Supporting information for: On the Acid-Base Mechanism for Ruthenium Water Oxidation Catalysts

Lee-Ping Wang $,^{\dagger}\,$ Qin Wu $,^{\ddagger}$ and $\,$ Troy Van Voorhis *,†

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139, and Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973.

E-mail: tvan@mit.edu

Full citations for Gaussian 03 and Q-Chem in the original paper are provided in the Bibliography. (Refs. 4 and 5)

References

- (1) Baik, M. H.; Friesner, R. A. J. Phys. Chem. A 2002, 106, 7407–7412.
- (2) Dovletoglou, A.; Adeyemi, S. A.; Meyer, T. J. Inorg. Chem. 1996, 35, 4120-4127.
- (3) Masllorens, E.; Rodriguez, M.; Romero, I.; Roglans, A.; Parella, T.; Benet-Buchholz, J.; Poyatos, M.; Llobet, A. J. Am. Chem. Soc. **2006**, *128*, 5306–5307.
- (4) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;

^{*}To whom correspondence should be addressed

[†]Massachusetts Institute of Technology

[‡]Brookhaven National Laboratory

Figure S1: Correlation diagram of calculated and experimental redox potentials for various organic molecules and metallocenes as reported in Baik and Friesner.¹ No linear fit was performed. $R^2 = 0.98$, MAE = 0.150V

Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;

No.	Complex	Couple	E_{calc}°	E_{expt}°	
1	Anthracene	-1/0	-1.692	-1.679	
2	Azobenzene	-1/0	-1.072	-1.119	
3	Benzophenone	-1/0	-1.528	-1.639	
4	Nitrobenzene	-1/0	-0.775	-0.909	
5	TCNQ	-2/-1	-0.247	-0.049	
6	TCNQ	-1/0	0.641	0.361	
7	TTF	0/+1	0.366	0.541	
8	TTF	+1/+2	1.248	0.901	
9	FeCp(H ₃ COC) ₂	0/+1	1.133	0.981	
10	FeCp ₂	0/+1	0.544	0.548	
11	FeCp*2	0/+1	-0.098	0.141	
12	CoCp ₂	0/+1	-0.634	-0.669	
13	Cr(Me ₃ Ph) ₂	0/+1	-0.697	-0.739	
14	FeCpPh	0/+1	-1.013	-1.119	
15	CoCp*2	0/+1	-1.300	-1.189	
16	FeCpPh*	0/+1	-1.340	-1.329	
17	FeCp*Ph*	0/+1	-1.347	-1.609	
18	RhCp ₂	-1/0	-2.067	-1.939	
19	RhCp ₂	0/+1	-1.058	-1.169	
20	CrCp*2	-1/0	-1.512	-2.059	
21	CrCp*2	0/+1	-1.131	-0.799	
22	MnCp*2	-1/0	-2.073	-2.259	
23	MnCp*2	0/+1	-0.420	-0.319	
24	RuCp*2	0/+1	0.714	0.791	
25	OsCp*2	0/+1	0.712	0.701	

Table S1: Redox potentials of relevant half-reactions vs. NHE. All potentials are standardized to pH 0 by applying a -0.059V/pH correction. For compounds 1 through 19, see Baik and Friesner.¹

Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03, Revision C.02*, Gaussian, Inc., Wallingford, CT, 2004.

(5) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill, D. P.; DiStasio, R. A.; Lochan, R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Voorhis, T. V.; Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C. P.; Kedziora, G.; Khalli-

Figure S2: Correlation diagram and linear fit of calculated and experimental redox potentials for various Ru-OH2 coordination complexes. $R^2 = 0.55$, MAE = 0.110V

ulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett, A. C.; Subotnik, J. E.; Woodcock, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. *Phys. Chem. Chem. Phys.* **2006**, *8*, 3172–3191.

Table S2: Redox potentials of relevant half-reactions vs. NHE. All potentials are standardized to pH 0 by applying a -0.059V/pH correction. For compounds 1 through 19, see Dovletoglou and Meyer.² For compounds 20 through 22, see Masllorens and coworkers.³

No.	Complex	$E_{calc}^{\circ,II/III}$	$E_{expt}^{\circ,II/III}$	$E_{calc}^{\circ,III/IV}$	$E_{expt}^{\circ,III/IV}$
1	$[Ru(tpy)(acac)(H_2O)]^{2+}$	0.617	0.840	1.030	1.210
2	$[Ru(tpy)(C_2O_4)(H_2O)]^{2+}$	0.456	0.810	0.939	1.100
3	$[Ru(tpy)(H_2O)_3]^{2+}$	0.747	0.823	1.117	1.113
4	<i>trans</i> -[Ru(tpy)(pic)(H ₂ O)] ²⁺	0.679	0.860	1.002	1.100
5	cis-[Ru(tpy)(pic)(H ₂ O)] ²⁺	0.813	1.030	1.134	1.210
6	cis-[Ru(6,6'Me ₂ (bpy) ₂ (H ₂ O) ₂] ²⁺	0.917	1.043	1.177	1.203
7	$[Ru(tpy)(tmen)(H_2O)]^{2+}$	0.849	1.010	1.207	1.240
8	$[Ru(tpy)(phen)(H_2O)]^{2+}$	0.923	1.150	1.252	1.250
9	cis-[Ru(bpy) ₂ (py)(H ₂ O)] ²⁺	0.853	1.070	1.321	1.180
10	$[Ru(tpy)(bpy)(H_2O)]^{2+}$	0.937	1.140	1.250	1.270
11	$[Ru(tpy)(4,4'-CO_2Et)_2(bpy)(H_2O)]^{2+}$	1.036	1.310	1.259	1.450
12	$[Ru(tpy)(4,4'-Me2-bpy)(H_2O)]^{2+}$	0.938	1.120	1.231	1.260
13	cis-[Ru(bpy) ₂ (AsPh ₃)(H ₂ O)] ²⁺	0.785	1.150	1.184	1.320
14	cis-[Ru(bpy)(biq)(PEt ₃)(H ₂ O)] ²⁺	0.842	1.100	1.151	1.280
15	$[Ru(tpm)(4,4'-(NO_2)_2(bpy)(H_2O)]^{2+}$	1.059	1.210	1.403	1.400
16	cis-[Ru(bpy) ₂ (PEt ₃)(H ₂ O)] ²⁺	0.884	1.110	1.197	1.320
17	cis-[Ru(bpy)(biq)(PPh ₃)(H ₂ O)] ²⁺	0.836	1.130	1.010	1.350
18	cis-[Ru(bpy) ₂ (P(<i>i</i> -Pr) ₃)(H ₂ O)] ²⁺	0.782	1.100	1.013	1.330
19	cis-[Ru(bpy) ₂ (SbPh ₃)(H ₂ O)] ²⁺	0.699	1.170	1.224	1.450
20	$[Ru(CNC)(bpy)(H_2O)]^{2+}$	0.805	1.100	1.245	1.150
21	cis-[Ru(CNC)(nBu-CN)(H ₂ O)] ²⁺	0.966	1.080	1.102	0.940
22	<i>trans</i> -[Ru(CNC)(nBu-CN)(H ₂ O)] ²⁺	1.199	1.180	1.306	1.180