ H-NMR spectra were measured on a JEOL ECX-400 PSK (400 MHz) or Varian NMRS $600(600 \mathrm{MHz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were measured on a JEOL ECX-400 PSK (101 MHz) or Varian NMRS $600(126 \mathrm{MHz})$ with CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ as an internal standard (77.0 or 49.0 ppm , respectively). ${ }^{19} \mathrm{~F}$-NMR spectra were measured on a JEOL ECX-400 PSK (376 MHz) with $\mathrm{C}_{6} \mathrm{~F}_{6}$ as an internal standard (-162.2 ppm). Low and high resolution mass spectra (EI-MS, CI-MS, ESI-MS and HRMS) were obtained by use of a Hitachi M-4100 GC/MS spectrometer or Thermo Fisher Scientific Exactive LC/MS spectrometer. Elemental analyses were measured on Yanaco CHN CORDER MT-5. For silica gel column chromatography, SiliCycle Inc. SiliaFlash F60 was used. The anhydrous TBAF was prepared from TBAF $3 \mathrm{H}_{2} \mathrm{O}$ by heating the hydrate at $40^{\circ} \mathrm{C}$ for 6 hours, at $60^{\circ} \mathrm{C}$ for 12 hours, at $80^{\circ} \mathrm{C}$ for 6 hours, and then at $120^{\circ} \mathrm{C}$ for 12 hours under reduced pressure. The prepared anhydrous TBAF was used as a solution by addition of appropriate solvent such as DMF, $\mathrm{CH}_{3} \mathrm{CN}$, and so on. Products $\mathbf{2},{ }^{1)} 3,{ }^{2} \mathbf{1 0},{ }^{3)} \mathbf{1 5},{ }^{4}$ and $\mathbf{1 6}^{5}$ are known compounds.

1. Experimental Procedure for Reaction of Aryne Precursor 1 with DMF (Table 1).

(1) For the reactions using the 3.0 or 10 equiv. of DMF, see: To a solution of 3-methoxy-2-(trimethylsilyl)phenyl triflate $\mathbf{1}(53 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and DMF (0.60 mmol or 2.0 mmol) in $\mathrm{CH}_{3} \mathrm{CN}$, THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, or $\mathrm{CH}_{3} \mathrm{OH}(1.4 \mathrm{~mL}$) was added TBAF (1.0 M solution in corresponding solvent, $0.60 \mathrm{~mL}, 0.60 \mathrm{mmol}$) under argon atmosphere at room temperature. After stirring at the same temperature for 3 hours, $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ was added to the reaction mixture. The reaction mixture was concentrated under reduced pressure. Purification of the residue by flash silica gel column chromatography (AcOEt:hexane $=1: 20-1: 8$ with $2 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the product 2.
(2) For the reactions using DMF as a solvent, see: To a solution of TBAF, CsF, TBAHF 2 , or TBAT (0.60 mmol) in DMF $(1.2 \mathrm{~mL})$ was added a solution of 3-methoxy-2-(trimethylsilyl)phenyl triflate $\mathbf{1}(53 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ in DMF $(0.8 \mathrm{~mL})$ under argon atmosphere at room temperature. After stirring at the same temperature for 3 hours, $\mathrm{H}_{2} \mathrm{O}(0.1$ mL) was added to the reaction mixture. The reaction mixture was concentrated under reduced pressure. Purification of the residue by flash silica gel column chromatography (AcOEt:hexane $=1: 20-1: 8$ with $2 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the product 2 .

2. Reaction of Aryne Precursor 1 with DMA (Scheme 1).

To a solution of TBAF ($157 \mathrm{mg}, 0.60 \mathrm{mmol}$) in DMA $(1.2 \mathrm{~mL})$ was added a solution of 3-methoxy-2-(trimethylsilyl)phenyl triflate $1(53 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ in DMA (0.8 mL) under argon atmosphere at room temperature. After stirring at the same temperature for 3 hours, $\mathrm{H}_{2} \mathrm{O}(0.1$ mL) was added to the reaction mixture. The reaction mixture was concentrated under reduced pressure. Purification of the residue by flash silica gel column chromatography (AcOEt:hexane $=1: 20-1: 8$ with $2 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the products $2(11.3 \mathrm{mg}, 34 \%)$ and $4(3.8 \mathrm{mg}, 10 \%)$.

3. Characterization Data of Obtained Compounds 2-4:

Aldehyde (2) ${ }^{1)}$

Colorless crystals. mp 73.5-74.5 ${ }^{\circ} \mathrm{C}$ (AcOEt-hexane). IR $\left(\mathrm{CHCl}_{3}\right) 1646 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 11.97(1 \mathrm{H}, \mathrm{s}), 10.34(1 \mathrm{H}, \mathrm{s}), 7.41(1 \mathrm{H}, \mathrm{dd}, J=8.0,8.5 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.38(1 \mathrm{H}$, $\mathrm{d}, J=8.0 \mathrm{~Hz}), 3.89(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 194.5,163.6,162.5,138.4,110.8,109.9,101.0$, 55.8; MS (EI') m/z $84(100), 153\left(\mathrm{M}+\mathrm{H}^{+}, 9\right)$; HRMS $\left(\mathrm{EI}^{+}\right)$calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right): 153.0552$. Found: 153.0553; Elemental analysis (\%) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}: \mathrm{C}, 63.15 ; \mathrm{H}, 5.30 ; \mathrm{O}, 31.55$, found: C, 63.14, H, 5.32.

Ketone (3) ${ }^{2)}$

Colorless crystals. mp 57-57.5 ${ }^{\circ} \mathrm{C}$ (AcOEt-hexane). IR $\left(\mathrm{CHCl}_{3}\right) 1623 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $13.23(1 \mathrm{H}, \mathrm{s}), 7.33(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}), 6.39(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.0$ $\mathrm{Hz}), 3.90(3 \mathrm{H}, \mathrm{s}), 2.67(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 205.1,164.6,161.5,136.0,111.3,110.7$, 101.1, 55.6, 33.7; MS (EI^{+}) $m / z 83$ (100), $166\left(\mathrm{M}^{+}, 3\right)$; HRMS $\left(\mathrm{EI}^{+}\right)$calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 166.0630. Found: 166.0646.

Ketone (4)

4
Colorless oil. IR $\left(\mathrm{CHCl}_{3}\right) 1702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.23(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.67(1 \mathrm{H}$, br d, $J=8.0 \mathrm{~Hz}), 6.56(1 \mathrm{H}$, br d, $J=8.0 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.72(6 \mathrm{H}, \mathrm{s}), 2.50(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 205.2,156.2,151.8,130.2,125.3,111.0,104.7,55.8,44.8,31.8 ; \mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z} 83$ (100), $193\left(\mathrm{M}^{+}, 0.4\right)$; HRMS (EI $)$ calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$: 193.1103. Found: 193.1121.

4. General Procedure for Trapping Reaction Using Dialkylzincs.

To a suspension of $\operatorname{CsF}(91 \mathrm{mg}, 0.60 \mathrm{mmol})$ in DMF $(1.2 \mathrm{~mL})$ was added a solution of aryne precursor $\mathbf{1}, \mathbf{9}, \mathbf{1 1}$, or $\mathbf{1 3}(0.20 \mathrm{mmol})$ in DMF (0.8 mL) under argon atmosphere at room temperature. After stirring at the same temperature for 15 minutes, $\mathrm{Et}_{2} \mathrm{Zn}(1.05 \mathrm{M}$ in hexane, $0.95 \mathrm{~mL}, 1.0 \mathrm{mmol}), \mathrm{Me}_{2} \mathrm{Zn}(1.0 \mathrm{M}$ in hexane, $1.0 \mathrm{~mL}, 1.0 \mathrm{mmol})$, or $\mathrm{Ph}_{2} \mathrm{Zn}(220 \mathrm{mg}, 1.0$ mmol) was added to the reaction mixture at room temperature. After stirring at the same temperature for 12 hours, $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ was added to the reaction mixture. The reaction mixture was concentrated under reduced pressure. Purification of the residue by flash silica gel column chromatography (AcOEt:hexane $=1: 20-1: 0$ with $2 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the products 5a-c, 5a-d, 10, 12a, 12b, 14, and 15.

5. Experimental Procedure for Trapping Reaction Using 1-Formylpiperidine 7.

To a solution of TBAF ($157 \mathrm{mg}, 0.60 \mathrm{mmol}$) and 1-formylpiperidine 7 in $\mathrm{CH}_{3} \mathrm{CN}(1.2 \mathrm{~mL})$ was added a solution of 3-methoxy-2-(trimethylsilyl)phenyl triflate $\mathbf{1}\left(53 \mu \mathrm{~L}, 0.20 \mathrm{mmol}\right.$) in $\mathrm{CH}_{3} \mathrm{CN}$ $(0.8 \mathrm{~mL})$ under argon atmosphere at room temperature. After stirring at the same temperature for 15 minutes, $\mathrm{Et}_{2} \mathrm{Zn}(1.05 \mathrm{M}$ in hexane, $0.95 \mathrm{~mL}, 1.0 \mathrm{mmol})$ was added to the reaction mixture. After stirring at the same temperature for 12 hours, $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ was added to the reaction mixture. The reaction mixture was concentrated under reduced pressure. Purification of the residue by flash silica gel column chromatography (AcOEt :hexane $=1: 20-1: 0$ with $2 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the product $\mathbf{8}$ ($20.1 \mathrm{mg}, 40 \%$).

6. Characterization Data of Obtained Compounds 5a-c, 5a-d, 8, 10, 12a, 12b, 14, and 15.

Ethylated Product (5a)

Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.06(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.44(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}), 6.35$ $(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{m}), 2.33(6 \mathrm{H}, \mathrm{s}), 1.88-1.72(2 \mathrm{H}, \mathrm{m}), 0.76(3 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}$); The exchangeable proton peak of OH group was not clearly detected. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.7,157.9,128.1,113.7,109.6,101.1,64.4,55.3,43.3$ (br s), 24.9, 9.5; MS (EI $)$ $m / z 153$ (100), $209\left(\mathrm{M}^{+}, 13\right)$; HRMS (EI^{+}) calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right): 209.1416$. Found: 209.1421.

Methylated Product (5b)

Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.04(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.44(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}), 6.34$ $(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}), 3.84(1 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.33(6 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{d}, J=$ $6.5 \mathrm{~Hz})$; The exchangeable proton peak of OH group was not clearly detected. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $158.3,157.0,128.0,116.1,109.7,101.2,59.4,55.5,43.4$ (br s), 18.7; MS (EI') m/z 180 (100), $195\left(\mathrm{M}^{+}, 51\right)$; HRMS (EI^{+}) calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$: 195.1259. Found: 195.1275.

Phenylated Product (5c)

Colorless crystals. mp $150-151^{\circ} \mathrm{C}$ (AcOEt-hexane). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.48(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.0$ $\mathrm{Hz}), 7.27-7.17(3 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.49(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{dd}, J$ $=8.0,1.0 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{s}), 3.70(3 \mathrm{H}, \mathrm{s}), 2.27(6 \mathrm{H}, \mathrm{br} \mathrm{s})$; The exchangeable proton peak of OH group was not clearly detected. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.9,157.4,141.2,128.4$ (2C), 127.4, 114.8, $109.9,101.5,70.2,55.5,44.2(\mathrm{br} \mathrm{s})$; One carbon peak was missing due to overlapping. MS (EI ${ }^{+}$) $m / z 211$ (100), $257\left(\mathrm{M}^{+}, 37\right)$; HRMS (EI^{+}) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right): 257.1416$. Found:
257.1431; Elemental analysis (\%) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 74.68; H, 7.44; N, 5.44; O, 12.44, found: C, 74.68, H, 7.44, N, 5.44.

Deuterated Product (5a-d)

Colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.07(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.45(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.35(1 \mathrm{H}$, br d, $J=8.0 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 1.88-1.78(2 \mathrm{H}, \mathrm{m}), 0.76(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$; The exchangeable proton peak of OH group was not clearly detected. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.8,158.0,128.1,113.6$, 109.6, 101.2, $63.9(\mathrm{t}, J=18 \mathrm{~Hz}), 55.3,24.8,9.5$; One carbon peak of $\mathrm{N}\left(\mathrm{CD}_{3}\right)_{2}$ group was not clearly detected due to the presence of rotamer and D-C coupling. MS (EI $) \mathrm{m} / \mathrm{z} 187$ (100), 216 ($\mathrm{M}^{+}, 16$); HRMS (EI^{+}) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{D}_{7} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right):$216.1848. Found: 216.1856.

Piperidine derivative (8)

8
Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.02(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.40(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz})$, $6.32(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}), 3.92(1 \mathrm{H}, \mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}), 3.74(3 \mathrm{H}, \mathrm{s}), 2.65-2.45(4 \mathrm{H}$, br $\mathrm{m}), 1.89-1.52(8 \mathrm{H}, \mathrm{m}), 0.74(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$; The exchangeable proton peak of OH group was not clearly detected. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 160.0,159.7,129.4,114.5,110.5,102.4,64.6,55.8$, 52.8 (br s), 27.1, 25.2, 24.9, 9.8; MS (EI $) m / z 83$ (100), $249\left(\mathrm{M}^{+}, 0.1\right.$); HRMS (EI^{+}) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right): 249.1729$. Found: 249.1738 .

Adduct (10) ${ }^{3)}$

Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.18(1 \mathrm{H}, \mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{dd}, J=7.5,2.0 \mathrm{~Hz})$, $6.87(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=9.5,4.0 \mathrm{~Hz})$, $2.47(6 \mathrm{H}, \mathrm{s}), 2.09-1.83(2 \mathrm{H}, \mathrm{m}), 0.79(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$; The exchangeable proton peak of OH group was not clearly detected. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 156.5,129.2,129.1,123.3,119.1,116.7$,
71.7, 42.6, 23.5, 10.8; MS (EI $\left.{ }^{+}\right) m / z 84(100), 179\left(\mathrm{M}^{+}, 0.1\right) ; \operatorname{HRMS}\left(\mathrm{EI}^{+}\right)$calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}$ $\left(\mathrm{M}^{+}\right):$179.1310. Found: 179.1329.

Isomer (12a)

12a
Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.75-6.68(2 \mathrm{H}, \mathrm{m}), 6.49(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.05$ $(1 \mathrm{H}, \mathrm{dd}, J=9.5,4.0 \mathrm{~Hz}), 2.33(6 \mathrm{H}, \mathrm{s}), 1.94-1.84(1 \mathrm{H}, \mathrm{m}), 1.81-1.69(1 \mathrm{H}, \mathrm{m}), 0.78(3 \mathrm{H}, \mathrm{t}, J=$ 7.5 Hz); The exchangeable proton peak of OH group was not clearly detected. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 152.0, 150.8, 126.2, 116.6, 115.3, 112.7, 72.7, 55.7, 43.1, 24.4, 10.9; MS (EI') m/z 84 (100), 209 $\left(\mathrm{M}^{+}, 8\right)$; HRMS (EI^{+}) calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$: 209.1416. Found: 209.1431.

Isomer (12b)

12b
Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.88(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}), 6.62$ $(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{m}), 2.62(6 \mathrm{H}, \mathrm{s}), 2.01(2 \mathrm{H}, \mathrm{m}), 0.84(3 \mathrm{H}, \mathrm{t}, J=7.5$ Hz); The exchangeable proton peak of OH group was not clearly detected. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 153.1, 149.4, 121.8, 117.7, 115.0, 114.7, 70.4, 55.8, 42.1, 22.3, 10.8; MS (ESI') m/z 210 $\left(\mathrm{M}+\mathrm{H}^{+}\right)$; $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 210.1494. Found: 210.1491.

Adduct (14)

14
Yellow solid. mp $85-86^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane). Sublimation (ca. $\left.80{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.67$ $(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.34-7.39(2 \mathrm{H}, \mathrm{m}), 7.26(1 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.28(1 \mathrm{H}, \mathrm{dd}, J=10.0$, $4.0 \mathrm{~Hz}), 2.38(6 \mathrm{H}, \mathrm{s}), 2.05-1.95(1 \mathrm{H}, \mathrm{m}), 1.87-1.76(1 \mathrm{H}, \mathrm{m}), 0.77(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$; The exchangeable proton peak of OH group was not clearly detected. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 155.4, 134.2, 128.2, 128.0, 127.6, 127.3, 126.0, 125.8, 122.9, 110.5, 73.2, 43.2, 24.3, 11.2; MS (EI^{+}) m/z 200 (100), $229\left(\mathrm{M}^{+}, 21\right)$; HRMS (EI^{+}) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}\left(\mathrm{M}^{+}\right): ~ 229.1467$. Found: 229.1454.

Rearrangement product (15) ${ }^{\text {4) }}$

15
Yellow crystals. mp $120-121{ }^{\circ} \mathrm{C}$ (benzene-hexane). Sublimation (ca. $102{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.44(1 \mathrm{H}, \mathrm{s}), 7.96(1 \mathrm{H}, \mathrm{s}$, offset by D2O), $7.89(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $7.64(1 \mathrm{H}, \mathrm{ddd}, J=1.5,1.5,7,5 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 151.8,139.5,135.7$, 131.5, 129.6, 127.3, 126.7, 125.8, $119.8(\mathrm{q}, J=327 \mathrm{~Hz}), 115.1,114.6 ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-79.3$; MS (EI^{+}) m/z $115(100), 276\left(\mathrm{M}^{+}, 87\right) ; \mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right): 276.0068$. Found: 276.0068.

6. Characterization Data of Compound 6 and Corresponding Alcohol 16

The unstable adduct 6 was easily hydrolyzed into the corresponding alcohol 16 during purification by column chromatography. Thus, the structure of unstable adduct $\mathbf{6}$ was confirmed by ${ }^{1} \mathrm{H}$ NMR and low resolution mass. The characterization of alcohol $\mathbf{1 6}$ also supported the formation of 6 .

Adduct (6)

6
Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.13(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.56(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8.0 \mathrm{~Hz}), 5.19(1 \mathrm{H}$, $\mathrm{dd}, J=6.5,3.5 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 1.90-1.67(2 \mathrm{H}, \mathrm{m}), 1.03-0.86(8 \mathrm{H}, \mathrm{m}) ; \mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z} 191$ (100), $220\left(\mathrm{M}^{+}, 14\right)$.

Alcohol (16) ${ }^{5)}$

16
Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.59(1 \mathrm{H}, \mathrm{s}), 7.09(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $6.39(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.32(1 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.92-1.75(2 \mathrm{H}$, m), $0.99(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 157.1,156.6,128.7,115.4,110.2,101.9,71.8$, 55.5, 29.3, 10.0; MS (EI') m/z 153 (100), $182\left(\mathrm{M}^{+}, 54\right)$; HRMS (EI^{+}) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 182.0943. Found: 182.0962.

References

1) Haight, A. R.; Bailey, A. E.; Baker, W. S.; Cain, M. H.; Copp, R. R.; DeMattei, J. A.; Ford, K. L.; Henry, R. F.; Hsu, M. C.; Keyes, R. F.; King, S. A.; McLaughlin, M. A.; Melcher, L. M.; Nadler, W. R.; Oliver, P. A.; Parekh, S. I.; Patel, H. H.; Seif, L. S.; Staeger, M. A.; Wayne, G. S.; Wittenberger, S. J.; Zhang, W. Org. Proc. Res. Dev. 2004, 8, 897-902.
2) Lau, C. K.; Belanger, Patrice C.; Dufresne, C.; Scheigetz, J. J. Org. Chem. 1987, 52, 1670-1673.
3) Davies, R. E.; Haworth, R. D.; Jones, B.; Lamberton, A.. H. J. Chem. Soc. 1947, 191-196.
4) Dyke, A. M.; Gill, D. M.; Harvey, J. N.; Hester, A. J.; Lloyd-Jones, G. C.; Muñoz, M. P.; Shepperson, I. R. Angew. Chem. Int. Ed. 2008, 47, 5067-5070.
5) Revenko, Y. M.; Shamshurin, A. A. Izv. Akad. Nauk Mold. SSR., Ser. Khim. Biol. Nauk 1965, 58-61.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{2}$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)$ of 2

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{3}$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{3}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of 4

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{4}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{5 a}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{5 a}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{5 b}$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{5 b}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{5 c}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{5 c}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{5 a}-\boldsymbol{d}$
(10)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of 5a-d

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{8}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{8}$
(1)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2 a}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2 a}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2 b}$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2 b}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 4}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 4}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 5}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 5}+\mathrm{D}_{2} \mathrm{O}$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 5}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of 6

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 6}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 6}$

