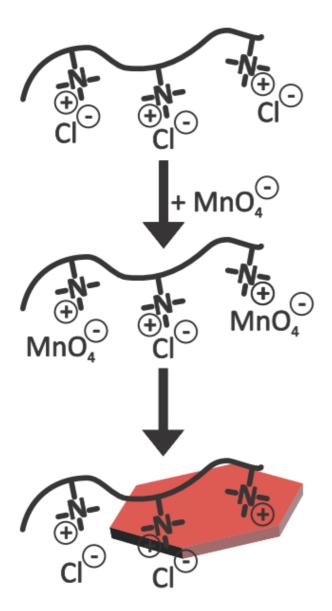
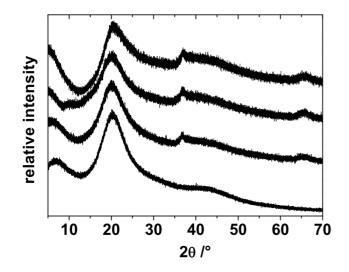
Formation of Ultrathin Birnessite-Type Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes

Supplementary Material

Frank Polzer, § Daniel A. Kunz, [‡] Josef Breu, [‡] Matthias Ballauff^{§*}


[§]Helmholtz-Zentrum Berlin f
ür Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany, and Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany.

[‡] Department of Inorganic Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany


(Matthias.Ballauff@helmholtz-berlin.de)

RECEIVED DATE (Jan 22, 2010)

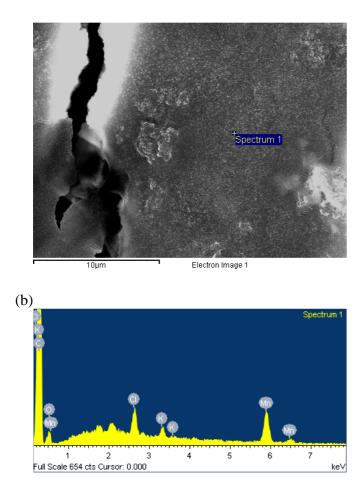


Figure S1. Proposed mechanism for the MnO_2NP generation at SPB. By adding KMnO₄ solution to the SPB dispersion, a pTMAEMC/MnO₄ precursor is formed which gets instantly reduced inside the brush layer. As a consequence, birnessite-type MnO₂NP (red hexagon) are generated which are stabilized by the polyelectrolyte chains of the SPBs.

Figure S2. PXRD patterns of the bare SPB pTMAEMC-40 and the composite systems SPB-MnO₂-5, SPB-MnO₂-8 and SPB-MnO₂-9 from undermost to uppermost curve. The *hk*-bands of the composite systems refer to the birnessite nano-needles that exhibit only a 2D order within the *ab*-layer plane.

Figure S3. (a) SEM image of the sample SPB-MnO₂-8 and (b) the corresponding EDX pattern that indicates the formation of the MnO_2NP with K⁺ ions inside the interlayers of birnessite.